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S1: Deriving basal area/diameter conversion formula 12 

To further explain the logic behind the relationship of BA and DBH, the formula presented in the main text 13 
(equation 1) is shown below: 14 

Basal area = ((ℼDBH2/40,000))/0.0625 15 

The derivation of this formula follows below. 16 

Because BA is a measure of circular area, diameter should first be converted using the formula for the area of a 17 
circle: 18 

Area of a circle= ℼ(radius)2 19 

To convert from diameter to area, some modification is needed. As diameter is twice the radius, the above can 20 
be rewritten as: 21 

Area of a circle= (ℼ(diameter/2)2 22 

This can be simplified to: 23 

Area of a circle= ℼdiameter2/4 24 

However, it is important to note that DBH is reported and measured in centimeters, BA is typically in m2, or 25 
10,000 cm2 per m2. The formula must account for length to area conversion by multiplying the length units by 26 
10,000. Thus,  27 

Basal area = (ℼDBH2/40,000) 28 

BA is expressed as m2/ha, thus the values were divided by the plot area (625m2, or 0.0625 ha) to obtain the 29 
average plot-level measurement, giving:  30 

Basal area = ((ℼDBH2)/40,000)/0.0625 31 

The above was modified from conversation with Karin van Ewijk (personal communication, April 6, 2018), [1], 32 
and [2]. 33 

Similarily, average DBH could be derived from BA_dist and SDD or SD by dividing BA_dist by SD or SDD, 34 
giving average individual-tree BA. Then, average DBH can be found by rearranging the formula for basal area 35 
above (i.e., equation 2,3 in main text).  36 
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 37 

S2: Measures of evaluation descriptions 38 

R2 was calculated from cross-validation as: 39 

 40 

where SSE, or Sum of Squared Errors, is the sum of the squared differences between observed and predicted 41 
values (i.e., explained variation). SST is Total Sum of Squares, or the predicted value subtracted from the 42 
average actual value (i.e., total variation). 43 

Relative RMSE (rRMSE) was used a measure of model performance across varying size classes, calculated by 44 
dividing the RMSE by the true mean of the observed values [3,4], and was written as: 45 

 46 

where y is the observed value, ŷ is the predicted value, ȳ is the mean of observed values, and n is the number of 47 
observations.  48 

Scaled Root Mean Square Distance (sRMSD)[5] was used to compare accuracy across size classes. It is 49 
interpreted as RMSE scaled by the standard deviation of observed values, producing a value between 0 and 1: 50 

 51 

where y is the observed value, ŷ is the predicted value, n is the number of observations, and σy  is the standard 52 
deviation of observed values. Shang et al. (2017) [3] give reasoning for sRMSD, in that predictive accuracy can 53 
be measured against the overall dispersion (i.e. standard deviation) of the response, rather than the mean (i.e., 54 
rRMSE) [3]. rRMSE would provide optimistic measures of accuracy when the variance of the data is much 55 
smaller than the mean. 56 

BEI is written as such:   57 

 58 

where fi  is the observed number of stems in class i, k is the total number of classes, and  is the predicted 59 

number of stems in class i. n represents the observed total number of stems across all size classes, and  60 

represents the total predicted number of stems across all size classes. BEI was developed to address issues with 61 
previous iterations of an error index for SDD, as it effectively limits the index between 0 and 1, does not 62 
penalize based on incorrect prediction of stem density, and is not reliant on wood volume, stem density, or 63 
dollar value [3].  64 

 Bias was calculated as: 65 

) 66 

Where where y is the observed value, ŷ is the predicted value, and n is the number of observations. 67 

 68 

S3: Walk-through of methodological approach using subset of input data for PlotID ‘PRF003’- 69 

Sapling Class- FVS2 model, constant mortality 70 

To provide additional guidance on the G&Y model parameterization and execution, a brief walk-through 71 
using sample data is shown below. This walk-through starts after LiDAR-predicted variables have already 72 
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been generated and average DBH derived. It also has species abundance data already applied to the generated 73 
average DBH and the data has already been processed into .xls files generated for each individual plot, i.e., the 74 
tree lists, using an automated script and the writeXLS library in R. Named ranges for each file (i.e., each plot for 75 
each model) were added manually in order for the TLM to read them; we could not find an automated way to 76 
do this. For more information and detail on FVS model parameterization, the reader is referred to Woods and 77 
Robinson 2007 [6]. 78 

 Firstly, we select the pre-processed treelist_PRF003_sapling_FVS2.xls, sample data shown below: 79 

 80 

Figure S3-1. A sample data tree list generated from LiDAR average DBH and inventory 81 

species abundance (FVS2) for saplings in Plot ID PRF003, where status represents whether 82 

the tree is living or dead. 83 

We then input the tree list into a second pre-processing step, the Tree List Manager (TLM) extension of 84 
FVSOntario, which converts the data to a machine-readable format. As FVSOntario requires a specific file extension to 85 
generate estimates of carbon stock and accumulation, input tree lists were converted from .xls to the .tre 86 
extension using the Tree List Manager (TLM) extension provided with FVSOntario. To initialize Project setup, Plot 87 
Type was set to Fixed Area Plot. Species code was set to Alpha, and FVS Setup was set to Export Data to FVS. 88 
Plot info data included an input list of all plot names and plot area (i.e. 625 m2). Following this, the 89 
corresponding plot would be imported into the TLM Import window. The file was then exported manually 90 
with the corresponding plot name as a prefix.  91 

Headers are not included in model parameterization. Left to right, the columns represented in Figure S3-2 are 92 
the Plot ID, Tree ID, Tree Status (1=Live, 8 = Dead), Species code, DBH, Top Height (0 is ignored),  the Status 93 
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(left blank to represent the default ‘Live’ value) , the Damage code (5500 is ignored), and the cutting code (0 is 94 
ignored).  95 

 96 

0001  116.00 1BF 11.9     0.0             5500        0 97 

0001  216.00 1BF 11.9     0.0             5500        0 98 

0001  316.00 1BF 11.9     0.0             5500        0 99 

0001  416.00 1BF 11.9     0.0             5500        0 100 

0001  516.00 1BF 11.9     0.0             5500        0 101 

0001  616.00 1BF 11.9     0.0             5500        0 102 

0001  716.00 1MR 11.9     0.0             5500        0 103 

0001  816.00 1PW 11.9     0.0             5500        0 104 

0001  916.00 1SW 11.9     0.0             5500        0 105 

0001 1016.00 1SW 11.9     0.0             5500        0 106 

0001 1116.00 1SW 11.9     0.0             5500        0 107 

0001 1216.00 1SW 11.9     0.0             5500        0 108 

0001 1316.00 1SW 11.9     0.0             5500        0 109 

0001 1416.00 1SW 11.9     0.0             5500        0 110 

0001 1516.00 1SW 11.9     0.0             5500        0 111 

0001 1616.00 1SW 11.9     0.0             5500        0 112 

0001 1716.00 1SW 11.9     0.0             5500        0 113 

0001 1816.00 1PT 11.9     0.0             5500        0 114 

0001 1916.00 1PT 11.9     0.0             5500        0 115 

0001 2016.00 1PT 11.9     0.0             5500        0 116 

0001 2116.00 1PT 11.9     0.0             5500        0 117 

0001 2216.00 1PT 11.9     0.0             5500        0 118 

0001 2316.00 1PT 11.9     0.0             5500        0 119 

0001 2416.00 1PT 11.9     0.0             5500        0 120 

0001 2516.00 1PT 11.9     0.0             5500        0 121 

0001 2616.00 1PT 11.9     0.0             5500        0 122 

0001 2716.00 1PT 11.9     0.0             5500        0 123 

0001 2816.00 1PT 11.9     0.0             5500        0 124 

0001 2916.00 1PT 11.9     0.0             5500        0 125 

0001 3016.00 1PT 11.9     0.0             5500        0 126 

0001 3116.00 1PT 11.9     0.0             5500        0 127 

0001 3216.00 1PT 11.9     0.0             5500        0 128 

0001 3316.00 1PT 11.9     0.0             5500        0 129 

0001 3416.00 1PT 11.9     0.0             5500        0 130 

0001 3516.00 1PT 11.9     0.0             5500        0 131 

0001 3616.00 1PT 11.9     0.0             5500        0 132 

0001 3716.00 1BW 11.9     0.0             5500        0 133 

 134 
Figure S3-2: A sample data tree list input into FVSOntario, list generated from LiDAR average 135 

DBH and inventory species abundance (FVS2) for saplings in Plot ID PRF003, saved with the 136 

extension treelist_PRF003_sapling_FVS2.tre.  137 
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 The file was then input into FVSOntario Fire and Fuels (FFE) Carbon Submodel extension using a batch 138 
process and a ‘.key’ file generated from the FVSOntario Silviculture Prognosis Interface. The parameters used for 139 
constant mortality is as follows in Figure S3-3, noting the number of spaces represents different parameters: 140 
 141 

SCREEN 142 

TREELIST           0                   1 143 

BAMAX           999 144 

*SDIMAX                     900 145 

*MORTMULT           1                 5.9 146 

FIXMORT            0               0.004  147 

INVYEAR         2012     148 

TIMEINT            0         1 149 

NUMCYCLE         10 150 

 151 

Figure S3-3: Part of ‘carbon.key’ parameterization file used for generating projections of carbon 152 

stock.  153 

A Python script [7] was used to automate each plot or size-class level prediction of carbon accumulation. As the 154 
script requires the Linux processing environment to run, a virtual machine using Ubuntu v18.04.1 x amd64 disk 155 
image was installed, with an allocated memory of 1024 MB and 10 GB virtual hard disk image on a dynamically 156 
allocated storage environment. To run the x64 bit version of Ubuntu, the Virtualization option on the host 157 
system BIOS settings were changed to “Enabled”, while the Windows Feature “Hyper-V” was disabled.   158 

To run FVSOntario (i.e., a Windows-native program), Wine v3.0.4 was installed on the virtual machine using the 159 
installation procedure for versions prior to Ubuntu v18.10 [8]. Xdotool was installed to simulate input typing 160 
into FVSOntario [9]. For a given model (e.g.; FVS2 Saplings Constant Mortality), folders with all input tree list (.tre) 161 
files (“in”) and an output folder for the predictions (“out”) were created. In this case, all sapling tree lists, 162 
including our Plot ID PRF003, for the 75 plots generated for model FVS2 would be in this folder. All scripts were 163 
placed in the same directory as the FVSOntario executable. A terminal was opened to set up the automation 164 
process: 165 

While true 166 

Do 167 

Wine FVSOntario.exe 168 

Done 169 

A second terminal was opened in the same directory to run the command “python3 gen_xdotool.py” to 170 
generate the xdotool script. The script was then run using the command “bash xdo.sh” to generate the output 171 
files. With a ten-second lag in place, the first terminal was then reopened so the process could be run. A detailed 172 
description of the automation process can be found in McVittie (2018) [7]. The outputs were unstructured text 173 
files, separated per plot with various file and growth information, including values of total aboveground carbon 174 
stocks for each year of the projection.  175 

To extract values of carbon stocks, a section of the output text file had to be extracted, compounded by the issue 176 
that the file did not have consistent heading structure and the carbon stock values were halfway within the 177 
unstructured file. The extraction was automated using the stringr library as well as the grep function in R. 178 

Thus, an output file (.csv) was generated with a column representing Plot ID, a column representing the year of 179 
the projection, and a third column with carbon stock values. A separate file was generated for each model 180 
iteration, for each mortality rate, and for each size class, including the plot-level average and aggregate 181 
predictions. These data were aggregated per mortality rate, size class, and model number for analysis, shown in 182 
Figure S3-4.  183 
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 184 

 185 
Figure S3-4: Carbon stock outputs (tons/ha) after pre-processing FVSOntario raw file outputs, 186 

where saplings are represented by uniqueID 10 for PlotID PRF003 for FVS2. 187 

To compare model outputs with each other, we ran the Robinson test on the outputs (such as shown in Figure 188 
S3-4) comparatively using the equivalence library (equiv.boot function) in R. For our sapling example, we 189 
would also seed our model to obtain consistent results: 190 

Set.seed(123) 191 

Next, the Robinson test of equivalence was performed for both carbon stock and accumulation. The following is 192 
based on a newly created table where each column represents values of carbon stock or accumulation for a 193 
particular year for a given model. The “FVS1_2012_Sapling_Carbon” column represents the validation data, 194 
and the “FVS2_2012_Sapling_Carbon” column represents the ‘carbon’ column in Figure S3-4.  195 

Robinson_test = equiv.boot(table$FVS1_2012_Sapling_Carbon,table$FVS2_2012_Sapling_Carbon) 196 

For carbon accumulation, the resulting stock values at year 1 would be subtracted from year 2 for statistical 197 
equivalence testing.  198 

The additional graphical outputs demonstrating equivalence of bias and proportionality were generated using 199 
scripts from Fekety (2019)[10] and may become available upon request.  200 

 201 

S4: Additional table for Figure 11 202 

Table S4. Measures of accuracy and precision for FVS3 carbon stocks across plot-level models 203 

compared to FVS2-Average carbon stocks at year 2012. 2016, and 2021 carbon stock values 204 

appear in brackets, with constant mortality (All forest types). Table represents statistical 205 

descriptors for Figure 11 in main text. Mean of observed values are 30.40, 33.48, and 37.45 206 

tons/ha, respectively. 207 

 208 

Model  RMSE rRMSE sRMSD R Bias (%)  Mean 

FVS2 

Aggregate 

13.95(13.68;13.32) 0.46(0.41;0.36) 1.22(1.18;1.11) 0.64(0.64;0.65) 5.15(3.47; 

0.58) 

 31.97 

(34.64;37.67) 

FVS3 

Average 

2.98(3.28;3.76) 0.10(0.10;0.10) 0.26(0.28;0.31) 0.97(0.96;0.95) 0.37(0.75;1.07) 30.52(33.74; 

37.85) 
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FVS3 

Aggregate 

14.91(14.56;14.16) 0.49(0.43; 0.38) 1.31(1.26;1.18) 0.64(0.65;0.66) 8.21(6.64;3.81) 32.90(35.71; 

38.88) 

 209 
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