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Abstract: The existence of clouds is one of the main factors that contributes to missing information in
optical remote sensing images, restricting their further applications for Earth observation, so how
to reconstruct the missing information caused by clouds is of great concern. Inspired by the
image-to-image translation work based on convolutional neural network model and the heterogeneous
information fusion thought, we propose a novel cloud removal method in this paper. The approach
can be roughly divided into two steps: in the first step, a specially designed convolutional neural
network (CNN) translates the synthetic aperture radar (SAR) images into simulated optical images in
an object-to-object manner; in the second step, the simulated optical image, together with the SAR
image and the optical image corrupted by clouds, is fused to reconstruct the corrupted area by a
generative adversarial network (GAN) with a particular loss function. Between the first step and the
second step, the contrast and luminance of the simulated optical image are randomly altered to make
the model more robust. Two simulation experiments and one real-data experiment are conducted to
confirm the effectiveness of the proposed method on Sentinel 1/2, GF 2/3 and airborne SAR/optical
data. The results demonstrate that the proposed method outperforms state-of-the-art algorithms that
also employ SAR images as auxiliary data.
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1. Introduction

Great numbers of remote sensing data have been acquired and played an even more important
role in Earth observation and land monitoring in recent years. However, a large proportion of remote
sensing data are destructed due to the unavoidable existence of thick/thin clouds, which enormously
increases the difficulties of processing and restrains further applications. According to the statistics of
Landsat ETM+ data made by [1], around 35% of land areas are covered by clouds and the percentage
is even larger in the sea area. Therefore, it is valuable and pivotal to explore the approaches for
reconstructing the data corrupted by clouds for subsequent data analysis and employment.

Generally, cloud removal can be viewed as a missing information reconstruction process and
many efforts have been made so far in order to address this issue. As is demonstrated in [2], traditional
reconstruction approaches could be classified into three main types according to the difference
of homogeneous auxiliary data source: spatial-based approaches, spectral-based approaches and
multitemporal-based approaches. In addition, some novel approaches based on the heterogeneous
auxiliary data source, mainly synthetic aperture radar (SAR) data, have been developed in recent years
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and proved their effectiveness in practice, which are termed as SAR-based approaches for convenience
in this paper. A compendious review of three varieties of traditional reconstruction approaches and
SAR-based approaches is presented below.

Among them, spectral-based approaches are the most fundamental and classic reconstruction
methods, which make use of multispectral data to restore the missing parts. There come the conditions
that some bands of multispectral data have strong penetrability into the clouds but others do not,
or some bands are destroyed due to the limitation of instruments but others are in good condition,
so the intact bands could be applied as reference data to the reconstruction task of destroyed bands.
They are mostly derived from the polynomial fitting model, such as [3–7]. Spectral-based approaches
are able to obtain the retrieval results with high accuracy and good visual effect, but they do not
work when multiple or all bands are corrupted. In order to reconstruct the missing information of
multiple or all bands, spatial-based approaches are adopted which view the reconstruction process as
inpainting tasks within a single image. They are based on the assumption that the remaining parts and
the missing parts share the same statistical and geometrical structures. Spatial-based approaches can
be subdivided into interpolation methods [8,9], propagated diffusion methods [10,11], variation-based
methods [12,13] and exemplar-based methods [14]. Generally, they are efficient and do work in
filling the small-size gaps. However, when it comes to gaps with large size, they cannot restore the
high-frequency texture information and clearly display the boundary between different objects in
the reconstruction result. In face of the missing information with large size, multitemporal-based
approaches that restore the missing parts with the data from other time are proposed to solve the issue.
They are based on an assumption that no large change occurs between the data acquired at different
periods so that the corrupted data can be restored with the cloud-free data from adjacent periods as
reference data. The main multitemporal-based approaches are replacement methods [15–18], filtering
methods [19] and learning-based methods [20,21]. Compared with spatial-based and spectral-based
approaches, multitemporal-based approaches show great superiority and strong generalization ability
but it will not work when it comes to situations where remarkable changes occur within a short period
or cloud-free reference data is unavailable from the adjacent period.

In the last decade, deep learning has played an even more important role in the remote
sensing area because of its strong nonlinear fitting ability and some corresponding reconstruction
approaches are proposed in succession. For example, Zhang et al. [22] came up with the unified
spatial-temporal-spectral deep convolutional neural network (STSCNN) to remove thick clouds
with multitemporal optical remote sensing data, which show great superiority against traditional
models. Then Li et al. [23] proposed a residual symmetrical concatenation network to solve the
problem of removing thin clouds. Furthermore, generative adversarial network (GAN) stood out
from all deep learning models due to its performance in generating clearer and sharper images.
Dong et al. [24] suggested that the missing parts of sea surface temperature images could be inpainted
with deep convolutional generative adversarial network (DCGAN). Singh et al. [25] introduced the
cyclic consistent generative adversarial network, which was first proposed by Zhu et al. [26] to perform
image translation tasks, to remove the thin clouds. Deep-learning-based methods overcome many
drawbacks of traditional methods and are remarkably effective in the simulation/real experiment,
showing a really promising future in the remote sensing area.

Recently, a series of work has explored another way of removing clouds with SAR images as
auxiliary data. SAR can work in all-weather and all-time and get rid of the corruption of clouds,
which has huge advantages over optical auxiliary images and shows a promising application prospect
in the remote sensing area. Eckardt et al. [27] firstly took advantage of multi-frequency SAR data as
reference to remove clouds pixel-by-pixel with a geo-weighted model. Huang et al. [28] made use
of sparse representation to remove the clouds with SAR imagery and perform well in the simulation
experiment. Liu and Lei [29] attempted to obtain a simulated optical data to replace the corrupted data
by translating a SAR imagery with a cyclic-consistent generative adversarial network. Then Fuentes
Reyes et al. [30] discuss the validity and feasibility of the model proposed in [29] and confirm the
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idea with a mass of real experiments. Bermudez et al. [31] improved [29] by training a conditional
generative adversarial network with paired SAR/optical data to realize a pixel-to-pixel mapping
between them. Grohnfeldt et al. [32] otherwise directly fused SAR and corrupted optical imagery to
acquire a cloud-free result with a conditional generative adversarial network. Bermudez et al. [33]
and He and Yokoya [34] exploited the potential that a same conditional adversarial network as in [31]
with multitemporal SAR/optical data would get better results if enough cloud-free multitemporal
optical data is prepared, but they cannot present the authentic spectral information of the certain time.
In general, although cloud removal technology with SAR data is immature at present somehow, it is
worth keeping exploring the possibility of this idea.

Taking into consideration the advantages and disadvantages of approaches mentioned above,
we propose a novel framework to reconstruct the missing parts of optical images with single-temporal
SAR images as auxiliary data based on the latest development of GAN in this paper. Firstly, the SAR
data is translated into simulated optical data in an object-to-object manner by a specially designed
convolutional neural network with U-net structure. The simulated optical data cannot directly
substitute the ground truth because of its deviation on spectrum and loss of texture, but it is a better
reference compared with SAR data. So, a fusion network is adopted to fuse the corrupted optical
data, SAR data and simulated optical data to get the final cloud-free results with proper spectrum and
rich texture in the corresponding missing parts. Meanwhile, some disturbances are imposed in the
middle process to data to ensure the robustness of the model. The main contributions of the proposed
approach to solving cloud removal tasks are summarized below:

1. A novel framework called Simulation-Fusion GAN is developed to solve the cloud removal task
by fusing SAR/optical remote sensing data.

2. A special loss function is designed to obtain results with good visual effects. Taking the global
consistency, local restoration and human perception into consideration, a balanced combination
of global loss function, local loss function, perceptual loss function and GAN loss function is
contrived to operate supervised learning.

3. A series of simulation and real experiments are conducted to confirm the feasibility and superiority
of the proposed method. Our method outperforms in both quantitative and qualitative assessment
compared with other cloud removal methods who similarly make use of single-temporal SAR
data as reference.

The structure of this paper is developed as follows: in Section 2, we present our framework for
cloud removal tasks in detail. In Section 3, some simulation and real-data experiments are conducted
to show the superiority of the proposed method in GF-2/3, airborne SAR/optical and sentinel-1/2 data.
The conclusions, discussions and future work are presented in Section 4.

2. Methodology

2.1. Overview of the Proposed Framework

The proposed framework covers two main stages and some special data processing is conducted
between the two stages. Before the cloud removal processing, coregistration and resolution unification
of SAR/optical data are completed. In the first stage, the SAR data is translated into a simulated optical
image with coarse texture and low spectrum accuracy by a special convolutional neural network
(CNN) model. Before the second stage, the simulated optical image randomly altered its contrast and
luminance. The reason for this operation is to make the model of the fusion stage robust because
CNN in the first stage may generate an output with wrong spectral information in some cases. In the
second stage, the SAR data, the simulated optical image and the real optical image corrupted by clouds
are fused jointly to reconstruct the missing parts and we finally get a cloud-free output with proper
spectral accuracy and high-frequency texture. Before the application, the whole network is pretrained
with cloud-free parts of the corrupted optical image or the cloud-free optical image from another time.
The overall flowchart of the proposed framework is displayed in Figure 1.
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2.2. Simulation Process

Inspired by the great success in style transfer work achieved by deep learning, we introduced a
classical deep learning model U-net [35], which shows its superiority in semantic segmentation tasks
as the simulation network to translate a SAR image to an optical image in an object-to-object manner.
In this process, we wish to obtain simulated optical images with similar spectral information to the
ground truth and accurate object-to-object mapping. The structure of the network and the loss function
are provided detailed in the following.

2.2.1. Network Structure

The structure of the simulation network together with its working process is presented in Figure 2,
which is a 14-layer deep convolution neural network named U-net. The SAR imagery is input to
this network and simulated optical imagery would be obtained as an output. The first seven layers
are down-sampling layers, which may include a convolution layer acting down-sampling operation,
a batch normalization layer and an activation layer. The last seven layers are up-sampling layers,
which may include a convolution layer acting up-sampling operation, a batch-normalization layer and
an activation layer. In addition, a skip connection operation is conducted in order between the first
i− th down-sampling layer and the (14 − i) − th up-sampling layer. This structure could reduce the
information loss of input data during the operation within the network and make use of the high-level
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information and the low-level information at the same time. Compared with other deep learning
models, U-net has a deeper structure to extract high-level features while training faster. In general,
this structure perfectly meets our demand for translation from SAR images to optical images.
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2.2.2. Loss Function

A traditional but effective loss function L1 is provided to constrain the output simulated optical
image. This loss function would make the output clearer and have acute edges. So, the optimization of
the network can be defined as:

SN∗ = argmin‖SN(SAR) −GT‖11. (1)

SN stands for the Simulation Network and GT means the ground truth optical image.

2.3. Fusion Process

Although the simulated optical image has relatively correct spectral information and can roughly
reflect the situation of the ground truth, two main drawbacks still constrain its application. On the
one hand, a tiny deviation of spectral information still exists between the simulated optical image and
ground truth, which makes the simulated optical image unable to perfectly substitute the ground truth.
On the other hand, some high-frequency details such as texture cannot be generated in the simulation
process due to the lack of information in SAR imagery and the limitation of the model. Aiming at
solving these two drawbacks, we introduce the generative adversarial network (GAN) as the fusion
network to fuse the simulated optical image, SAR, and the corrupted optical image to obtain an output
with proper spectral information and fine texture in the fusion process. The workflow, structure and
loss function of GAN are demonstrated below in detail. As is displayed in Figure 3, the generative
adversarial network contains two working parts: a generative network and a discriminative network.
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2.3.1. Generative Adversarial Network for Fusion

The generative network is expected to fuse the simulated optical image, SAR and the corrupted
optical image to obtain a fusion result that cannot be distinguished from the ground truth by the
discriminative network, but the discriminative network tries to distinguish the fusion result from
the ground truth to urge the generative network get better results. The two networks are alternately
optimized so that adversarial learning is formed between them. Finally, the generative network can be
employed to accomplish the fusion work when reaching the Nash equilibrium [36].
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The structure of the generative network and discriminative network are also shown in Figure 3.
The generative network adapts a 14-layer U-net structure just like the first stage. Specially, we modify
the model by removing all of the Batch-Normalization layers to avoid its effect on global distribution.
The concatenation of the simulated optical image, SAR and the corrupted optical image is taken as the
input of the generative network, in which SAR data restricts the global structure, the corrupted optical
image is a reference data of spectral and texture information and the simulated optical image provides
the reference in missing parts. Fusion results with proper spectral information and high-frequency
texture are expected as the output.

The discriminative network is a simple convolution neural network with four layers. The first
two layers respectively contain a convolution layer performing downsampling operation a
Batch-Normalization layer and an activation layer, while the last two layers include a convolution
layer and an activation layer. In consideration of controlling the global structure of the output from the
generative network, the SAR image is taken into the discriminative network as auxiliary data jointly
with ground truth or fusion results and these two should be respectively judged as ‘True’ and ‘False’
by the discriminative network.

Actually, the fusion network is mainly based on the pix2pix model. However, during the
experiments we found that the normalization layers in the pix2pix model would be counter-productive
in processing remote sensing data. So, the normalization layers are removed and the final fusion
network is thus obtained.

2.3.2. Loss Function

According to the generative network and the discriminative network defined above, a training
strategy is developed and the loss functions are designed for this process. The discriminative
network is optimized firstly. Considering that the concatenation of SAR and the fusion result
should be judged as ‘False’ and the concatenation of SAR and the ground truth should be judged
as ‘True’ by the discriminative network, a least square loss function was constructed to optimize the
discriminative network:

LD = (D(SAR, FN(SAR, CO, SO)) − 0)2 + (D(SAR, GT) − 1)2. (2)

D represents the discriminative network and FN means the fusion network. CO and SO are
respectively the corrupted optical image and the simulated optical image. D is optimized once in each
iteration of the training process. Then the optimized D is fixed to optimize the fusion network FN by
forcing FN to obtain a result that can be judged as ‘True’ by the fixed D:

LGAN = (D(SAR, FN(SAR, CO, SO)) − 1)2. (3)

FN and D are alternatively optimized according to the training strategy described above to form
adversarial learning.

Although fusion results with tiny texture and great visual effect can be obtained, the global
distribution still needs restriction to get a better result with a traditional loss function like L1:

L1 = ‖FN(SAR, CO, SO) −GT‖11. (4)

In addition, studies have shown that the perceptual loss function [37] can lead to results with
better visual perception. We extract feature maps of the fusion result and the ground truth from the
8th layer of VGG16 to construct a perceptual loss function:

Lperc = ‖vgg8(F) − vgg8(GT)‖11. (5)

Here F stands for the fusion result.
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The loss functions defined above are mainly aimed at reconstructing the corrupted image from a
global view. Furthermore, a loss function should be designed to especially focus on the restoration of
the missing parts. Thus we take advantage of the cloud mask M to construct a local loss function for
local reconstruction:

Llocal = ‖M·F−M·GT‖11. (6)

The total loss function of the fusion network, which contains both global and local loss functions
is finally obtained:

LFN = λ1L1 + λ2Llocal + λ3LGAN + λ4Lperc, (7)

in which λ1,λ2,λ3 and λ4 are respectively the weight of the L1,Llocal,LGAN and Lperc.
With the fixed discriminative network D, the fusion network FN is optimized by gradient descent

algorithm according to the Equation (7). Then the FN gets fixed to optimize the discriminative network
D according to Equation (2) again. The two networks are alternatively optimized with the training
strategy demonstrated above until the Nash Equilibrium. At last, the optimized FN could be employed
to conduct the fusion task.

2.4. Data Disturbance

We had an assumption that the simulated optical image obtained from the first stage has similar
spectral information with the ground truth. However, when the acquisition time between testing data
and training data is inconsistent, the situation may exist that the output of simulation network presents
very different spectral information with ground truth. Thus a horrible fusion result will be generated
if the simulation optical image with wrong spectral information is processed as a fusion material in
the second stage. In this case, a necessity arouses that the fusion model should be more robust when
dealing with the simulated optical image with a certain bias in its spectrum information from the
ground truth. So, we randomly alter the contrast and luminance for each band of the simulated optical
image before the fusion process to make the model of fusion process more robust and further able to
be applied in other periods. The random transformation function is calculated as follows:

new SOi = RandCont(RandLum(SOi)) i = 1, 2, 3. (8)

RandCont and RandLum respectively mean the random contrast alternation operation and random
luminance alternation operation. new SO then takes the place of SO as the input to the FN.

3. Experimental Results and Analysis

3.1. Settings

In order to verify the feasibility of our framework on the cloud removal task, simulated and
real-world experiments were conducted with different datasets. Settings of the experiments including
datasets, training settings, evaluation methods and compared algorithms are presented in detail
as follows.

3.1.1. Datasets

We collected two datasets, namely Dataset A and Dataset B, to conduct the simulated experiments
and one dataset, namely Dataset C to conduct the real experiment.

Dataset A is made by data from GF-2 and GF-3 with a size of 3742 px × 2947 px in Nanchang,
Jiangxi Province, China. The land cover types are mainly farmlands and rivers, which is somehow
simple and with less texture. The GF-2 optical image was acquired on August 12 2016 with a resolution
of 3.2 m. The GF-3 SAR image was acquired on August 16 2016 with a resolution of 1 m. The two
images are roughly coregistered with a deviation of fewer than 5 pixels. This dataset also proved
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that the neural network model could also work when tiny deviations exist between the SAR and
optical images.

The SAR and optical data in Dataset B were provided in the 2001 IEEE GRSS data fusion contest
with a size of 2813 px × 2289 px. The land cover types are mainly houses, roads and farmlands,
which are relatively complex and with dense texture. The SAR and optical data are finely coregistered
and shared the same resolution of 1 m. Before the experiment, the SAR image is denoised by the
SAR-BM3D [38] algorithm.

Dataset C employs SAR data from Sentinel-1 and optical data from Sentinel-2, which are acquired
from Kempten city, Germany. The Sentinel-1 SAR data was acquired on Mar. 5 2017 whose polarization
mode is hh and resolution is 5 m. The Sentinel-2 optical image was acquired on Jul. 16 2017, of which
we make use of three bands including R, G and B with a resolution of 10 m. We have made sure that no
large changes occurred between this time gap. The SAR and optical data whose size are both 1024 px
× 1024 px are roughly coregistered with a deviation of fewer than 5 pixels.

Images in Dataset A and B are cropped into 128 px × 128 px. Corrupted areas were imposed on
the optical images to simulate the cloud in around 35% of the area. Ninety percent of the images of the
dataset are used as the training dataset and the rest 10% images are used to test the model. For Dataset
C, the model is pretrained with data from another time, then the whole SAR image and optical image
are input to the model to get a cloud removal result.

3.1.2. Cloud Simulation and Detection

In the simulation experiments, we produce cloud masks manually in the Photoshop software.
First, we randomly draw around 100 cloud figures, which take up about 35% of the whole area.
Then these figures are randomly rotated, up-sampled/down-sampled and crop to obtain more figures.
Finally, the figures whose corrupted area is larger than 40% or smaller than 30% are filtered out because
the statistics show that the proportion of land area covered by cloud is around this range. The rest
figures are used as cloud masks in the simulation experiment.

Between the simulation and fusion process, cloud detection work of the real optical image
is indispensable in order to construct a certain loss function in the second stage and analysis the
reconstruction results in the end. Many efficient models have so far been proposed to detect the clouds
and its accompanying shadows, such as Fmask [39] and MSCFF [40]. We thus adapt MSCFF, which is
based on deep learning, to detect the clouds and get a binary map MC of the clouds.

3.1.3. Training Settings

We adopt the Adam optimization algorithm to optimize the network and the hyperparameters
were set as β1 = 0.9 and β2 = 0.999. The learning rate is set as 0.0002 in the first 75 epochs and gradually
decayed to 0 in the last 75 epochs. In addition, the weights of loss function defined in Section 2 were
respectively λ1 = 10, λ2 = 10, λ3 = 0.0001 and λ4 = 0.8.

3.1.4. Evaluation Indicators

Four quantitative indexes are selected to evaluate the results of simulated experiments. The first
two indexes are root mean squared error (RMSE) and spectral angle mapping (SAM). The smaller
the values are, the better the results will be. The last two indexes are mean structure similarity index
measurement [36] (mSSIM) and correlation coefficient (CC) The larger the values are, the better results
will be obtained. Moreover, visual evaluation is applied to observe the reconstruction details.

3.1.5. Compared Algorithms

Among the cloud removal algorithms mentioned in Section 1, two deep-learning-based algorithms
that utilized single-temporal SAR and optical data are selected to compare with our method: pix2pix
model [31] and SAR-opt-GAN model [32]. The pix2pix model adopts a conditional GAN model
to directly translate the SAR images to optical images with paired SAR/optical data and GAN
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training strategy demonstrated above. The land cover types of result images can be greatly classified.
SAR-opt-GAN model also employs a conditional GAN model and training strategy as the pix2pix
model. However, the input of the model is the concatenation of SAR and corrupted optical image and
the result is expected to be a cloud-free optical image. In fact, this model does have an advantage in
thin cloud removal work. The above-mentioned compared algorithms and the proposed algorithm are
trained on the same datasets.

3.2. Simulated Experiment

3.2.1. Results of Dataset A

The experiment results of Dataset A are displayed in Figure 4. The SAR images are shown in
Figure 4a and the simulated corrupted images are exhibited in Figure 4b. Results of the pix2pix model,
SAP-opt-GAN model and the proposed model are respectively displayed in Figure 4c–e. Figure 4f
displays the ground truth. Furthermore, Table 1 list the quantitative evaluation results including
RMSE, mSSIM, CC and SAM.
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Figure 4. Results of each method in Dataset A. (a) original synthetic aperture radar (SAR) images; (b)
simulated corrupted images; (c) results of the pix2pix model; (d) results of the SAR-opt- generative
adversarial network (GAN) model; (e) results of the proposed model (f) ground truth.

Table 1. Quantitative Evaluation of Models on Dataset A.

mSSIM CC SAM RMSE

Proposed model 0.9135 0.9642 2.8158 6.9184

Pix2pix 0.7181 0.8581 5.0776 14.2023

SAR-opt-GAN 0.8685 0.9367 3.3496 9.9805

As is shown in the first row in Figure 4, the result generated by the pix2pix model has a deviation
on spectral information from the ground truth. In contrast, SAR-opt-GAN model and the proposed
model outperforms in reconstructing the spectral information of ground truth images. Quantitative
evaluation results listed in Table 1 confirm that the SAR-opt-GAN model and the proposed model
could generate great results to some degree, but the proposed model performed better than the above
two models. In addition, the proposed model outperforms the other two models in terms of tiny
ground objects reconstruction. We could observe that in the second row of Figure 4, SAR-opt-GAN
model could not restore the road, which is magnified. The pix2pix model just generates a result in
which almost no road is reconstructed. However, the proposed model could precisely restore this tiny
object. In general, the proposed model shows its superiority in terms of spectral restoration and ground
object construction compared with the pix2pix model and SAR-opt-GAN model. The experiment
results of Dataset B are shown in Figure 5.
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Figure 5. Results of each method in Dataset B. (a) original SAR images; (b) simulated corrupted images;
(c) results of the pix2pix model; (d) results of the SAR-opt-GAN model; (e) results of the proposed
model (f) ground truth.

3.2.2. Results of Dataset B

Figure 5a,b stands for the SAR images and the simulated. Results of the pix2pix model,
SAR-opt-GAN model and the proposed model are displayed in Figure 5c–e. Ground truth images are
exhibited in Figure 5f. Moreover, quantitative evaluation results including RMSE, mSSIM, CC and
SAM are enumerated in Table 2

Table 2. Quantitative Evaluation of Models on Dataset B.

mSSIM CC SAM RMSE

Proposed model 0.906 0.9721 3.1621 9.7865

Pix2pix 0.5928 0.8350 6.2 28.1753

SAR-opt-GAN 0.7817 0.8964 4.1611 21.5257

In Dataset B, spectral deviation still exists in the results of the pix2pix model just as the first row
of Figure 5 shows, but SAR-opt-GAN and the proposed model are freed from this issue again because
they take the remainder of corrupt optical images as reference data. Nonetheless, as is shown in the
second row of Figure 5, SAR-opt-GAN generates results with apparent artifacts nearby the corrupted
areas, showing the limitation of SAR-opt-GAN model. However, the results of pix2pix model and the
proposed model have barely artifacts relatively. In addition, a local area is magnified to observe the
texture reconstruction of the three models in the third row of Figure 5. It is clear that pix2pix model
and SAR-opt-GAN model have a poor ability to restore the texture information of the ground truth but
the proposed model shows its advantage in texture generation, which means that the proposed model
could handle more complex images. Quantitative evaluation results also prove the superiority of the
proposed model in Table 2. In general, the proposed model still performs well in terms of spectral
fidelity, artifacts removal and texture generation. Figure 6d–f stands for the global reconstruction
results of the pix2pix model, SAR-opt-GAN model and the proposed model.
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3.3. Real Experiment

In order to validate that the proposed method is applicable to the real situation, we conduct a
real-world experiment with Dataset C. The corrupted area of optical data accounts for 38.38% of the
total area according to the calculation of MSCFF [40]. The real experiment results are displayed in
Figure 6. Figure 6a–c is the SAR image, the corrupted optical image and the cloud mask obtained
by MSCFF.

Then some areas were selected to evaluate the reconstruction from a local view. Figures 7–9
present the reconstruction results of these selected areas. Figures 7, 8 and 9a display the selected
corrupted optical images. b–d from Figures 7–9 display the reconstruction results of the pix2pix model,
SAR-opt-GAN model and the proposed model respectively.
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Generally, we could observe that all three models achieve results with great visual effects from a
global view in Figure 6. However, certain performance differences are observed between the three
models in some local areas. The area shown in Figure 7 is selected from a cloud-free area of the optical
image, which could be viewed as ground truth. The reconstruction result of the pix2pix model has an
obviously darker spectral information compared with the ground truth, while the results obtained by
SAR-opt-GAN model and the proposed model largely retain the proper spectral information of the
ground truth. Figure 8 displays a junction between the corrupted and cloud-free areas. The result of
SAR-opt-GAN has a vivid boundary around the junction part, but the proposed model and the pix2pix
model obtain results with no boundary trace nearby the corresponding part. Figure 9 presents an
urban area with relatively complex texture information. The pix2pix model and the proposed model
could reconstruct the corrupted parts with clear details but SAR-opt-GAN just generates a result with
fuzzy ground objects on it.

As a whole, our method outperforms the other two methods in terms of several visual evaluations
including spectral fidelity, inpainting effect and reconstruction of objects.

3.4. Discussion

3.4.1. Ablation Study of the Model

As is demonstrated in Section 2, the proposed model includes three main operations: simulation
process, data disturbance process and fusion process. In this part, three ablation models would be
compared with the proposed model to display the importance of these operations. The three ablation
models are respectively the model without simulation process, the model without fusion process and
the model without data disturbance process. Dataset B is applied in this study and the results of these
ablation models and the proposed model are listed in Table 3.
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Table 3. Ablation Study in Terms of the Three Main Operations.

mSSIM CC SAM RMSE

No fusion process 0.6882 0.8902 5.6441 24.1755

No simulation
process 0.8152 0.9185 3.5891 19.6964

No data
disturbance 0.8876 0.9693 3.4499 11.0290

Proposed model 0.9060 0.9721 3.1621 9.7865

According to Table 3 it goes without saying that the results of model without fusion process
and model without simulation process degrade a lot compared with the proposed model. It is also
important to mention that certain data disturbance on the simulated optical image would really
improve the final fusion results. It confirms our idea that data disturbance might strengthen the
robustness of the fusion network. We explore the impact of different terms of our reconstruction loss
functions including L1 loss, GAN loss, perceptual loss and local loss. Each of the four loss terms in
the original model is ablated alternately to get four ablation models. Then the results of the ablation
models and original model are compared to evaluate the importance of each loss term. Dataset B is
again applied in this section and the evaluation results of different ablation models are listed in Table 4.

Table 4. Ablation Study in Terms of the Loss Functions.

mSSIM CC SAM RMSE

No L1 loss 0.8814 0.9677 3.5490 11.0041

No local loss 0.8941 0.9697 3.1281 10.0635

No perc loss 0.9028 0.9741 3.2010 9.5836

No GAN loss 0.8927 0.9699 3.1953 9.9882

Proposed model 0.9060 0.9721 3.1621 9.7865

* Bold numbers mean the best results; numbers with underline mean the second best results.

3.4.2. Ablation Study of the Loss Functions

In Figure 10, a case that simulation network fails to work and generate an output with different
spectrum, which is shown in Figure 10c. The model without perceptual loss would get obvious
‘patches’ in no harmony with surroundings in the corresponding missing parts. However, the original
model overcame this failure, which is shown in Figure 10d because perceptual loss is conducted by the
feature map from the vgg16 network, which is able to extract the boundary if the ‘filling patches’ have
different color with surroundings in the fusion result.
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original model.
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The model without L1 loss could also generate a similar result compared with the original model
but fails to control the global distribution of the output as well as the original model. Model without
local loss achieves similar results to the original model, but degradation actually appears according
to the quantitative evaluation in Table 3. Results generated by model without GAN loss would also
degrade a little in the quantitative evaluation compared to the original model.

What could also be observed from Table 3 is that the perceptual loss term seems to have a
retroaction toward the result, but it enriches the texture information, which is reflected in mSSIM
index and does increase the robustness of the model to some degree. As λ2 varies from 101 to 104,
which is plotted in Figure 11a, the model achieves the lowest RMSE when λ2 equals 102. Then is the
weight of perceptual loss term. It can be observed from Figure 11b that the perceptual loss term seems
counterproductive to the result.
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4. Conclusion 

In this work, a framework called Simulation-Fusion GAN was proposed for cloud removal 
tasks of optical remote sensing data, taking advantage of GAN model as the basic structure and SAR 
data as the reference data. Differing from the methods applying direct translation from a SAR data to 
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3.5. Parameter Sensitive Analysis

In this part, we pay attention to analyzing the parameters given in the loss function: λ1,λ2,λ3

and λ4 to fine-tune the model to the best. Since there are four parameters and coupling might exist
between different loss functions, the strategy is given that the loss terms are added one by one in the
order of magnitude. We first fix the weight of L1 λ1 as 10 and add the local loss to ensure its weight λ2.
The weight of perceptual loss term λ3 is afterward affirmed and the weight of GAN loss term λ4 is final.
To quantitatively evaluate the results, RMSE was applied to compare models with different weight.

However, as is displayed in Figure 12, appropriate weight of perceptual loss would alleviate the
existence of filling patches with a different color mentioned in the ablation study. So, we set the λ3 as
0.8. Finally, the results would be best when the weight of GAN loss λ4 is set to 10−4 as λ4 varies from
10−6 to 104, which is plotted in Figure 12c.
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4. Conclusions

In this work, a framework called Simulation-Fusion GAN was proposed for cloud removal tasks
of optical remote sensing data, taking advantage of GAN model as the basic structure and SAR data
as the reference data. Differing from the methods applying direct translation from a SAR data to an
optical data or direct fusion of SAR and optical data, we carefully settled the simulation and fusion
process and optimized the model with a special-designed loss function. In this process, the relationship
between SAR and optical images was learning sufficiently and the residual spectral information of
corrupted optical images was utilized at the same time. The outperformance of experimental results
on GF-2/3, airborne SAR/optical data and sentinel-1/2 all confirmed the feasibility and validity of
our model.

Although the proposed method acquired satisfying results and outperformed other similar
methods, there are still some limitations to overcome. One is that the different models should be
pretrained every time in different certain place. In future work, we will take advantage of the
multitemporal data and take change detection into consideration to make the model be more robust
and have generalization ability. In addition, the land cover classification on the reconstruction results
will be considered afterward.
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