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Abstract: Remote sensing images are featured by massiveness, diversity and complexity. These
features put forward higher requirements for the speed and accuracy of remote sensing image retrieval.
The extraction method plays a key role in retrieving remote sensing images. Deep metric learning
(DML) captures the semantic similarity information between data points by learning embedding
in vector space. However, due to the uneven distribution of sample data in remote sensing image
datasets, the pair-based loss currently used in DML is not suitable. To improve this, we propose a
novel distribution consistency loss to solve this problem. First, we define a new way to mine samples
by selecting five in-class hard samples and five inter-class hard samples to form an informative set.
This method can make the network extract more useful information in a short time. Secondly, in
order to avoid inaccurate feature extraction due to sample imbalance, we assign dynamic weight to
the positive samples according to the ratio of the number of hard samples and easy samples in the
class, and name the loss caused by the positive sample as the sample balance loss. We combine the
sample balance of the positive samples with the ranking consistency of the negative samples to form
our distribution consistency loss. Finally, we built an end-to-end fine-tuning network suitable for
remote sensing image retrieval. We display comprehensive experimental results drawing on three
remote sensing image datasets that are publicly available and show that our method achieves the
state-of-the-art performance.

Keywords: deep metric learning; remote sensing image retrieval (RSIR); sample balance loss;
distribution consistency loss

1. Introduction

With the rapid advancement of aerospace and remote sensing technology, the comprehensive
observation capability of the earth has been greatly improved. The available remote sensing images
have undergone tremendous changes in terms of improved spatial resolution and improved acquisition
rates, which has imposed a profound impact on the way we process and manage remotely sensed
images. The increased spatial resolution provides a new opportunity to advance the analysis and
understanding of remotely transmitted images. The ever-increasing data collection speed allows us to
collect large amounts of remote sensing data every day, but this poses a huge challenge for managing
large datasets, especially how to quickly access the data of interest.
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The early remote sensing image retrieval system only provides a text-based retrieval interface,
and the image is described by related text information, such as image name, geographic region and
acquisition time. However, the information does not have direct relation to the visual content of the
image. To solve this problem, people are working on content-based image retrieval (CBIR). CBIR is a
branch of image retrieval and is a useful technique for quickly retrieving data of interest from a massive
database, by extracting features (such as colors and textures) in the visual content and identifying
similar or matching images in the database. In recent years, based on the advantages of CBIR, the
remote sensing community has invested a lot of energy to make CBIR suitable for remote sensing
image retrieval. Henceforth, image retrieval based on remote sensing images has attracted numerous
scholarly studies and has achieved huge progress [1,2].

In particular, remote sensing is centered on developing effective methods to extract features
because the retrieval performance largely depends on feature effectiveness. The key issue in CBIR is
to find the underlying distinctiveness from the image. Traditional feature extraction techniques rely
primarily on manual design features. Their design is subject to human intervention, subjective and
makes it difficult to express high-level semantic information. Handcrafted features are also commonly
used as remote sensing image representations in RSIR work [3,4], including spectral features [5], shape
features [6] and texture features [7]. Compared with low-level features, middle-level features embed
low-level feature descriptor into the encoded feature space, and use more compact feature vectors
to represent complex image textures and structures. The typical methods are BoW (Bag of Word) [4],
VLAD (Vector of Aggregate Locally Descriptor) [1] and FV (Fisher Vector) [2].

However, the abovementioned underlying features and middle-level features still have a “semantic
gap” with high-level features. The above feature extraction method is based on the characteristics of
artificial design and has limitations on the expression ability of remote sensing image content. The
advancement of deep learning has driven content-based image retrieval. It abstracts feature vectors
trained by a large amount of data and automatically learns the rich information contained in the data.
It has been proven that deep learning has better performance than traditional manual features in image
retrieval of remote sensing images [2,8,9]. Moreover, deep learning solves a variety of computer vision
barriers as well as remote sensing issues, such as simultaneous extraction of roads and buildings,
ultra-high-resolution optical images and hyperspectral image classification. The essence of deep
learning is to discover the complex structure of the dataset by training a large amount of data. The
rich information contained in the automatic learning data is abstracted into a feature vector, so that
handcrafted features are not needed in remote sensing images. In the context of remote sensing image
big data, deep learning technology is of great value in image retrieval of massive remote sensing data.

Deep metric learning represents a newly emerging technology that combines metric learning
with deep learning. A deep neural network deploys its discriminative power to embed the image
into metric space. Simple metrics, including cosine similarity and Euclidean distance, can be directly
used to measure the similarity between images [10]. In recent years, deep learning has achieved great
success in application areas, which include target recognition, target detection, image segmentation and
natural language understanding [11–13], and has been gradually applied in the field of image retrieval,
such as landmark image retrieval [14], natural image retrieval [14] and face recognition [10]. Despite
apparent differences between remote sensing images and ordinary natural images, DML presents huge
potential in content-based image retrieval of remote sensing images [15].

The loss function is crucial in the success of DML, and various loss functions have been proposed
in the literature. Contrastive loss [16] records the relationship between pairs of data points by zooming
in on similar samples and pushing far from dissimilar samples. The triplet loss [17] consists of an anchor
point, a similar (positive) data point and dissimilar (negative) data points. It learns a distance metric
that allows anchor points to be closer to similar points than dissimilar points. Because of the relationship
between the positive and negative pairs, triplet loss is usually better than contrastive loss [10,18] and,
inspired by this, recent works [18–22] proposed to consider the relationship between multiple data
points, where good performance is achieved in applications such as retrieval and classification.
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However, there are still some limitations in the current state of DML on remote sensing image
retrieval. First, we noticed that sample mining only uses part of the positive sample information,
and the differences between sample categories are ignored. Secondly, we observe that the previous
loss treats each positive sample equally, thus neglecting the sample differences within the category
on the loss calculation; that is, the effect of the quantity of relationships between easy samples and
hard samples on the loss optimization. This deficiency affects the quality of image retrieval, especially
remote sensing image retrieval. When magnifying the pictures in the remote sensing dataset, we
found that the sample differences within each category are different. The specific differences are
shown in Figure 1. The differences within the categories in Figure 1a,b are small, and the texture
features and color characteristics are similar, but the differences within the categories in Figure 1c,d are
relatively large. After comparison, we find that the selected hard positive samples deserve a larger
weight because it has a larger contribution to the loss when the samples have larger differences within
categories, namely the larger proportion of hard samples. Therefore, different categories should be
assigned different weights when performing positive sample mining. Ideally, a hard sample with a
large percentage should be given a greater weight.

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 31 

 

the differences between sample categories are ignored. Secondly, we observe that the previous loss 
treats each positive sample equally, thus neglecting the sample differences within the category on the 
loss calculation; that is, the effect of the quantity of relationships between easy samples and hard 
samples on the loss optimization. This deficiency affects the quality of image retrieval, especially 
remote sensing image retrieval. When magnifying the pictures in the remote sensing dataset, we 
found that the sample differences within each category are different. The specific differences are 
shown in Figure 1. The differences within the categories in Figure 1a,b are small, and the texture 
features and color characteristics are similar, but the differences within the categories in Figure 1c,d 
are relatively large. After comparison, we find that the selected hard positive samples deserve a larger 
weight because it has a larger contribution to the loss when the samples have larger differences within 
categories, namely the larger proportion of hard samples. Therefore, different categories should be 
assigned different weights when performing positive sample mining. Ideally, a hard sample with a 
large percentage should be given a greater weight. 

  

  
(a) Agricultural                               (b) Chaparral 

  

  
(c) Sparse Residential                       (d) Medium residential 

Figure 1. Sample difference graph for different categories. 

Our major contributions in this study are listed as follows: 

• For the remote sensing image retrieval task, we propose a novel distribution consistency loss 
(DCL), to learn discriminative embeddings. Different from the previous pair-based loss, it 
performs loss optimization based on the difference in the number of samples within the class 
and the sample distribution structure between the classes. It includes the sample balance loss 
obtained by assigning dynamic weights to selected hard samples based on the ratio of easy 
sample and hard sample in the class, and the ranking consistency loss weighted [23] according 
to the distribution of the category of the negative sample. 

• A sample mining method suitable for a remote sensing method is proposed. The intra-class hard 
sample mining method is used to select five positive samples, and each positive sample is given 
a dynamic weight. The hard class is used instead of hard content mining. This method selects a 
representative sample which obtains richer information while increasing the speed of 
convergence. 

• We built an end-to-end fine-tuning network architecture for remote sensing image retrieval, 
which applied convolutional neural network, and selected the most suitable method for remote 
sensing image retrieval. In DCL, the loss and gradients were computed based on sum-pooling 

Figure 1. Sample difference graph for different categories.

Our major contributions in this study are listed as follows:

• For the remote sensing image retrieval task, we propose a novel distribution consistency loss (DCL),
to learn discriminative embeddings. Different from the previous pair-based loss, it performs
loss optimization based on the difference in the number of samples within the class and the
sample distribution structure between the classes. It includes the sample balance loss obtained by
assigning dynamic weights to selected hard samples based on the ratio of easy sample and hard
sample in the class, and the ranking consistency loss weighted [23] according to the distribution
of the category of the negative sample.

• A sample mining method suitable for a remote sensing method is proposed. The intra-class hard
sample mining method is used to select five positive samples, and each positive sample is given a
dynamic weight. The hard class is used instead of hard content mining. This method selects a
representative sample which obtains richer information while increasing the speed of convergence.
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• We built an end-to-end fine-tuning network architecture for remote sensing image retrieval, which
applied convolutional neural network, and selected the most suitable method for remote sensing
image retrieval. In DCL, the loss and gradients were computed based on sum-pooling (SPoC) [24]
features. The loss function influences the activation distribution of the feature response map,
which enhanced accurate saliency and extracted more discriminative features. In addition, we also
compared different combinations of image multi-scale processing, whitening and query expansion,
and finally selected the most suitable multi-scale cropping method to process the input data.

• We conducted a comprehensive experiment on the large dataset PatternNet [9], the popular
UCMD dataset [24] and the NWPU-RESISC45 dataset [25]. The experimental results demonstrate
that our method is significantly better than the most advanced technology available.

2. Related Work

In this section, we will first give the formulation of the remote sensing image retrieval method,
and then introduce the existing general pair-based weighting loss. Finally, we introduce the sample
mining method in metric learning.

2.1. Remote Sensing Image Retrieval Methods

The performance of remote sensing image retrieval mainly depends on the expressive power of
image features. In the past ten years, people have made great efforts to extract effective features and
construct remote sensing image scene datasets [9]. Compared with the traditional feature extraction
method, the development of deep learning has greatly improved the quality of image feature extraction.
In the context of remote sensing image big data, it is possible to extract remote sensing image features
by learning from massive remote sensing image data. Therefore, the use of deep learning methods to
improve the accuracy of remote sensing image retrieval tasks has a very broad prospect.

At present, the remote sensing image retrieval method based on deep learning generally uses
convolutional neural networks (CNNs) to extract the features of remote sensing images, and trains
the network by means of classification. Finally, remote sensing image retrieval is performed through
the features extracted by the network [26]. In order to obtain more discriminative features, the two
dimensions of channel and space are weighted to obtain significant features [27]. The pre-trained
RSIR method uses a trained overfeat network to extract RS features. The outputs of the seventh layer
(DN7) [28] and the eighth layer (DN8) [29] are considered as deep features. Yang uses the S-BOW [4]
feature to represent the RS image, and selects the L1 norm distance to determine the similarity of the
image. The similarity between RS images is converted into the similarity between blur vectors by
region-based fuzzy matching (RFM) [30]. Xu discovered useful information of RS images through
similarity. With the help of deep learning technology, he designed a feature learning method named
Deep BOW under the bag of words model [31]. In addition to feature weighting, a saliency module
can be added to extract convolutional layer aggregation features of multiple scales [31], or to add
attention mechanisms and local convolution features [30] to achieve more accurate remote sensing
image retrieval. However, the above methods require a large amount of training data. For some
remote sensing image targets, the number of training images that can be obtained is small, and the
deep learning training data requirements cannot be met. At the same time, the characteristics of the
remote sensing image target rotation are not taken into consideration, which makes the current deep
learning model inconsistent or even different for different rotation angle target features, resulting in
low retrieval accuracy of remote sensing images.

Due to the large number of remote sensing images, the general linear search method is far from
meeting the time performance requirements of large-scale remote sensing image retrieval and is
replaced by the approximate nearest neighbor (ANN). The basic idea of ANN is to replace the exact
match with the approximate optimal, and this greatly improves the retrieval efficiency while ensuring
the accuracy of image retrieval. Among them, the hash learning method [32] is a commonly used
method of ANN. The hash learning method is widely used in large-scale image retrieval due to its
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advantages in speed and storage. For example, the non-linear hashing method based on RS two
kernels, achieves real-time search and fast detection through mapping image feature vectors of high
dimensional image into compact truncated hash codes [32]. A hashing-based approach introduces a
hashing algorithm to encode RS images [31]. However, hash learning methods typically require longer
hash codes to achieve satisfactory accuracy, which results in larger storage space requirements and
retrieval efficiency issues. However, with a shorter hash code, there is a problem that the retrieval
recall rate is low.

In recent years, deep learning methods have also been applied to hash coding to obtain better
coding effects [33]. The partial random hash of the random projection is generated in an unsupervised
manner, the image is mapped to the Hamming space to obtain the low-latitude expression of the image,
and then the model is trained [32]. Unsupervised strategies [15], metric-based learning of the Hash
network [34], and deep hash neural networks [33] are also methods for resolving large-scale remote
sensing images. Through these deep learning-based hashing methods, the image can directly obtain
the corresponding hash encoding. However, in order to minimize the loss of feature information of the
image, the hash coding dimension is often very high, and it is necessary to traverse the entire data set
when performing image retrieval, resulting in low retrieval efficiency.

Based on the excellent performance on ImageNet [35] and other issues, convolutional neural
networks (CNNs) combined with metric learning are the most effective deep learning methods in
image retrieval. However, training a valid CNN from scratch requires a lot of markup images. Using
CNN pre-trained on ImageNet as a feature extractor, we can learn specific features by fine-tuning
CNNs that are pre-trained on the target dataset, so translate learning is often used to solve the problem
of lacking enough markup images. This is very helpful in some areas where large-scale publicly
available datasets are not enough, such as remote sensing. In [36], Penatti studied the generalization
ability of deep features extracted by CNN by extracting and transferring deep features from everyday
objects to remote sensing. Experimental results indicate that transfer learning is an effective method
for cross-domain tasks. There are many pre-trained CNNs for migration learning, such as the Caffe
Reference model (CaffeRef) [37], the baseline model AlexNet [38], the VGG network [39], the newly
developed deeper model GoogLeNet [40], and the Residuals Network (ResNet) [41].

Recently, these pre-trained CNNs and their modified versions have been widely applied in
different image retrieval tasks, ranging from computer vision [42–44] to remote sensing [2,45].
Chaudhuri et al. [46] put forward the SGCN architecture for evaluating the similarity between
paired graphs that are trained for CBIR by contrastive loss function. Famao et al. [47] use two
image-to-class distances to re-rank the initial retrieval result, referred to as the similarity between
an image and an image class. For different tasks, people have made some improvements in various
stages of the search. Bindita et al. [48] solve multilabel RS image retrieval problems drawing on a
semi-supervised graph-theoretic method and expensive and time-consuming problems by multi-label
annotation images. Babenko and Lempitsky [24] form image signatures through aggregating deep
convolutional descriptors by sum-pooling of convolutional features (SPoC). Tolias et al. [49] used
many multi-scale overlapping regions of the last convolutional feature map to extract the maximum
activations of convolutions (MAC). In [50], a trainable generalized mean (GeM) pool layer replaces
the MAC layer. This greatly improves retrieval accuracy. A new CNN architecture has recently been
proposed in [51], which can learn and extract multi-scale local descriptors in the salient regions of
images. RSIR can be viewed as a branch of image retrieval. They are still identified by visual content
based on similar images. However, due to the particularity of RS images, it may not be suitable for the
direct deployment of some commonly used technologies. In this paper, we will compare the commonly
used techniques and build the most suitable retrieval method for remote sensing images.
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2.2. General Pair-Based Weighting Loss

This section will explicitly review some typical pair-based weighting losses, including contrastive
loss [52], triplet loss [17], N-pair loss [19], binomial deviance loss [53], lifted structured loss [18] and
multi-similarity loss [54].

2.2.1. Contrastive Loss

Based on the selected paired positive (samples belonging to the same class of the query sample)
and negative (samples not belonging to the same class of the query sample) samples, the contrastive
loss [16] is designed to minimize the distance between the query sample and the positive sample
pair, while maximizing the distance between the query image and the negative sample pair, restricted
within a predefined margin α,

L({Dab}) =
∑

yab=1
Dab +

∑
yab=0

[α−Dab]+, (1)

where {Dab} is the whole paired distance set, in which Dab = D(Ia, Ib) in Equation (1) (Ia and Ib are
the L2-normalized SPoC vector of image a and image b respectively). yab ∈ {0, 1} indicates whether a
pair (Ia, Ib) is from the same class (yab = 1) or (yab = 0), in which

{
Dab

∣∣∣yab = 1
}

is the positive paired
distance set, and

{
Dab

∣∣∣yab = 0
}

stands for the negative paired distance set. Besides, [·]+ is the hinge
function, and α is a threshold parameter designed according to actual needs.

2.2.2. Triplet Loss

In view of triplet data
{
(Ia, Ib, Ik),

∣∣∣yab = 1, yak = 0
}

triplet loss [17] is designed to learn a deep
embedding, which widens the distance between negative pairs and makes the distance larger than that
of a randomly selected positive one over a margin α,

L({Dab}) =
∑

(a,b,k),yab=1,yak=0
[Dab −Dak + α]+, (2)

Concretely, the equal weight
(
wi jk = 1

)
for all the selected pairs is assigned by the given triplet loss.

2.2.3. N-Pair Loss

Triplet loss pulls close a positive sample while pushing away a negative sample. Only three
samples are in a batch that participates in the training. N-pair loss [55] increases the number of
negative samples that interact with the query sample to improve the performance of triplet loss. It
takes advantage of all sample pairs in the mini-batch and learns more differentiated representations
based on structural information between the data. In detail, the sample includes one positive sample
and negative samples selected from other different categories, which suggests one negative sample per
category, and the loss function is listed as follows:

L({Dak}) =
∑

yaa=1
log

(
1 +

∑
yak=0

exp(Daa −Dak)
)
, (3)

where
{
Dak

∣∣∣a, k = 1, · · · , N; yaa = 1; and yak = 0, if k , a
}
, and the distance of a positive pair x+i and

xi is Di. However, the sample in N-pair loss is assigned the same weight for both the positive and
negative pair in a triplet, and its weight value is

wabk =
exp(Daa −Dak)

1 +
∑

k,i exp(Daa −Dak)
. (4)
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2.2.4. Binomial Deviance Loss

Unlike the hinge function, Dong et al. introduced the binomial deviance loss using the soft plus
function in the contrastive loss [53]:

L({Dab}) =
∑m

a=1

{
1
pa

∑
yab=1

log
[
1 + expε(α−Dab)

]
+

1
Na

∑
yab=0

log
[
1 + expε(Dab−α)

]}
. (5)

As for anchor, Pa and Pb indicates the number of positive and negative sample pairs, and α, ε and
ε are fixed hyper-parameters.

We derive the positive and negative sample pairs in Equation (5), and the weights are as follows:

w+
ab =

1
Pa

αexpε(α−Dab)

1 + expε(α−Dab)
, yb = ya, (6)

w−ab =
1

Na

εexpε(Dab−α)

1 + expε(Dab−α)
, yb , ya. (7)

2.2.5. Lifted Structured Loss

Different from using merely one negative sample in each class, the loss of lifted structure loss [18]
relies on the advantages of training batches of minibatch SGD training, and uses random sampled
image pairs or triples, constructing training batches to calculate the loss of each pairs or triplets. The
loss function is given as a log-sum-exp formulation:

L({Dab}) =
∑

yab=1

[
Dab + log

(∑
yak=0

exp(α−Dak)
)
+ log

(∑
ybl=0

exp(α−Dbl)
)]
+

. (8)

As for a query sample, lifted structured loss explores structural relationships by identifying a
positive sample from all negative samples of a mini-batch. For positive sample pairs, the weight of
lifted structured loss is

w+
ab =

expα−Dab∑
yak=1[exp(α−Dak)]

=
1∑

yak=1[exp(Dab −Dak)]
. (9)

The weight of the negative sample pair is

w−ab =
exp(Dab)∑

yak=0[exp(Dak)]
=

1∑
yak=0[exp(Dak −Dab)]

. (10)

2.2.6. Multi-Similarity Loss

Based on binomial deviance loss and lifted structured loss, multi-similarity loss [33] defines
self-similarity and relative similarity, and proposes a general weighting strategy that takes advantage
of both positive and negative sample pairs. The loss is calculated as follows:

L({Dab}) =
1
ε

log
[
1 +

∑
yab=1

exp(ε(dDab − α))
]
+

1
ε

log
[
1 +

∑
yak=0

exp(ε(α−Dak))
]
, (11)

where α, ε and ε are hyperparameters used to control different pairs of weights. For positive and
negative samples, the weights set for multi-similarity loss are

w+
ab =

exp(ε(Dab − α))

1 +
∑

yab=1
exp(ε(Dab − α))

, (12)
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w+
ak =

exp(ε(α−Dab))

1 +
∑

yak=0
exp(ε(α−Dab))

. (13)

The aforementioned contrastive loss, triplet loss and N-pair loss give the same weight to the
positive and negative sample pairs. Unlike them, Equations (6) and (7) show that binomial deviance
loss considers self-similarity, and lifted structure loss sets weights for positive and negative sample
pairs according to the negative relative similarity as in Equations (9) and (10). Multi-similarity loss
combines the distribution of the sample itself and the surrounding samples, taking into account
the self-similarity and relative similarity of the sample pairs. However, this approach ignores the
distribution of samples within the class and the differences between different classes.

2.3. Sample Mining

Many of the loss functions of metric learning are built on top of sample pairs or sample triples, so
the sample space is of very large magnitude. In general, there exist apparent difficulties for the model
to exhaustively learn all pairs of samples during the training process, and the amount of information
for most sample pairs or sample triples is small. Especially in the later stages of model training,
the gradient values on these sample pairs or sample triples are almost zero. Without any targeted
optimization, the convergence speed of the learning algorithm will be slow and easy to fall into the
local optimum. This is not conducive to better characterization of network learning, and sample
mining plays a key role in metric learning.

Hard sample mining is an important means to speed up the convergence of learning algorithms,
improves the generalization ability of the network and the learning effect [10,56,57]. TriHard loss [17]
is a kind of online sampling method for hard samples based on a training batch, which is improved on
the basis of triple loss. For each batch, select one of the hardest positive samples and one of the hardest
negative samples as an anchor point to form a triple, although this method produces only a small
number of triples. When we need enough triples, we usually need a larger batch [10]. MAML [58] only
selects the most hard positive sample pair and the most hard negative sample pair for each picture in
the batch, which is a hard sample that is harder than TriHard. In addition, it also considers the relative
distance and absolute distance, and the performance is better than TriHard loss. N-pair loss considers
the query sample and the negative samples of several other different classes in each parameter update
process, which speeds up the convergence of the model. Lifted structure loss is based on all positive
and negative sample pairs in a mini batch to calculate loss. The triplet of the triplet loss is determined
in advance, and all negative samples are considered during the construction process. Proxy NCA
loss [22] selects a sample closest to a small portion of the data in the training set as a proxy when
sampling. For ranked list loss [59], the sampling strategy is to select samples whose loss function is not
zero. Although all samples within the threshold were mined, the differences between the negative
sample classes and the effects of surrounding samples were not considered.

We fully consider the diversity and difference of samples, select multiple positive samples and
negative samples of different types, as well as set the distance from the sample according to the
distribution of the neighbor samples around the negative samples. Figure 2 shows a comparison of our
method with other different methods.
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Figure 2. A visual representation of different algorithms. Different shapes represent different categories.
In the triplet loss [17], the anchor (the query picture is in brown) is only compared to one positive sample
and one negative sample. In N-pair-mc [19], Proxy-NCA [22] and Lifted Struct [18], we introduced a
positive sample and multiple negative sample types. N-pair-mc randomly selects a negative sample
from each negative sample class. The Proxy NCA pushes the negative sample and the agent away
from the anchor rather than push the negative sample farther away. Lifted Struct uses all negative
samples. But we selected multiple positive samples and negative samples from different classes and
pull different classes apart by different distances.

3. Methodology

In this section, we describe how to develop a positive and negative sample mining strategy to
make full use of the effective training of sample information, and then design a weighted approach
of positive (negative) sample pairs based on positive (negative) sample characteristics. Finally, we
propose a novel and effective metric learning loss function.

We set X =
{
(xi, yi)

}N
i=1 as the input data, where xi represent the i-th image and yi is the label of

the corresponding class. The total number of classes is C, where yi ∈ [1, 2, 3 · · · , C]. Then an instance xi
is projected onto a unit sphere in a l-dimension space by f (·; θ):Rd

→ Sl , where f is a neural network

parameterized by θ. Let
{
Xc

i

}NC

i=1
be the images in the c-th class, where the total number of images is Nc.

Our purpose is to learn a discriminative function to represent a higher similarity between positive
sample pairs and a lower similarity between negative sample pairs.

Therefore, there are at least two images in each category in order to evaluate all categories. In this
case, we aim to find a paired sample from other samples in the same category.

3.1. Distribution Consistency Loss

As shown in Figure 3, our distribution consistency loss consists of two parts. The first part is for
the sample balance loss of positive samples (the so-called sample balance refers to the ratio of the
number of hard positive samples and easy positive samples), and the second part is for the ranking of
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consistency loss of negative samples. The ranking consistency here is to maintain the true distribution
between classes by learning the ranking of the categories of each negative sample. The specific details
are as follows.
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Figure 3. An illustration of the proposed framework. At the top we train our network by the distribution
consistency loss (DCL). The DCL consists of two parts: sample balance loss of positive samples and
ranking consistency loss of negative samples. This loss established a valid feature representation by
optimizing the distribution of hard and easy samples within the class, as well as the sorting of different
types between classes. In the test phase, we input the image through multi-scale processing and input
it into the fine-tuning network completed by the training phase, and then return the first K images
associated with the query image.

3.1.1. Sample Mining

Sample mining can achieve rapid convergence of networks and improve network performance.
It is widely used in metric learning [10,17,19,60–63]. Given a query sample xc

i , in order to mine the
positive and negative samples, we first use the currently effective network [50] to extract the image
features, and use the extracted features to calculate the Euclidean distance between all samples and
the query sample Xc

i and do the ranking based on the distance. We define Pc,i as a collection of the

same category with the query image, which is expressed as Pc,i =
{
xc

j

∣∣∣∣ j , i
}
,
∣∣∣Pc,i

∣∣∣ = Nc − 1. Nc,i is a

collection of other images, represented as Nc,i =
{
xk

j

∣∣∣∣k , c
}
,
∣∣∣Nc,i

∣∣∣ = ∑
k,c Nk. We create a dataset of

tuples
(
xc

i , P∗c,i, N∗c,i

)
, where xc

i represents the query image, P∗c,i is the positive set selected from Pc,i, and
N∗c,i is the negative set selected from Nc,i. The training image pairs consist of these tuples, where each

tuple corresponds to
∣∣∣∣P∗c,i

∣∣∣∣ positive sample pairs and
∣∣∣∣N∗c,i

∣∣∣∣ negative sample pairs.

Positive set P∗c,i: For the query sample xc
i , we select the

∣∣∣∣P∗c,i

∣∣∣∣ in-class samples (hard samples) xc
j

that are furthest from it as positive samples.
Negative set N∗c,i: For negative samples, in order to learn the differences between classes, negative

“class” mining is proposed against negative “instance” mining, which greedily selects a negative class
in a relatively efficient manner. In particular, we select the nearest negative sample based on the
distance between the query sample and all samples; that is, the sample that has the highest similarity
to the query sample but belongs to a different category from the query sample. Next, we look for the
second closest sample. When this sample belongs to the same class as the previously found sample, the
sample is discarded and the searching will continue, otherwise it will be the second negative sample,

and so on, until we choose
∣∣∣∣N∗c,i

∣∣∣∣ negative samples from
∣∣∣Nc,i

∣∣∣ classes.
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Hard sample in positive sample weight: In the weighting process of positive samples, we delineate
a hard sample boundary in the positive sample to reduce the influence of the number relationship
between easy and hard in the positive sample. Assume xc

i is the query sample, a hard and positive pair{
xi, x j

}
is selected if S+

i j satisfies the condition

S+
i j < max

xk∈Pc,i
Sik + µ, (14)

where we define the similarity of the two samples as Si j := < f(xi; θ), f
(
x j; θ

)
>, where 〈·, ·〉 resulting in

an n× n similarity matrix; S whose element at (xi, x j
)

is Si j; and µ is a hyperparameter. The number of
hard positive samples satisfying the above constraints is represented by nhard.

3.1.2. Distribution Consistency Loss Weighting

Through the sample mining strategy, we can select samples with representative information and
discard samples with less information. We developed different soft weighting schemes for positive
and negative sample pairs.

For positive sample pairs, our weighting mechanism relies on the number and distribution of
easy and hard samples within the class. For an anchor, the more the number of hard samples in the
class, the more information is included in the selected positive sample pair. In the process of training,
we give a large weight to the sample pairs. When the number of hard samples in the class is small,
the selected hard samples may be noise or the information carried is not representative. If a large
weight is given at this time, the overall learning direction of the model may be deviated, resulting in
invalid learning. Therefore, for classes with a small number of hard samples, we assign less weight
to the selected sample pairs. Specifically, given a selected positive pair

{
xi, x j

}
, its weight w+

i j can be
computed as

w+
i j =

1∣∣∣∣P∗c,i

∣∣∣∣ ·e
ϑ·nhard
|Pc,i | , (15)

where ϑ is a hyperparameter.
For negative samples, we use the weight of the distribution entropy [23] to maintain the similarity

ranking consistency of the class. The distribution entropy define the weight value as w−i j.

3.1.3. Optimization Objective

For each query xc
i , we assign the weighted w+

i j defined by the quantity relationship between the
hard sample and the easy sample in the class of the selected positive sample, and we use a margin m
to make it closer to its positive set Pc,i than to its negative set Nc,i. Moreover, we compel all negative
samples to be farther than a dynamic boundary w−i jτ. This threshold is determined by the similarity
between the negative samples selected from the different classes and the query picture. Thus, all
samples from the same class were pulled into a hypersphere.

We attempt to pull all non-trivial positive points in Pc,i together and learn a class hypersphere by
minimizing:

Lp
(
xc

i ; f
)
=

1
2

∑
xc

j∈P
∗

c,i
w+

i j ·

([
‖ f

(
xc

i

)
− f

(
xc

j

)
‖ − (τ−m)

]
+

)2
, (16)

where f
(
xc

i

)
and f

(
xc

j

)
represent the feature vectors of images xc

i and xc
j, respectively, and ‖ f

(
xc

i

)
− f

(
xc

j

)
‖

represents the Euclidean distance between f
(
xc

i

)
and f

(
xc

j

)
. Similarly, we intend to push all non-trivial

negative points in Nc,i beyond the boundary w−i jτ, by minimizing:

LN
(
xc

i ; f
)
=

1
2

∑
Xk

j∈N
∗

c,i

([
w−i j·τ− ‖ f

(
xc

i

)
− f

(
xc

j

)
‖

]
+

)2
. (17)
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In DCL, we treat the two minimization objectives equally and optimize them jointly:

LMDCL
(
Xc

i ; f
)
= LP

(
xc

i ; f
)
+ LN

(
xc

i ; f
)
. (18)

we update f
(
Xc

i

)
according to weighted combination of other elements.

For the learning of deep models, we do DCL based on a stochastic gradient descent and mini-batch.
Each minibatch represents a randomly sampled subset in the whole training classes. Every image xc

i in
the mini-batch serves as the query (anchor) iteratively, and the other images act as the gallery. We
represent the DCL of each mini-batch as

LMDCL(X; f ) =
1
N

∑
∀c,∀i

LMDCL
(
xc

i ; f
)
. (19)

The batch size is represented by N. We clarify the DCL-based learning of the deep embedding
function f in Figure 4.
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4. Experiments and Discussion

In this section, we discuss in detail the application dataset, the retrieval performance metrics for
quantitative evaluation and the experimental hardware conditions. Then, the relevant parameters
related to the model are mined. Finally, we assessed different combinations of network settings and
compared them with the current methods. In this experiment, our proposed method is applicable to
all convolutional neural networks. For model training, we used the pytorch deep learning architecture
to train the DCL-based deep network model. We initialized the parameters of the network by the
weights of the corresponding networks pre-trained on ImageNet [35]. Due to the use of network
pre-training parameters [64], the momentum was 0.9 for the VGG16 and Resnet50 networks during
training. The experimental environment was an Intel Xeon(R) CPU E5-2620 V3, GPU with 12 GB of
memory, NVIDIA(R) Titan X graphics card, driver version 419.**, operating system Ubuntu 18.04 LTS,
pytorch version v1.0.0, CUDA version 10.0 and cudnn version 7.5.

4.1. Experimental Settings

4.1.1. Datasets

To test the proposed method, we use two publicly available RSIR datasets, the UC Merced dataset
(UCMD) [24], PatternNet [9] and the NWPU-RESISC45 dataset [25]. To avoid over-fitting of the feature
extraction network, we conducted the image retrieval task under zero-shot settings, in which the
training dataset and testing dataset contain image classes without no intersection.

UCMD [24] is a classification dataset for land use and cover. It contains 21 classes, each with 100
images. Examples from every class are shown as follows: building, agricultural, golf course, baseball
diamond, medium density residential, parking lot, beach, freeway, chaparral, intersection, mobile
home park, river, overpass, airplane, storage tanks, dense residential, harbor, tennis courts, sparse
residential, forest and runway. The resolution of each image is 256 × 256 pixels. The images were
obtained from large aerial images downloaded from the United States Geological Survey (USGS) and
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the spatial resolution is around 0.3m. There exist several highly overlapping classes in the UCMD
dataset (i.e., sparse residential, medium residential and dense residential). Thus, the image retrieval
task on this dataset is challenging. As the first publicly available remote sensing evaluation dataset, it
has been widely applied to evaluate RISR methods. For UCMD, we conform to the data splitting that
yields the best performance in [8], which implements data training by randomly selecting 50% images
of each class and do performance evaluation by using the rest of the 50%. Figure 5 presents sample
images in the dataset.
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transformer station, swimming pool, oil gas field, Christmas tree farm, oil well, airplane, wastewater 
treatment plant, overpass, dense residential, parking lot, harbor, freeway, baseball field, railway, golf 
course, basketball court, shipping yard, intersection, closed road, cemetery, mobile home park, 
crosswalk, ferry terminal and nursing home. Each class contains 800 images which measure 256 × 256 
pixels. The images in PatternNet are either collected from Google Earth imagery or Google Map API 
for US cities. For PatternNet, we follow the data splitting strategy of 80% training and 20% testing 
as per [9]. Figure 6 presents sample images in the dataset. 

Figure 5. Sample images from the UCMD dataset.

PatternNet [9] is a large-scale high-resolution remote sensing dataset collected for the purpose
of RSIR. It contains 38 classes: tennis court, beach, solar panel, runway, parking space, storage tank,
forest, sparse residential, football field, bridge, chaparral, coastal mansion, river, runway marking,
transformer station, swimming pool, oil gas field, Christmas tree farm, oil well, airplane, wastewater
treatment plant, overpass, dense residential, parking lot, harbor, freeway, baseball field, railway,
golf course, basketball court, shipping yard, intersection, closed road, cemetery, mobile home park,
crosswalk, ferry terminal and nursing home. Each class contains 800 images which measure 256 × 256
pixels. The images in PatternNet are either collected from Google Earth imagery or Google Map API
for US cities. For PatternNet, we follow the data splitting strategy of 80% training and 20% testing as
per [9]. Figure 6 presents sample images in the dataset.
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Figure 6. Sample images from the PatternNet dataset.

NWPU-RESISC45 dataset [27] consists of 31,500 images, which is a large-scale RS image archive.
It contains 45 classes: airplane, airport, baseball diamond, basketball court, beach, bridge, chaparral,
church, circular farmland, cloud, commercial area, dense residential, desert, forest, freeway, golf course,
ground track field, harbor, industrial area, intersection, island, lake, meadow, medium residential,
mobile home park, mountain, overpass, palace, parking lot, railway, railway station, rectangular
farmland, river, roundabout, runway, sea ice, ship, snowberg, sparse residential, stadium, storage
tank, tennis court, terrace, thermal power station and wetland. Each class contains 700 images which
measure 256 × 256 pixels, and the spatial resolution of them varies from 30 to 0.2 m. All of the images
were collected from Google Earth, covering more than 100 countries. For the NWPU-RESISC45 dataset,
we follow the data splitting strategy of 80% training and 20% testing as per [25]. Figure 7 presents
sample images in the dataset.



Remote Sens. 2020, 12, 175 15 of 30

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 31 

 

         
1. Airplane    2. Airport     3. Baseball   4. Basketball    5. Beach      6. Bridge    7. Chaparral    8. Church    9. Circular 
                            Diamond      Court                                                             Farmland 

         
10. Cloud   11. Commercial  12. Dense    13. Desert     14. Forest    15. Freeway    16. Golf     17. Ground    18. Harbor 
                Area      Residential                                             Course     Track Field 

         
19. Industrial 20. Intersection  21. Island     22. Lake     23. Meadow   24. Medium   25. Mobile   26. Mountain 27. Overpass 
    Area                                                           Residential   Home Park 

         
28. Palace    29. Parking   30. Railway   31. Railway  32. Rectangular  33. River   34. Roundabout 35. Runway     36. Sea 
                Lot                       Station      Farmland                                               Ice 

         
37. Ship     38. Snowberg  39. Sparse    40. Stadium    41. Storage    42. Tennis    43. Terrace   44. Thermal   45. Wetland 
                          Residential                   Tank         Court                   Power Station 

Figure 7. Sample images from the NWPU-RESISC45 dataset. 

4.1.2. Performance Evaluation Criteria 

To evaluate image retrieval performance, we use precision at k (P@k, precision of the top-k 
retrieval results) and mean average precision (mAP). In particular, the higher the value of mAP and 
P@k the better the retrieval performance. 

4.2. Non-Trivial Examples Mining 

For each query mentioned in Section 3.1.1, DCL mine samples violated the pairwise constraint 
with regard to the query. Specifically, we mined negative samples, where the distance between the 
hardest sample and the query sample should be less than τ in Equation (19). Meanwhile, we mined 
positive samples whose distance was larger than 𝜏 − 𝑚 as per Equation (18). As a result, in each 
ranked list, a margin m is built between negative and positive samples. Since the constraint 
parameters 𝜏, m determines the sample mining range, and we implemented experiments on the large 
dataset PatternNet to evaluate their influence with the hyper parameter λ = 1, β = 50, 𝜗  = 1 and µ = 
0.1. 

Impact of parameter τ: To test threshold τ and its fitness for different networks, we respectively 
set the margin m = 1.0 and m = 1.2 in the VGG 16 and ResNet 50 network, and selected the results 
when τ = (0.85, 1.05, 1.25, 1.45) according to the experimental results. The learning rate is 1 × 10 . 
The results are presented by mAP in Figure 8, and by Precision @ K (%) in Table 1. It can be seen from 
Figure 8 that when training is performed using the VGG16 network (a), τ = 1.05 is the best, and when 
using the ResNet50(b) network, the performance is optimal when τ = 1.25. The quantitative 
comparison of the experimental results is shown in Table 2. This is the result obtained at epoch = 100. 
Table 2 shows that when we set τ = 1.05, the best result (P@5 = 98.42, P@10 = 98.16, P@50 = 97.37 and 
P@100 = 95.84) is obtained in VGG16. In ResNet50, the best result is obtained at τ = 1.25, and the result 
is P@5 = 99.47, P@10 = 99.21, P@50 = 98.53 and P@100 = 98.08. 

Figure 7. Sample images from the NWPU-RESISC45 dataset.

4.1.2. Performance Evaluation Criteria

To evaluate image retrieval performance, we use precision at k (P@k, precision of the top-k
retrieval results) and mean average precision (mAP). In particular, the higher the value of mAP and
P@k the better the retrieval performance.

4.2. Non-Trivial Examples Mining

For each query mentioned in Section 3.1.1, DCL mine samples violated the pairwise constraint
with regard to the query. Specifically, we mined negative samples, where the distance between the
hardest sample and the query sample should be less than τ in Equation (19). Meanwhile, we mined
positive samples whose distance was larger than τ−m as per Equation (18). As a result, in each ranked
list, a margin m is built between negative and positive samples. Since the constraint parameters τ, m
determines the sample mining range, and we implemented experiments on the large dataset PatternNet
to evaluate their influence with the hyper parameter λ = 1, β = 50, ϑ = 1 and µ = 0.1.

Impact of parameter τ: To test threshold τ and its fitness for different networks, we respectively
set the margin m = 1.0 and m = 1.2 in the VGG 16 and ResNet 50 network, and selected the results
when τ = (0.85, 1.05, 1.25, 1.45) according to the experimental results. The learning rate is 1 × 10−7.
The results are presented by mAP in Figure 8, and by Precision @ K (%) in Table 1. It can be seen
from Figure 8 that when training is performed using the VGG16 network (a), τ = 1.05 is the best, and
when using the ResNet50(b) network, the performance is optimal when τ = 1.25. The quantitative
comparison of the experimental results is shown in Table 2. This is the result obtained at epoch = 100.
Table 2 shows that when we set τ = 1.05, the best result (P@5 = 98.42, P@10 = 98.16, P@50 = 97.37 and
P@100 = 95.84) is obtained in VGG16. In ResNet50, the best result is obtained at τ = 1.25, and the result
is P@5 = 99.47, P@10 = 99.21, P@50 = 98.53 and P@100 = 98.08.
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Table 1. The impact of different τ on the distance distribution of negative examples. PatternNet is used.
The mAP and Precision @ K (%) results are reported. Fine-tuned VGG16 produces a 512D vector and
fine-tuned ResNet50 a 2048D vector.

Network τ P@5 P@10 P@50 P@100

VGG16

0.85 97.89 97.89 95.68 94.68
1.05 98.42 98.16 97.37 95.84
1.25 97.37 97.32 96.05 94.43
1.45 97.89 98.42 96.74 94.18

ResNet50

0.85 98.42 97.89 97.21 95.89
1.05 98.95 98.68 97.26 96.11
1.25 99.47 99.21 98.53 98.08
1.45 99.47 99.21 97.84 96.87

Table 2. The impact of the distance margin m that be used to split positive and negative examples. The
Precision @ K (%) results on PatternNet are displayed with τ = 1.05 in VGG16 and τ = 1.25 in ResNet50.
Fine-tuned VGG16 produces a 512D vector and fine-tuned ResNet50 a 2048D vector.

Network m P@5 P@10 P@50 P@100

VGG16

0 98.42 97.63 95.11 93.21
0.2 98.95 98.42 98.16 98.00
0.4 98.95 98.95 98.42 97.82
0.6 98.22 98.22 98.69 98.35
0.8 99.21 99.58 98.86 98.20
1.0 99.47 99.74 99.11 98.34

ResNet50

0.2 100.00 99.74 99.21 98.82
0.4 98.95 98.95 98.42 97.82
0.6 100.00 100.00 99.84 99.71
0.8 98.98 99.47 99.79 99.58
1.0 99.47 99.74 99.42 99.26
1.2 100.00 100.00 99.89 99.81

Impact of parameter m: The threshold m determines the distance between the positive sample
and the hardest negative sample. In order to provide a suitable hyperplane for the positive sample, we
need to choose a suitable value m. In the experiment, we set the margin τ = 1.05 in the VGG16 (a)
network, and τ = 1.25 in the ResNet50 (b) network. In order to reduce the number of iterations, we set
the learning rate to 1× 10−5. The results are presented by mAP in Figure 9, and by Precision @ K (%)
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in Table 2. It can be seen from Figure 9 that when using the VGG16 network (a) for training, m = 1.0
works best, and when using the ResNet50 (b) network, the performance is optimal when m = 1.2. The
quantitative comparison of the experimental results obtained is shown in Table 2. Table 2 shows when
we set m = 1.0, the best result (P@5 = 99.47, P@10 = 99.74, P@50 = 99.11 and P@100 = 98.34) is obtained
in VGG16, and when in ResNet50, the best result is obtained at m = 1.2. The results are P@5 = 100.00,
P@10 = 100.00, P@50 = 99.89 and P@100 = 99.81.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 31 
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4.3. Pooling Methods

In order to evaluate the impact of different pooling methods on the search results in the CNN
fine-tuning network, we used global max pooling (MAC vector [49,65]), sum-pooling (SPoC vector [24])
and generalized-mean (GeM [50]) pooling to experiment. We present the results in Figure 10. From
Figure 10 we can see that the sum-pooling is always higher than max pooling and generalized-mean
pooling. This is because the information contained in the remote sensing image is scattered, so that
each part has the same contribution to feature extraction. When the network goes deeper, the height
and width of the feature map are smaller and contain more semantic information. In addition, remote
sensing images contain a large amount of background information, while sum-pooling preserves and
highlights background information. In the experiments in this article we used sum-pooling.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 31 
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4.4. Multi-Scale Representation

We assess multi-scale representation established at test time in the absence of any additional
learning to obtain the best scale representation combination. We used the average of the descriptors
at multiple image scales [14]. Results are presented in Table 3. From the observation of Table 3, we
can easily find that the combination of scales 1, 1/

√
2 works best. These promotion experimental

results demonstrate the effectiveness of the proposed multi-scale representation for the remote sensing
image retrieval.

Table 3. Using the fine-tuned VGG16 to perform the evaluation of the multi-scale representation
and ResNet50 with SPoC layer on PatternNet. Its original scale and down-sampled versions are
represented together.

Pooling over
Scales

Scale

mAP P@5 P@10 P@50 P@100
P@5

P@10
P@50

1
1

1
√

2
1
2

1
√

8
1
4

VGG16
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4.5. Comparison of Sample Mining Methods

In order to demonstrate the advantages of our sample selection, we thus compare our proposed
algorithm with many widely used sampling strategies. Table 4 summarizes its performance in terms
of mAP, P@5, P@10, P@50, P@100 and P@1000 accuracy on the test set in comparison with the five
sampling strategies, including Triplet Loss [17], N-pair-mc Loss [19], Proxy NCA [22], Lifted Struct [18]
and DSLL [23]. As can be seen from the Table 4, our proposed sample selection strategy outperforms
all baseline algorithms, which validates our effectiveness. The DSLL algorithm was proposed in our
previous paper, and it is a method applied to landmark image retrieval. It uses the same negative
sample selection strategy as the DCL algorithm, and the weights of negative samples are assigned
according to the distribution of the samples around the negative samples. Therefore, the sample
features are accurately extracted by ensuring the consistency of the negative samples. However, the
advantage of DCL is that it uses more positive samples than DSLL according to the proportion of hard
samples and easy samples in the positive samples, and the selected positive samples are given dynamic
weights. This is because during the weighting process of the DCL algorithm, the hard samples need to
be demarcated and counted, which may result in large memory occupation and time consumption.
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Table 4. Comparison with state-of-the-art sampling methods. The network backbone is ResNet 50.

Structural Loss mAP P@5 P@10 P@50 P@100 P@1000

UCMD

Triplet Loss 92.96 98.04 96.63 92.62 46.16 4.69
N-pair-mc Loss 91.81 94.04 91.46 90.49 45.08 4.67

Proxy NCA Loss 95.72 97.98 96.65 94.23 47.02 4.71
Lifted Struct Loss 96.08 98.90 97.82 95.78 47.46 4.76

DSLL 97.34 98.98 98.42 96.93 48.67 4.86
Our DCL 98.76 100.00 100.00 99.33 49.82 5.21

PatternNet

Triplet Loss 94.94 99.52 97.92 96.13 95.07 15.61
N-pair-mc Loss 94.11 97.94 95.15 94.33 98.17 15.52

Proxy NCA Loss 97.71 98.56 98.69 98.89 98.45 15.74
Lifted Struct Loss 98.58 98.05 98.62 98.75 98.88 15.79

DSLL 98.52 99.09 98.03 96.68 98.69 15.83
Our DCL 99.43 100.00 100.00 99.89 99.66 16.38

NWPU-RESISC45

Triplet Loss 93.82 98.65 96.85 96.07 94.83 15.34
N-pair-mc Loss 93.06 97.86 95.12 94.35 98.15 15.46

Proxy NCA Loss 97.68 97.54 97.57 97.91 97.44 15.69
Lifted Struct Loss 97.47 97.03 97.42 97.63 97.72 15.76

DSLL 98.54 99.05 98.15 96.34 98.45 15.78
Our DCL 99.44 100.00 100.00 99.91 99.70 16.42

4.6. Comparison of Effects of Different Sample Numbers

In order to determine the number of samples that are most suitable for remote sensing image
retrieval, for positive samples, we combined different numbers of samples and weighting methods,
and the number of samples was set to 1, 5 and 10. The weights were 1, 1/n and the dynamic weights
mentioned earlier. The retrieval results are shown in Table 5. For negative samples, we combined
different numbers of samples with sample deduplication (choose only one per category). The sample
sizes were set to 5, 10 and 15. Table 6 shows the results of the search. The experimental results were
obtained after the 30th epoch. The positive sample selection experiment was performed under the
condition that the number of negative samples is five and the sample is deduplicated; the negative
sample selection experiment was performed under the condition that the number of positive samples
is five and dynamic weight is attached.

By observing Table 5, we find that if the weight given to the positive sample is one, the accuracy
decreases when the sample increases. When a positive sample is given a weight of 1/n, the accuracy
at a weight of 1/n is higher than the accuracy at a weight of one. Because a large number of positive
samples will be mixed with noise, a large amount of noise will affect the accurate extraction of features,
thereby reducing the experimental effect. When dynamic weights are given, the accuracy of retrieval is
better than the accuracy of other weights, and the effect is best when the number of samples is five.

Table 6 shows the results of the negative sample sampling method. It can be seen from the table
that the retrieval accuracy decreases with the increase in the number of samples. This is because
we give the negative samples a weight determined by the permutation order, and the two samples
are separated by a certain distance by the weight. However, too many negative samples we choose
may have the problem of low hardness and small differences between samples, which cannot be well
combined with weights. In addition, we found that the effect of sample deduplication is better than
selecting all suitable samples in the category. This is because after the category deduplication, the
network can better extract features by learning the intra-class differences.
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Table 5. Retrieval precision of different positive sample numbers for the PatternNet dataset after
training the ResNet50 network.

Number (n) Weights mAP

1 1 95.85
5 1 93.21
5 1/n 94.93
5 Dynamic 97.48

10 1 90.15
10 1/n 93.85
10 Dynamic 95.32

Table 6. Retrieval precision of different negative sample numbers for the PatternNet dataset after
training the ResNet50 network.

Number Category Restrictions mAP

5 yes 97.48
5 no 95.16

10 yes 94.52
10 no 92.14
15 yes 93.42
15 no 91.35

4.7. Per-Class Results

In this section, we analyze the retrieval behavior across the different method for each individual
category. Tables 7–9 provide the detailed precision results of each individual category for the UCMD
dataset (Table 7), PatternNet dataset (Table 8) and NWPU-RESISC45 dataset (Table 9) after training
the VGG16 and ResNet 50 network. Figure 11 shows intuitive results comparison under the VGG 16
network and ResNet 50 network on the UCMD dataset, PatternNet dataset and NWPU-RESISC45
dataset. The results are counted using the all retrieval images.

Table 7. Retrieval precision of each individual category for the UCMD dataset after training the VGG16
and ResNet50 network.

Categories VGG16 ResNet50

Pretrained DCL Pretrained CNNs DCL

Agriculture (1) 0.94 1.00 0.99 1.00
Airplane (2) 0.66 1.00 0.99 1.00

Baseball diamond (3) 0.60 0.99 0.59 1.00
Beach (4) 0.99 1.00 0.99 1.00

Buildings (5) 0.33 0.74 0.37 0.99
Chaparral (6) 0.99 1.00 1.00 1.00

Dense residential (7) 0.36 0.94 0.24 0.97
Forest (8) 0.88 1.00 0.99 1.00

Freeway (9) 0.55 0.99 0.87 0.99
Golf course (10) 0.42 0.99 0.83 1.00

Harbor (11) 0.59 1.00 0.68 1.00
Intersection (12) 0.31 0.98 0.31 0.98

Medium residential (13) 0.48 0.93 0.61 0.99
Mobile home park (14) 0.58 1.00 0.72 1.00

Overpass (15) 0.37 0.97 0.51 0.99
Parking lot (16) 0.79 1.00 0.32 0.83

River (17) 0.67 0.98 0.60 0.99
Runway (18) 0.57 1.00 0.89 1.00

Sparse residential (19) 0.11 0.89 0.55 0.99
Storage tanks (20) 0.77 0.99 0.88 1.00
Tennis court (21) 0.39 1.00 0.78 1.00
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Table 8. Retrieval precision of each individual category for the PatternNet dataset after training the
VGG16 and ResNet50 network.

Categories VGG16 ResNet50

Pretrained DCL Pretrained CNNs DCL

Airplane (1) 0.95 1.00 0.92 1.00
Baseball field (2) 0.97 0.99 0.96 1.00

Basketball court (3) 0.50 0.97 0.45 0.98
Beach (4) 1.00 1.00 0.99 1.00
Bridge (5) 0.24 0.98 0.13 0.99

Cemetery (6) 0.93 1.00 0.93 1.00
Chaparral (7) 0.99 1.00 1.00 1.00

Christmas tree farm (8) 0.98 1.00 0.83 1.00
Closed road (9) 0.93 0.99 0.91 0.99

Coastal mansion (10) 0.99 0.97 0.98 0.99
Crosswalk (11) 0.96 1.00 0.93 1.00

Dense residential (12) 0.52 0.82 0.46 0.99
Ferry terminal (13) 0.58 0.83 0.40 0.87
Football field (14) 0.97 0.99 0.89 1.00

Forest (15) 0.99 1.00 1.00 1.00
Freeway (16) 0.99 1.00 0.99 1.00

Golf course (17) 0.95 0.99 0.95 0.99
Harbor (18) 0.89 0.96 0.92 0.96

Intersection (19) 0.52 0.98 0.51 0.99
Mobile home park (20) 0.86 0.99 0.81 1.00

Nursing home (21) 0.23 0.96 0.59 0.98
Oil gas field (22) 0.99 1.00 0.99 1.00

Oilwell (23) 1.00 1.00 1.00 1.00
Overpass (24) 0.77 0.99 0.90 0.99

Parking lot (24) 0.99 0.99 0.98 1.00
Parking space (26) 0.52 1.00 0.47 1.00

Railway (27) 0.83 0.99 0.78 1.00
River (28) 0.99 1.00 0.99 1.00

Runway (29) 0.29 0.99 0.36 0.99
Runway marking (30) 0.99 0.99 0.99 1.00

Shipping yard (31) 0.97 0.99 0.99 0.99
Solar panel (32) 0.99 0.99 0.99 1.00

Sparse residential (33) 0.64 0.91 0.47 0.99
Storage tank (34) 0.42 0.99 0.55 0.99

Swimming pool (35) 0.18 0.96 0.43 0.99
Tennis court (36) 0.59 0.91 0.31 0.97

Transformer station (37) 0.69 0.99 0.63 0.99
Wastewater plant (38) 0.91 0.98 0.90 0.99

From the observation of Tables 7–9, it is obvious that DCL-based features perform better than
pretrained features. In addition, an encouraging observation is that our DCL method enhances the
retrieval performance to a large degree for many categories, for which other approaches’ behavior is
not satisfactory. For example, Pretrained VGG16-based features are particularly difficult in retrieving
images of buildings, intersections and sparser residential areas, with an average mAP of 0.25, much
lower than that of its counterpart, with 0.87 for the DCL-based features on the UCMD dataset in
Table 7. Simultaneously, pretrained ResNet50-based features perform poorly on classes like dense
residential, intersection and parking lot, with an average mAP of 0.29 and this value for DCL-based
feature is 0.93. While on the PatternNet dataset in Table 8, pretrained features do not perform well in
bridge, nursing home and swimming pool, with an average mAP of 0.22, while less than 0.87 for the
DCL-based feature using VGG 16. The most significant improvement in performance is reflected in
the use of ResNet50 networks. Pretrained features are particularly difficult for bridges, runways and
tennis courts, with an average mAP of 0.26, reaching up to 0.98 for DCL-based features. The same
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improvement of performance can also be seen in Table 9. Pretrained ResNet 50-based features are
particularly difficult in retrieving images of churches, palaces and ships, with an mAP of 0.56, 0.40 and
0.60, and these value for DCL-based feature are 0.97, 0.98 and 0.98.

Table 9. Retrieval precision of each individual category for the NWPU-RESISC45 dataset after training
the VGG16 and ResNet50 network.

Categories VGG16 ResNet50

Pretrained DCL Pretrained CNNs DCL

Airplane (1) 0.76 1.00 0.88 1.00
Airport (2) 0.66 0.97 0.72 1.00

Baseball Diamond (3) 0.64 0.97 0.69 0.99
Basketball Court (4) 0.51 0.95 0.60 0.98

Beach (5) 0.77 1.00 0.76 1.00
Bridge (6) 0.85 1.00 0.72 1.00

Chaparral (7) 1.00 1.00 1.00 1.00
Church (8) 0.55 0.97 0.56 0.97

Circular Farmland (9) 0.93 1.00 0.96 1.00
Cloud (10) 0.89 1.00 0.91 1.00

Commercial Area (11) 0.64 0.99 0.81 1.00
Dense residential (12) 0.77 1.00 0.88 1.00

Desert (13) 0.84 1.00 0.86 1.00
Forest (14) 1.00 1.00 0.94 1.00

Freeway (15) 0.71 0.92 0.62 0.98
Golf course (16) 0.79 0.99 0.95 1.00

Ground Track Field (17) 0.80 0.97 0.62 0.98
Harbor (18) 0.84 1.00 0.92 1.00

Industrial Area (19) 0.71 0.98 0.76 0.99
Intersection (20) 0.70 0.95 0.63 0.98

Island (21) 1.00 1.00 1.00 1.00
Lake (22) 0.88 1.00 0.80 1.00

Meadow (23) 0.82 1.00 0.84 1.00
Medium Residential (24) 0.70 0.99 0.78 1.00
Mobile Home Park (25) 0.71 1.00 0.92 1.00

Mountain (26) 0.86 1.00 0.87 1.00
Overpass (27) 0.72 0.99 0.86 1.00

Palace (28) 0.52 0.94 0.40 0.98
Parking Lot (29) 0.87 1.00 1.00 1.00

Railway (30) 0.77 1.00 0.89 1.00
Railway Station (31) 0.65 0.95 0.63 0.98

Rectangular Farmland (32) 0.85 1.00 0.83 0.99
River (33) 0.69 0.98 0.69 0.99

Roundabout (34) 0.80 1.00 0.71 1.00
Runway (35) 0.77 1.00 0.78 1.00
Sea Ice (36) 1.00 1.00 1.00 1.00

Ship (37) 0.65 0.91 0.60 0.98
Snowberg (38) 0.95 1.00 0.96 1.00

Sparse Residential (39) 0.81 1.00 0.68 0.98
Stadium (40) 0.76 1.00 0.80 1.00

Storage Tank (41) 0.81 1.00 0.87 1.00
Tennis Court (42) 0.56 0.99 0.81 1.00

Terrace (43) 0.73 1.00 0.87 1.00
Thermal Power Station (44) 0.64 0.98 0.66 0.98

Wetland (45) 0.68 0.98 0.83 1.00
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network on the UCMD dataset, PatternNet dataset and NWPU dataset. (a) VGG 16 + UCMD dataset,
(b) ResNet 50 + UCMD dataset, (c) VGG 16 + PatternNet dataset, (d) ResNet 50 + PatternNet dataset,
(e) VGG 16 + NWPU dataset, and (f) ResNet 50 + NWPU dataset. The category labels of the abscissa in
the figure correspond one-to-one with the labels in Tables 7–9. Specifically, the labels of (a) and (b)
correspond to Table 7, the labels of (c) and (d) correspond to Table 8, and corresponding to Table 9 are
(e) and (f).

As we can easily see from Figure 11, the DCL loss we have proposed is stable and can reach 95%
in almost all categories. When using the ResNet50 network, the mAP can be stabilized at around
98%, and even in some categories, it can reach 100%. Furthermore, whether on the UCMD dataset,
PatternNet dataset or NWPU dataset, our DML-based features for content-based remote sensing image
retrieval achieves the best performance, which proves that our method is useful to RSIR.

4.8. Comparison with the State of the Art

This section compares the performance of our proposed DCL method with the updated
representations of the state-of-the-art performance. Table 10 lists the performance comparisons on
UCMD dataset, Table 11 lists the performance comparisons on PatternNet dataset and the performance
comparisons on NWPU-RESISC45 dataset are shown in Table 12. We divide the network into two
categories: (1) the use of the network framework for VGG16, and (2) the use of the ResNet50. We can
observe that our proposed DCL is superior to all previous methods. When using the VGG16 network
framework, compared with the MiLaN [34], DCL provides a significant improvement of +6.94% in
mAP on the UCMD dataset. The evaluation standard used by MiLaN [34] here is the result of mAP@20,
hash bits k = 32; however, we use all the search results to calculate the map value as the evaluation
criteria, which shows that the performance of our method is far superior to the performance of MiLaN.
Furthermore, the DCL signatures achieves a gain of +6.21% in P@5, +8.51% in P@10, +19.29% in P@50,
+28.82% in P@100 and +1.11% in P@1000 on the PatternNet dataset, which surpassed the recently
published VGGS Fc1 [9]. The best performance in Reference [47] is FC7(VGG16) [47], which achieves
the mAP value of 96.48%. However, our method can achieve better performance, where the mAP
value is 98.05%. Compared with RSIR-DBOW [31], our method achieves a higher mAP, representing a
16.45% improvement on the NWPU-RESISC45 dataset. When using the ResNet50 network framework,
on the UCMD dataset, our experimental results have increased this indicators by more than 3% in
mAP, compared to the reference Pool5 (ResNet50) [47], which achieves a mAP value of 98.76%. At
the same time, our method achieves the value of 100% in P@5, 100% in P@10, 99.33% in P@50, 49.82%
in P@100 and 3.98% in P@1000, which surpassed the recently published ResNet50 [27] (91.90 in P@5,
91.40% in P@10 and 84.50% in P@50). When on the PatternNet dataset, compared with the recently
published ResNet50 [27], DCL provides a best result of 99.43% in Map, and achieves 100% in P@5,
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100% in P@10, 99.89% in P@50, 99.66% in P@100 and 16.38% in P@1000. On the NWPU-RESISC45
dataset, our method outperforms RSIR-DBOW [31] by 17.29% and RSIR-DN7 [28] by 38.90%.

Table 10. mAP (%) and P@ (%) on the UCMD dataset comparing with the state-of-the-art methods.

Features mAP P@5 P@10 P@50 P@100 P@1000

RAN-KNN [46] 26.74 - 24.90 - - -
GoogLeNet [46] 53.13 - 80.96 - - -
VGG-VD19 [46] 53.19 - 77.60 - - -
VGG-VD16 [46] 53.71 - 78.34 - - -

KSLSH [32] 63.00 - - - - -
GCN [46] 64.81 - 87.12 - - -

SGCN [46] 69.89 - 93.63 - - -
VGG16 [27] 81.30 89.50 87.60 78.30 - -

ResNet50 [27] 84.00 91.90 91.40 84.50 - -
MiLaN [34] 90.40 - - - - -

FC6 (VGG16) [47] 91.65 - - - - -
FC7 (VGG16) [47] 92.00 - - - - -

Pool5 (ResNet50) [47] 95.62 - - - - -
Ours (VGG16) 97.34 97.14 97.62 98.67 48.95 3.98

Ours (ResNet50) 98.76 100.00 100.00 99.33 49.82 5.21

Table 11. mAP (%) and P@ (%) on the PatternNet dataset comparing with the state-of-the-art methods.

Features mAP P@5 P@10 P@50 P@100 P@1000

G-KNN [46] 12.35 - 13.24 - - -
RAN-KNN [46] 22.56 - 37.70 - - -

UFL [9] 25.35 52.09 48.82 38.11 31.92 9.79
Gabor Texture [9] 27.73 68.55 62.78 44.61 35.52 8.99

VLAD [9] 34.10 58.25 55.70 47.57 41.11 11.04
VGG-VD19 [46] 57.89 - 91.13 - - -
VGG-VD16 [46] 59.86 - 92.04 - - -

VGGF Fc1 [9] 61.95 92.46 90.37 79.26 69.05 14.25
GoogLeNet [46] 63.11 - 93.31 - - -

VGGF Fc2 [9] 63.37 91.52 89.64 79.99 70.47 14.52
VGGS Fc1 [9] 63.28 92.74 90.70 80.03 70.13 14.36
VGGS Fc2 [9] 63.74 91.92 90.09 80.31 70.73 14.55
ResNet50 [9] 68.23 94.13 92.41 83.71 74.93 14.64
LDCNN [9] 69.17 66.81 66.11 67.47 68.80 14.08
SGCN [46] 71.79 - 97.14 - - -
GCN [46] 73.11 - 95.53 - - -

FC6 (VGG16) [47] 96.21 - - - - -
FC7 (VGG16) [47] 96.48 - - - - -

Pool5 (ResNet50) [47] 98.49 - - - - -
Ours (VGG16) 98.05 98.95 99.21 99.32 98.95 15.47

Ours (ResNet50) 99.43 100.00 100.00 99.89 99.66 16.38

Table 12. mAP (%) on the NWPU-RESISC45 dataset comparing with the state-of-the-art methods.

Features mAP

RFM [30] 25.63
SBOW [4] 37.02
Hash [31] 34.49
DN7 [27] 60.54
DN8 [28] 59.47

DBOW [31] 82.15
Ours (VGG16) 98.60

Ours (ResNet50) 99.44
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To summarize, using the three remote sensing datasets, namely the UCMD dataset,
PatternNet dataset and NWPU-RESISC45 dataset, our method achieves a new state-of-the-art or
comparable performance.

4.9. Visualization Result

In order to visualize the search results, as shown in Figure 12, we display quantitative results
based on several query sample. In Figure 12, the top panel shows the result using the UCMD dataset,
and the query images are from medium residential, beach, golf course and dense residential; the
middle panel shows the result of the query using the PatternNet dataset, and the query images are
from baseball field, bridge, airplane and basketball court; and the bottom panel shows the result of the
query using the NWPU-RESISC45 dataset, and the query images are from cloud, island, airport and
thermal power station.
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Figure 12. Visualization of the proposed method with DCL on the UCMD dataset (up), PatternNet
dataset (middle) and NWPU-RESISC45 dataset (down). Best viewed when zoomed in. Based on our
approach, images with similar objects are more likely to be grouped together.

5. Conclusions

In this paper, we proposed a distribution consistency loss (DCL) to extract informative data points
to exploit informative data points in order to build a more informative structure for learning intra-class
sample distribution and inter-class sample class ranking. Given a query, DCL conducts data splitting
on positive and negative sets and forces a margin between them. In addition, the intra-class hard
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sample mining is also used to make better use of all informational data points for positive sample
weighting and negative sample ranking weighting.

In addition, we have presented an RSIR network, which achieves state-of-the-art results with
regards to retrieval precision. To our best knowledge, this is the first RSIR network to deploy features
extracted in an end-to-end fashion. We have shown that distribution consistency loss, together with the
fine-tuning network, yields significantly better performance than existing proposals. We also evaluated
different pooling methods for feature extraction, and conclude that the sum-pooling method is the best
for RSIR. In addition, we studied the multi-scale processing of the input image. From the research we
conclude that multi-scale processing can significantly improve the image retrieval accuracy.

In the future, we plan to study query expansion and whitening methods for remote sensing
images, because we have found that either reducing or failing to improve feature architectures may
yield better search results.
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51. Radenović, F.; Tolias, G.; Chum, O. Fine-tuning CNN image retrieval with no human annotation. IEEE Trans.
Pattern Anal. Mach. Intell. 2018, 41, 1655–1668. [CrossRef] [PubMed]

52. Noh, H.; Araujo, A.; Sim, J.; Weyand, T.; Han, B. Large-scale image retrieval with attentive deep local features.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October
2017; pp. 3456–3465.

53. Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA, 17 June
2006; pp. 1735–1742.

http://dx.doi.org/10.1109/TPAMI.2011.219
http://dx.doi.org/10.1109/TGRS.2017.2756911
http://dx.doi.org/10.1108/SR-10-2014-0716
http://dx.doi.org/10.1016/j.sigpro.2016.05.021
http://dx.doi.org/10.1016/j.isprsjprs.2017.08.011
http://dx.doi.org/10.1016/j.cviu.2019.04.004
http://dx.doi.org/10.1109/ACCESS.2019.2944253
http://dx.doi.org/10.1109/TGRS.2017.2760909
http://dx.doi.org/10.1109/TPAMI.2018.2846566
http://www.ncbi.nlm.nih.gov/pubmed/29994246


Remote Sens. 2020, 12, 175 30 of 30

54. Yi, D.; Lei, Z.; Li, S.Z. Deep Metric Learning for Practical Person Re-Identification. arXiv 2014, arXiv:1407.4979.
55. Wang, X.; Han, X.; Huang, W.; Dong, D.; Scott, M.R. Multi-Similarity Loss with General Pair Weighting for

Deep Metric Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Denton, TX, USA, 18–20 March 2019; pp. 5022–5030.

56. Liu, H.; Cheng, J.; Wang, F. Sequential subspace clustering via temporal smoothness for sequential data
segmentation. IEEE Trans. Image Process. 2017, 27, 866–878. [CrossRef] [PubMed]

57. Harwood, B.; Kumar, B.; Carneiro, G.; Reid, I.; Drummond, T. Smart mining for deep metric learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 2821–2829.

58. Wu, C.Y.; Manmatha, R.; Smola, A.J.; Krahenbuhl, P. Sampling matters in deep embedding learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 2840–2848.

59. Xiao, Q.; Luo, H.; Zhang, C. Margin Sample Mining Loss: A Deep Learning Based Method for Person
Re-Identification. arXiv 2017, arXiv:1710.00478.

60. Wang, X.; Hua, Y.; Kodirov, E.; Hu, G.; Garnier, R.; Robertson, N.M. Ranked List Loss for Deep Metric
Learning. arXiv 2019, arXiv:1903.03238.

61. Yuan, Y.; Yang, K.; Zhang, C. Hard-aware deeply cascaded embedding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 814–823.

62. Cui, Y.; Zhou, F.; Lin, Y.; Belongie, S. Fine-grained categorization and dataset bootstrapping using deep
metric learning with humans in the loop. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1153–1162.

63. Prabhu, Y.; Varma, M. Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
New York, NY, USA, 24–27 August 2014; pp. 263–272.

64. Wang, X.; Hua, Y.; Kodirov, E.; Hu, G.; Robertson, N.M. Deep metric learning by online soft mining and
class-aware attention. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; pp. 5361–5368.

65. Razavian, A.S.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN Features Off-the-Shelf: An Astounding Baseline
for Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Columbus, OH, USA, 24–27 June 2014; pp. 806–813.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIP.2017.2767785
http://www.ncbi.nlm.nih.gov/pubmed/29757734
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Remote Sensing Image Retrieval Methods 
	General Pair-Based Weighting Loss 
	Contrastive Loss 
	Triplet Loss 
	N-Pair Loss 
	Binomial Deviance Loss 
	Lifted Structured Loss 
	Multi-Similarity Loss 

	Sample Mining 

	Methodology 
	Distribution Consistency Loss 
	Sample Mining 
	Distribution Consistency Loss Weighting 
	Optimization Objective 


	Experiments and Discussion 
	Experimental Settings 
	Datasets 
	Performance Evaluation Criteria 

	Non-Trivial Examples Mining 
	Pooling Methods 
	Multi-Scale Representation 
	Comparison of Sample Mining Methods 
	Comparison of Effects of Different Sample Numbers 
	Per-Class Results 
	Comparison with the State of the Art 
	Visualization Result 

	Conclusions 
	References

