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Abstract: Owing to the significant societal value of inland water resources, there is a need for
cost-effective monitoring of water quality on large scales. We tested the suitability of the recently
launched Sentinel-2A to monitor a key water quality parameter, coloured dissolved organic matter
(CDOM), in various types of lakes in northern Sweden. Values of a(420)CDOM (CDOM absorption
at 420 nm wavelength) were obtained by analyzing water samples from 46 lakes in five districts
across Sweden within an area of approximately 800 km2. We evaluated the relationships between
a(420)CDOM and band ratios derived from Sentinel-2A Level-1C and Level-2A products. The band
ratios B2/B3 (460 nm/560 nm) and B3/B5 (560 nm/705 nm) showed poor relationships with a(420)CDOM

in Level-1C and 2A data both before and after the removal of outliers. However, there was a slightly
stronger power relationship between the atmospherically-corrected B3/B4 ratio and a(420)CDOM

(R2 = 0.28, n = 46), and this relationship was further improved (R2 = 0.65, n = 41) by removing
observations affected by light haze and cirrus clouds. This study covered a wide range of lakes
in different landscape settings and demonstrates the broad applicability of a(420)CDOM retrieval
algorithms based on the B3/B4 ratio derived from Sentinel-2A.

Keywords: Sentinel-2A; northern lakes; remote sensing; atmospheric correction; coloured dissolved
organic matter (CDOM); water quality

1. Introduction

Long-term water quality information is important for securing and restoring ecosystem services
provided by lakes [1]. Lakes are generally small in size and widely distributed in remote locations,
which make regular monitoring difficult [2]. For example, Sweden has more than 126,000 lakes, but
owing to the time and effort required to conduct monitoring with conventional sampling techniques,
the annual Swedish lake monitoring program focuses on only around 100 lakes [3]. Similar challenges
are faced by countries in northern boreal and Arctic regions that have an abundance of lakes scattered
over large areas with low accessibility.

Water monitoring programs in Europe and North America have observed increases in dissolved
organic matter (DOM) over the past decades [4], but knowledge of the geographic extent of these
changes remains poor. DOM not only increases the cost of drinking water production and decreases
recreational value of lakes, but also impacts the structure and function of aquatic ecosystems [5]
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through, for example, degradation that leads to greenhouse gas production [5,6] and dissolved oxygen
depletion [5–7], as well as decreases in light penetration, which suppresses biomass production [8,9].
As these impacts occur at large scales, there is an incentive to develop remote sensing techniques to
map DOM in lakes of different sizes over large geographical areas with varying landscape settings.

The coloured fraction of DOM that absorbs light (CDOM) is conventionally described using a
coefficient derived from the expression ln(1/T), where T is the proportion (from 0 to 1) of photons
transmitted through the CDOM in water per meter at a given wavelength [10]. In most aquatic
ecosystems, quantifying CDOM is equivalent to knowing the absolute concentration of DOM in the
water [11–13], although there can be local variations in the DOM/CDOM relationship [14]. As CDOM
absorbs light and modifies the optical characteristics of the water, it can be remotely sensed from
satellite observations [15]. Remote sensing can potentially provide new insights into how CDOM is
spatially distributed in aquatic environments, and how it responds to climate and land-use change
over space and time [15–17]. This facilitates effective monitoring of inland water CDOM [18] and the
management of water resources, particularly if used in combination with in situ water sampling and
monitoring programs [19].

Several sensors for environmental monitoring have been developed for marine applications (e.g.,
MODerate resolution Imaging Spectroradiometer, MODIS), but their coarse spatial resolutions, ranging
from 250 m to 1200 m, are not suitable for most inland waters bodies [15,18,19]. Recently, the potential
for inland water applications has been enhanced by the development of sensors with higher spatial
and radiometric resolution [20–24]. The Sentinel-2 multispectral instrument (MSI) is a state-of-art
sensor with freely available images at a spatial resolution of 10 m in the visible range that was designed
for land applications, but with promising utility for monitoring regional lake water quality [25–27].
Furthermore, MSI includes 13 spectral bands, a swath width of 290 km, and global revisit times of five
days with the twin satellites Sentinel-2A (launched in June 2015) and Sentinel-2B (launched in March
2017) [27].

There are several visible band ratio algorithms that can be used for estimating CDOM (and DOM)
concentrations in a variety of lakes [15,28,29]. Most of these are based on the ratio between green and
red bands because reflectance is low or negligible in the blue part of the spectrum in the majority of
lakes owing to high absorbance by CDOM and/or interference from suspended particulate matter
or phytoplankton [29,30]. For example, Toming et al. [29] found that CDOM in nine Estonian lakes
followed a power function fitted to the ratio of MSI bands 3 and 4. However, the applicability of
Sentinel-2 imagery in this regard is, thus far, largely unexplored and limited to small-scale studies.
Furthermore, the extent to which a particular band ratio works for lakes of different sizes, CDOM
ranges, topographical settings, and atmospheric conditions is poorly known.

This lack of knowledge calls for an explorative approach to evaluate the efficacy of different band
ratios produced by this relatively new satellite to map CDOM at large scales. In this study, we evaluate
retrieval algorithms for CDOM using Sentinel-2A MSI data for Swedish lakes with catchment areas
that have a combined coverage of approximately 800 km2, distributed across large parts of Sweden.
Our research represents the first attempt to assess CDOM at such a large scale using Sentinel-2A data.
Thus, the rationale behind our study is to test whether the performance of established CDOM retrieval
methods using band ratios still holds at larger scales using Sentinel-2 data. We further discuss the
importance of atmospheric corrections, pixel selection, and the handling of data outliers caused by
atmospheric conditions.

2. Materials and Methods

2.1. Study Sites and In Situ Measurement

Forty-six lakes were sampled in five different districts in Sweden during the summer of 2016
(Tables 1 and 2, Figure 1). These are the Norrbotten subarctic unproductive landscape, which consists
mainly of birch forest, shrublands, and bare rocks; Västerbotten E, which is characterized by a boreal
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continuous spruce forest and peat wetlands; Västerbotten W and Jämtland districts, which have strong
alpine gradients from lowland spruce to birch forest and further to high alpine conditions; and
Värmland, which has a relatively productive boreal forest. All lakes were sampled more than once, but
we decided to use data from visits close to dates with Sentinel-2A scenes that had minimum cloud
cover. These lakes have no monitoring plan as they are relatively inaccessible, but the site selection
was motivated by the need to test the performance of Sentinel-2A in regions where in situ data are rare.
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Figure 1. Locations of the five study regions in Sweden shown as Sentinel-2 tiles: Norrbotten (33WXR),
Västerbotten W (33WWP), Västerbotten E (33WXM-34WDS), Jämtland (33WVM-33VUL-33VVL), and
Värmland (33VUG).

Table 1. Descriptions of the land cover types in the Sentinel-2 tiles that cover the study area. Norrbotten
(33WXR), Västerbotten W (33WWP), Västerbotten E (33WXM-34WDS), Jämtland (33WVM-33VUL-33VVL),
Värmland (33VUG).

Sentinel-2 Tiles Forest
(Broadleaf and Coniferous) Herbaceous Wetland Water

33WXR 35–82% 57–98% 10% 2%
33WWP 37–78% 55–95% 3% 1–11%

33WXM-34WDS 77–100% 11–98% 26% 1%
33WVM-33VUL-33VVL 25% 69–89% 3.5–7% 3–22%

33VUG 90–100% 3–5% 0 2–16%
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Table 2. The identifier, name, region, and coordinates (midpoint) of each lake.

ID Lake Name and Region Latitude Longitude

1 Skrapmiejaure-Västerbotten W 66◦7′59.02”N 16◦8′47.79”E
2 Aitelnastjärn-Västerbotten W 66◦ 6′17.87”N 16◦11′5.28”E
3 Mattekjaure-Västerbotten W 66◦7′3.34”N 16◦11′11.27”E
4 Lissojaure-Västerbotten W 66◦5′31.91”N 16◦17′14.08”E
5 Tjappisjaure-Västerbotten W 66◦4′5.96”N 16◦21′10.36”E
6 Ruohtajavratje-Västerbotten W 66◦5′11.45”N 16◦19′22.67”E
7 Båsatjaure-Västerbotten W 66◦7′18.87”N 16◦15′55.72”E
8 Stor Bissitj-Västerbotten W 66◦0′51.39”N 16◦14′58.71”E
9 Övre Buonuokjaure-Västerbotten W 66◦0′42.84”N 16◦16′30.55”E

10 Nedre Buonuokjaure-Västerbotten W 66◦0′32.77”N 16◦16′15.05”E
11 Laddejaure-Jämtland 66◦07′56.92”N 16◦17′25.21”E
12 Avundtjärn-Jämtland 63◦44′23.4”N 12◦36′37.9”E
13 Svartvikstjärnarna-Jämtland 64◦02′59.4”N 13◦09′59.8”E
14 Krutejaure-Jämtland 63◦55′20.2”N 13◦27′00.0”E
15 Jille Skoulkenjaevrie-Jämtland 63◦54′18.5”N 13◦30′14.2”E
16 Baulan (Östra)-Jämtland 63◦47′55.0”N 13◦17′43.8”E
17 Jille Baulan (Västra)-Jämtland 63◦47′58.9”N 13◦16′57.4”E
18 Klingervattnet-Jämtland 64◦37′16.4”N 14◦34′44.7”E
19 Örtjärnen-Värmland 59◦56′1.29”N 13◦19′53.96”E
20 Hemsjön-Värmland 59◦55′12.96”N 13◦20′9.74”E
21 Igeltjärnen-Värmland 59◦51′35.11”N 13◦17′28.68”E
22 Göptjärnet-Värmland 59◦53′4.93”N 12◦44′46.53”E
23 Markustjärnet-Värmland 59◦52′18.51”N 12◦42′13.89”E
24 Stora Abbortjärnet-Värmland 59◦50′48.60”N 12◦38′48.93”E
25 Isakstjärn-Värmland 60◦15′20.97”N 12◦38′14.89”E
26 Djupen-Värmland 60◦18′13.70”N 12◦35′7.07”E
27 Hotlamm-Värmland 60◦19′40.88”N 12◦36′56.95”E
28 Stortjärnen-Västerbotten E 64◦15′42.00”N 19◦45′44.37”E
29 Enhörningen-Västerbotten E 64◦15′2.39”N 19◦3′1.35”E
30 Gäddtjärn-Västerbotten E 64◦7′4.56”N 19◦3′48.18”E
31 Övre Btj-Västerbotten E 64◦7′24.34”N 18◦46′44.35”E
32 Byxrivarlidvägen-VästerbottenE 64◦7′31.28”N 18◦45′18.37”E
33 Gålgotjärn-Västerbotten E 64◦8′46.07”N 18◦42′53.81”E
34 Nästjärn-Västerbotten E 64◦9′1.26”N 18◦48′0.51"E
35 Övre Skarda-Västerbotten E 64◦13′19.64”N 18◦50′48.72”E
36 Nedre Skarda-Västerbotten E 64◦13′31.07”N 18◦46′22.28”E
37 Mångstenstjärn-Västerbotten E 64◦15′2.39”N 18◦45′45.07”E
38 Banansjön-Norrbotten 68◦26′43.24”N 18◦37′44.70”E
39 Koukkelsjön-Norrbotten 68◦26′33.21”N 18◦34′38.94”E
40 Solbackasjön-Norrbotten 68◦20′49.86”N 18◦54′46.05”E
41 Hästskosjön-Norrbotten 68◦21′1.55”N 18◦58′3.08”E
42 Vouskojavri-Norrbotten 68◦20′44.63”N 19◦6′2.76”E
43 Långsjön-Norrbotten 68◦20′15.96”N 19◦8′46.65”E
44 Lillsjön -Norrbotten 68◦19′57.79”N 19◦8′44.80”E
45 Almberga-Norrbotten 68◦19′54.46”N 19◦9′10.69”E
46 Kaisepaktesjön-Norrbotten 68◦15′53.85”N 19◦24′22.73”E

A representative water sample was collected from each lake by sampling and pooling water from
multiple depths (ca. 4–5 evenly distributed depths) within the mixed layer above the thermocline
at the deepest point of the lakes. The water samples were kept cool until arrival at the laboratory,
where samples were filtered (GF/F = 0.7 µm) and analyzed for absorbance using a Jasco V-560 UV/vis
spectrophotometer (Easton, MD, USA). Filtered samples were refrigerated for up to one week after
sampling before absorbance analysis. The measured absorbance values were converted to a(420)CDOM

in Napierian units (based on a natural logarithm) with the equation a(420)CDOM = 2.303D/r, where
D is the measured absorbance and r is the cell path length (in m) [10,31]. Limnologists have used a
variety of wavelengths to describe CDOM, and proposed 440 nm as a common standard in North
American studies [10]. However, we used 420 nm as it is the wavelength used in the national Swedish
monitoring program. The difference between the date of image acquisition and the corresponding in
situ data collection ranged approximately between one week to ten weeks, potentially decreasing the
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accuracy of our models [29]. However, past studies [15,32] have shown that CDOM concentration in
lakes is a relatively stable parameter over these durations.

2.2. Satellite Image Processing

Level-1 Sentinel-2 MSI data (L1C) were downloaded from the Scientific Data Hub (https://scihub.
copernicus.eu). A total of eight images from between June and October 2016 were downloaded, which
covered all 46 lakes from the five different regions. Per-pixel radiometric measurements were provided
as top-of-atmosphere (ToA) reflectance. The L1C products had been resampled with a constant ground
sampling distance of 10, 20, and 60 m, depending on the native resolution of the different bands, and
were delivered as scenes with UTM Zone 33N projection (WGS-84 datum). Images with 10 m and 20 m
resolution were used [33]. Sentinel-2 Toolbox version 2.2.4 within the Sentinel Application Platform
version 2.2.3 was used to process the images into Level-2A (L2A) surface reflectance using the Sen2Cor
atmospheric correction module [33]. Sen2Cor is a processor used to generate Sentinel-2 L2A products,
performing atmospheric, terrain, and cirrus cloud correction on the L1C data. Then, 3 × 3 pixel values
were extracted from the middle of each lake and the mean values of the pixels were used for analyses.
All processing was performed on a 64-bit Windows 10 workstation.

2.3. Statistical Analysis

Partial least squares regression (PLSR) was used to explore the relationships between lake CDOM
concentrations and band ratios derived from Sentinel-2A bands 2, 3, 4, and 5 (Table 3). In this way,
we were able to systematically evaluate and compare how accurate different ratios performed as
CDOM predictors. Any ratio that was most strongly related to CDOM was then regressed against
observed a(420)CDOM using power curves [29], which yielded the strongest relationships. A retrieval
algorithm was then derived from the resulting regression model of different band ratios. Repeated
k-fold cross-validation was performed in order to test the validity of the model. During this procedure,
the data were divided into k = 10 portions of equal size, where one of these were retained for validation,
while the rest (k – 1) were used for training. The procedure was repeated five times to reduce
variance. Model performance was assessed using the root-mean-square error (RMSE) and mean
absolute error (MAE).

Table 3. Resolution, radiometry, and signal-to-noise ratio (SNR) of the Sentinel-2 bands used in
this study.

Band Resolution
(m)

Central Wavelength
(nm) Region Bandwidth

(nm) SNR

2 10 490 Blue 65 154
3 10 560 Green 35 168
4 10 665 Red 30 142
5 20 705 Red-Edge 15 117

3. Results

3.1. In Situ a(420)CDOM Measurements and Satellite Image Acquisition

The a(420)CDOM in the 46 lakes, as measured in the laboratory, varied from 0.30 m−1 to 29.93 m−1

(Table 4). The highest a(420)CDOM was recorded in seven lakes (IDs: 3, 24, 28, 30, 32, 33, 38) in Värmland
and Västerbotten E with values between 21.2 m−1 and 29.9 m−1. The clearest lakes were located in
Västerbotten W, Jämtland, and Norrbotten, with observed a(420)CDOM between 0.4 m−1 and 2.4 m−1.
The reflectance of the lakes in the different regions was generally high in the green band (B3: 560 nm)
and low in the red band (B4: 665 nm) (Figure 2).

https://scihub.copernicus.eu
https://scihub.copernicus.eu
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Table 4. Dates of in situ sampling and image acquisition of Sentinel-2A, and the physical characteristics
of the lakes.

ID Area
(m2)

Perimeter
(m) Sampling Date a(420)CDOM

(m−1)
Image Date

1 68,400 1980 28/07/2016 0.9 20/07/2016
2 136,800 2040 28/07/2016 0.52 20/07/2016
3 148,500 2220 28/07/2016 0.85 20/07/2016
4 376,200 3240 28/07/2016 0.97 20/07/2016
5 93,600 2760 28/07/2016 1.13 20/07/2016
6 209,700 3240 28/07/2016 1.42 20/07/2016
7 142,200 2280 28/07/2016 1.82 20/07/2016
8 117,900 2400 28/07/2016 0.85 20/07/2016
9 191,700 3120 28/07/2016 1.91 20/07/2016

10 238,500 2820 01/07/2016 1.14 20/07/2016
11 396,900 4080 24/08/2016 0.79 16/08/2016
12 279,900 3720 17/07/2016 1.02 05/09/2016
13 66,600 1620 17/07/2016 0.92 16/08/2016
14 218,700 2700 17/07/2016 2.4 16/08/2016
15 308,700 4740 17/07/2016 0.33 07/09/2016
16 227,700 3480 17/07/2016 0.3 07/09/2016
17 214,200 2760 17/07/2016 1.88 07/09/2016
18 341,100 5280 17/07/2016 1.78 07/09/2016
19 153,900 2520 09/07/2016 2.85 18/07/2016
20 251,100 3240 09/07/2016 0.55 18/07/2016
21 89,100 1620 09/07/2016 4.71 18/07/2016
22 32,400 720 11/07/2016 5.48 18/07/2016
23 48,600 1260 11/07/2016 8.22 18/07/2016
24 24,300 720 11/07/2016 9.21 18/07/2016
25 48,600 900 10/07/2016 4.06 18/07/2016
26 97,200 1980 10/07/2016 3.98 18/07/2016
27 340,200 3600 10/07/2016 2.29 18/07/2016
28 48,600 1080 12/07/2016 12.24 12/10/2016
29 129,600 1980 27/07/2016 2.93 21/07/2016
30 396,900 3780 27/07/2016 9.79 21/07/2016
31 56,700 1260 26/07/2016 13 21/07/2016
32 24,300 720 26/07/2016 10.62 21/07/2016
33 72,900 1620 27/07/2016 8.38 21/07/2016
34 24,300 720 26/07/2016 1.57 21/07/2016
35 40,500 1080 28/07/2016 5.29 21/07/2016
36 40,500 1080 28/07/2016 5.29 21/07/2016
37 56,700 1080 28/07/2016 4.97 09/10/2016
38 64,800 1980 25/08/2016 1.72 09/10/2016
39 40,500 1080 25/08/2016 1.42 09/10/2016
40 48,600 1080 23/08/2016 0.27 09/10/2016
41 72,900 1260 23/08/2016 0.8 09/10/2016
42 712,800 4680 23/08/2016 0.86 09/10/2016
43 137,700 2340 24/08/2016 0.14 09/10/2016
44 32,400 900 24/08/2016 0.82 09/10/2016
45 72,900 1260 24/08/2016 0.87 09/10/2016
46 2,770,200 12960 25/08/2016 0.4 09/10/2016
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Figure 2. Reflectance spectra of 46 lakes in the five Swedish regions in this study. Reflectance values
are bottom-of-atmosphere reflectance (BoA) after atmospheric correction. The wavelengths signify the
central value in each band, as shown in Table 3.

3.2. Partial Least Squares Regression (PLSR) Model to Explore the Relationship between CDOM and
Band Ratios

A PLSR analysis was used to explore the relationships between a(420)CDOM sampled in the lakes
and the atmospherically-corrected band ratios. Two significant components were evident from the
PLSR analysis. The first explained 40% of the variance in CDOM and was characterized by positive
loadings weights for all band ratios. The second component explained that 34% of the variance in
CDOM was characterized by positive loadings for ratios with B2 as the numerator, but with negative
loadings for ratios with B3 as the numerator (Figure 3). The band ratio B3/B4 clearly showed the
strongest relationship to a(420)CDOM as these two variables were located on the diagonally opposite
end in the loading plot (Figure 3). The other band ratios, especially B2/B3, B2/B5, and B2/B4, were less
clearly linked with a(420)CDOM. The PLSR of the non-atmospherically-corrected L1C data (not shown)
was excluded because of poor model fit.Remote Sens. 2020, 11, x FOR PEER REVIEW  8 of 17 
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The B2/B3 explained 24% of the a(420)CDOM variation before atmospheric correction (Figure 4A), 
but this relationship was not significant after atmospheric correction (Figure 4B). The green to red 
band ratio (B3/B4), which has been commonly used to retrieve CDOM in lakes in the past, had a 
relatively stronger correlation with the lake a(420)CDOM (Figure 4D). Before atmospheric correction, 
B3/B4 did not significantly explain any variance (R2 = 0.01) in a(420)CDOM (Figure 4C), but after 
atmospheric correction the relationship was markedly improved (R2 = 0.28; Figure 4D). The B3/B5 
ratio showed patterns similar to those of B3/B4, but with slightly lower R2 (Figure 4E,F). 
 

Figure 3. Partial least squares regression (PLSR) model with different band ratios variables as predictors
(after atmospheric correction) and coloured dissolved organic matter (CDOM) as a response variable,
based on data from 46 lakes in five different regions in Sweden. Vectors show loadings (PLS weights),
scaled by a factor of 2 to fit the biplot with site scores. The site scores are shown in blue filled circles.
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3.3. Testing and Validating a(420)CDOM Retrieval Models

The B2/B3 explained 24% of the a(420)CDOM variation before atmospheric correction (Figure 4A),
but this relationship was not significant after atmospheric correction (Figure 4B). The green to red band
ratio (B3/B4), which has been commonly used to retrieve CDOM in lakes in the past, had a relatively
stronger correlation with the lake a(420)CDOM (Figure 4D). Before atmospheric correction, B3/B4 did
not significantly explain any variance (R2 = 0.01) in a(420)CDOM (Figure 4C), but after atmospheric
correction the relationship was markedly improved (R2 = 0.28; Figure 4D). The B3/B5 ratio showed
patterns similar to those of B3/B4, but with slightly lower R2 (Figure 4E,F).Remote Sens. 2020, 11, x FOR PEER REVIEW  9 of 17 
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band ratios calculated from the top of atmosphere reflectance (L1C) data; and panels (B,D,F) are band
ratios calculated from the bottom of atmosphere reflectance (L2A) data.
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Model coefficients estimated from Sentinel-2A before (L1C) and after atmospheric correction
(L2A) (Table 5) showed that B2/B3 had relatively higher explained variance and lower error and bias,
in comparison with B2/B3 and B3/B5, before atmospheric correction. On the other hand, B3/B4 after the
atmospheric correction showed the highest explained variance (R2 = 0.28). Surprisingly, B3/B4 after
atmospheric correction had slightly higher error and bias than B3/B4 and B3/B5 (Table 5).

Table 5. Retrieval models for a(420)CDOM estimated from Sentinel-2A before (b, no shading) and after
(a, grey shading) atmospheric correction. RMSE, root-mean-square error; MAE, mean absolute error;
the variable X denotes the band ratio in the model equation.

Band Ratio Model RMSE MAE R2

B2/B3 b y = 0.0764 * X6.9008 1.0008 2.5384 0.2235
B3/B4 b y = 3.9179 * X−1.452 1.0563 2.9864 0.0126
B3/B5 b y = 2.0273 * X−0.231 1.0982 3.3289 0.0009
B2/B3 a y = 1.7235 * X−0.056 0.6412 1.9617 0.0013
B3/B4 a y = 2.332 * X−0.956 0.964 3.4234 0.2753
B3/B5 a y = 1.457 * X−0.41 0.6611 1.6376 0.1925

The repeated k-fold cross-validation showed that, after atmospheric correction, the B3/B4a ratio
had the highest explained variance (R2 = 0.49; Table 6). The RMSE showed substantially lower error
and bias in B3/B4a in comparison with that found for other band ratios. This bolsters our confidence in
using B3/B4 as a robust approach to predicting a(420)CDOM in lake water (Figure 5).

Table 6. The repeated k-fold cross-validation results of the performance of the Sentinel-2A band ratios
for 46 lakes before (b, no shading) and after (a, grey shading) atmospheric correction.

Band Ratio RMSE MAE R2

B2/B3 b 3.676 2.71 0.152
B3/B4 b 3.018 2.51 0.319
B3/B5 b 4.567 3.142 0.108
B2/B3 a 3.318 2.612 0.238
B3/B4 a 3.018 2.923 0.487
B3/B5 a 3.486 2.736 0.178
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The final model explained a relatively high proportion of the variance in CDOM (R2 = 0.65) after
the removal of outliers that were strongly affected by atmospheric conditions like haze and thin cirrus
clouds (Figure 5). These outliers were not detected during the initial screening process in which we
removed lakes that were completely covered by clouds because they had some cirrus clouds and haze
that were harder to detect with the naked eye. Thus, they were removed in a secondary, and more
detailed, inspection. As this study aims to test the efficiency of the MSI sensor for mapping CDOM
concentrations at large scales rather than developing a new algorithm, we applied the final model from
Table 7 to retrieve a(420)CDOM for the 41 lakes.

a(420)CDOM = K ×
(B3

B4

)−m
, (1)

where K is 2.809, B3 is centred at 560 nm, B4 is centred at 665nm, and m is –2.341.

Table 7. The best performing a(420)CDOM retrieval model estimated from the validation subset after
atmospheric correction (a) and removal of outliers (n = 5). The variable X denotes the band ratio in the
model equation.

Band Ratio Model RMSE MAE R2

B2/B3a y = 1.9517* X0.2007 1.7095 1.3831 0.0076
B3/B4a y = 2.8091* X−2.341 3.4834 1.09077 0.648
B3/B5a y = 1.3702* X−0.615 6.4979 3.43316 0.2244

3.4. Comparing Observed and Modeled a(420)CDOM and Mapping Its Variability

Modeled and in situ, a(420)CDOM exhibited similar patterns and ranges across the study regions
(Figure 6). Västerbotten E and Värmland had the highest a(420)CDOM concentrations and the highest
variability. On the other hand, Jämtland and Norrbotten had the lowest variability in remotely sensed
a(420)CDOM and clearer water compared with that of the other regions.
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Figure 6. CDOM absorption coefficient at 420 nm, calculated from Sentinel-2A data and water sample,
based on the results from 41 Swedish lakes.

The concentration of a(420)CDOM varied considerably within some of the lakes, as shown in
Figure 7, where the spatial variation in a(420)CDOM of ten lakes in Västerbotten W is presented.
For example, modeled a(420)CDOM was notably higher at the edges of several lakes compared with
values derived from the middle pixels (Figure 7). On the other hand, for example, lakes 9–10 showed
considerably less a(420)CDOM variability (Figure 7). In spite of this edge effect, the a(420)CDOM retrieval
also worked well in very small lakes. For example, one of the smallest lakes in the dataset (Lake 1,
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Skrapmiejaure), which is 0.07 km2 in area, was still large enough for a(420)CDOM to be acquired
(0–0.3 m−1) from clean mid-lake pixels, owing to the high spatial resolution of the Sentinel-2A data.Remote Sens. 2020, 11, x FOR PEER REVIEW  12 of 17 
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Figure 7. CDOM spatial gradient in lakes 1 to 10 covering Västerbotten W (33WWP). The base image
in the central panel is Sentinel-2A true color composite taken on 21 July 2016. Note that Västerbotten
W had some of the lowest in situ CDOM values (see Table 4 and Figure 5), which explains the low
maximum in this figure.
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4. Discussion

4.1. Band Ratio Algorithms

Several band ratio combinations were tested in this study and the B3/B4 ratio was found to
perform best. In lakes with low CDOM concentrations, phytoplankton and other particles cause the
green range (~560 nm, band 3) of the electromagnetic spectrum to reflect highly, while the red portion
(665 nm, band 4) is mostly absorbed [17,34]. As CDOM increases, relatively more of the green light,
as compared with the red light, will be absorbed, and thus relatively more red light, compared with
green, remains available to be reflected back to the atmosphere (Figure 2). CDOM level may vary in the
water columns, depending on the spectral interference from high concentrations of particulate matter
(Figure 2). Zhu, W et al. [34] tested many empirical algorithms with lake data and suggested that
wavelengths greater than 600 nm are critical for correct estimation of CDOM in complex freshwater
ecosystems. In this study, we emphasize that the combination of the bands B3 and B4 in a ratio can
capture the contrasting responses of these bands, and give a reasonable measure of a(420)CDOM content
in the water.

The applicability of the Sentinel-2A data for estimating lake a(420)CDOM was highlighted by
Toming et al. [29], who applied it to a relatively small area in Estonia. The primary limitation of their
analysis is that the derived empirical relationship might only be valid for the small subset of lakes
that were included in the study. We expanded the scope to include a much larger region and nearly
three times the number of lakes and found a higher explained variance (R2 = 0.65) for the relationship
between a(420)CDOM and the B3/B4a ratio than Toming et al. [29] (R2 = 0.52). It is important to note that
lake a(420)CDOM concentrations are influenced by several factors such as lake conditions, surrounding
land cover and land use, topography, and atmospheric interference. In this regard, the strength of
our approach is that the model developed involves a larger sample of lakes across a relatively larger
spatial area with heterogeneous land cover and topography.

4.2. Atmospheric Effects

Generally, atmospheric correction must be applied to avoid unwanted illumination effects that
may be larger than the variability in water parameters. However, Toming et al. [29] found that,
for Sentinel-2A, the a(420)CDOM retrieval on small scale (single image) results were better when
atmospherically uncorrected imagery was used. On a large scale, involving multiple images, we
found that a(420)CDOM retrieval was more successful when atmospheric correction was applied to the
imagery. We evaluated the added-value of using Sen2Cor by comparing the in situ and modelled
a(420)CDOM before and after atmospheric correction using the B3/B4a band ratios. On the basis of this
analysis, we found that atmospheric correction worked well in general and the algorithm performance
was evaluated using repeated k-fold cross-validation to obtain more reasonable estimates of model
coefficients. As shown in Table 5, any differences in the spectra can lead to large differences in the
absolute accuracy of band ratios retrieval of a(420) CDOM. This can be explained in terms of biases and
uncertainties that are dependent on spectral measurements of each band ratio.

Although we were not able to collect reflectance data in the field to compare it with the reflectance
of acquired images, we were able to rate the performance of Sen2Cor by comparing the ToA and
BoA reflectance spectra. We found that the reflectance spectra performed better in most regions after
atmospheric correction. That being said, data from some sampling stations do not fit the general
relationship well (Figure 4D). We investigated the specific images collocated with these sampling
stations and found that there are residual signals in the blue and near-infrared wavelengths where
water reflectance is supposed to be zero. This was because of persistent atmospheric effects, which
indicate that either sun glint, light haze, or cirrus clouds were present, or potentially a combination of
all of these conditions. Therefore, five lakes were removed from the dataset, and data from 41 lakes
were used in the subsequent analyses (Figure 5).
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4.3. Spatial Variability of a(420)CDOM

In complex freshwater systems, a(420)CDOM often displays a broad range of values, likely
influenced by catchment characteristics (e.g., vegetation type or density, or land cover variety). Such
heterogeneous and often small lakes present a challenge to current remote sensing methods used to
estimate biological and chemical properties of water [34,35]. Previous studies found that surrounding
sources of carbon (e.g., vegetation, soils) enhance the a(420)CDOM values in lake water [36–40]. In our
study area, specifically in Västerbotten E, wetlands are significantly represented in the total catchment
area. Moreover, Västerbotten E and Värmland are dominated by a mix of broadleaf and coniferous
forests, which could further explain the high values of a(420)CDOM in those regions (<5.5 to >10.5 m−1;
Figure 6, Table 4) [41,42]. On the other hand, Jämtland has the lowest percentage of forest and is mostly
covered by herbaceous cover (Table 1). This could be the reason for the low a(420)CDOM levels found in
this region (<2 m−1, Figure 6 and Table 4) that cause more transparent water compared with other
regions. Västerbotten W has a large proportion of mixed types of forest and herbaceous cover, which
probably explains why a(420)CDOM at the edges of lakes in this region has high values in comparison
with those found at lake centres. Depending on the size and depth of a lake and the heterogeneity of the
topography, land cover, and land-use surrounding it, there could be a high variability of a(420)CDOM

from the periphery to the lake centre. Therefore, it cannot be ruled out that lake bottom reflectance
biases remote sensing measurements near the lake shore. Norrbotten has a mixture of different types
of broadleaf forests and coniferous, herbaceous cover, and wetlands. The lakes in Norrbotten show
a significant variation in a(420)CDOM (0.6–4.6 m−1; Figure 6, Table 4). Overall, the lakes in areas
surrounded by mixed forests had the highest levels of a(420)CDOM, as compared with lakes surrounded
by herbaceous vegetation or heathlands (Table 1). The contribution of different land cover types to the
spatial patterns of a(420)CDOM in these lakes will be comprehensively assessed in a follow-up study
(Supplementary Data; Figures S1 and S2).

4.4. Temporal Variability of a(420)CDOM

The in situ a(420)CDOM measurements were obtained between July and August of 2016, and the
Sentinel-2A images were collected in June, July, August, September, and October of the same year.
Matching water sampling and satellite image acquisition in time was a challenge. The time difference
was up to two weeks in all areas, except in boreal lakes in Västerbotten E; these had a difference in
time of up to ten weeks.

Thus, a potential problem with our analysis is that there was a mismatch of up to approximately
10 weeks between the field sampling date and the date of the image that was available for analysis.
However, Cardille et al. [32] suggested that a such a time difference will not significantly affect the
relationship between measured and remotely sensed CDOM. In our case, the timing appeared to
be sufficient for this study, and justified by the fact that our model was able to explain 65% of the
variability in a(420)CDOM, which is relatively high compared with other studies [29,30,43] that used
Sentinel-2 data. The a(420)CDOM in boreal headwater lakes varies only marginally during the summer
and we can expect relatively small temporal a(420)CDOM variations [44]. Weather conditions were
stable during the study period, for example, maximum daily temperatures from June to September
ranged between 18 ◦C and 25 ◦C, and precipitation was relatively low, between 25 and 45 mm. There
were no heavy rain events between image acquisition and in situ data measurements that could bring
particles or dissolved materials into the lakes, nor were algal blooms reported during the study period.

5. Summary and Conclusions

We presented an application of mapping lake coloured dissolved organic matter (CDOM) by
modelling a(420)CDOM that may cause changes to water colour. In situ field measurements were taken
from 46 lakes across northern Sweden during the summer of 2016 and eight images from the Sentinel-2A
Multispectral Imager were acquired from the same season. Band ratios based on Sentinel-2A data were
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used to model lake a(420)CDOM. The best performing algorithm was based on the B3/B4 ratio, and it
showed robust and consistent results across a broad range of lakes of different sizes distributed over
varying landscapes. Sixty-five percent (R2 = 0.65) of the variability of in situ CDOM was explained
by the model. We found that atmospherically-corrected Sentinel-2 imagery produced better results
than uncorrected imagery. However, we observed that the residual signal in atmospherically-corrected
imagery may have been the result of sun glint, haze, or thin clouds that persisted despite the use of
atmospheric correction. This study demonstrates the effective use of Sentinel-2 for this application
over a wide range of inland waters that are situated in complex and inaccessible regions that are
not well-monitored.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/1/157/s1,
Figure S1: Mapping 46 lakes in five study regions in Sweden using Sentinel-2 images; Västerbotten W (33WWP)
acquired on 21 July 2016, Jämtland (33WVM-33VUL-33VVL) acquired on 30 July 2016, and Värmland (33VUG)
acquired on 4 June 2016; Figure S2: Mapping 46 lakes in five study regions in Sweden using Sentinel-2 images;
Västerbotten E (33WXM-34WDS) acquired on 12 October 2016 and Norrbotten (33WXR) acquired on 30 July 2016.
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