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Abstract: Fires are frequent in boreal forests affecting forest areas. The detection of forest 
disturbances and the monitoring of forest restoration are critical for forest management. Vegetation 
phenology information in remote sensing images may interfere with the monitoring of vegetation 
restoration, but little research has been done on this issue. Remote sensing and the geographic 
information system (GIS) have emerged as important tools in providing valuable information about 
vegetation phenology. Based on the MODIS and Landsat time-series images acquired from 2000 to 
2018, this study uses the spatio-temporal data fusion method to construct reflectance images of 
vegetation with a relatively consistent growth period to study the vegetation restoration after the 
Greater Hinggan Mountain forest fire in the year 1987. The influence of phenology on vegetation 
monitoring was analyzed through three aspects: band characteristics, normalized difference 
vegetation index (NDVI) and disturbance index (DI) values. The comparison of the band 
characteristics shows that in the blue band and the red band, the average reflectance values of the 
study area after eliminating phenological influence is lower than that without eliminating the 
phenological influence in each year. In the infrared band, the average reflectance value after 
eliminating the influence of phenology is greater than the value with phenological influence in 
almost every year. In the second shortwave infrared band, the average reflectance value without 
phenological influence is lower than that with phenological influence in almost every year. The 
analysis results of NDVI and DI values in the study area of each year show that the NDVI and DI 
curves vary considerably without eliminating the phenological influence, and there is no obvious 
trend. After eliminating the phenological influence, the changing trend of the NDVI and DI values 
in each year is more stable and shows that the forest in the region was impacted by other factors in 
some years and also the recovery trend. The results show that the spatio-temporal data fusion 
approach used in this study can eliminate vegetation phenology effectively and the elimination of 
the phenology impact provides more reliable information about changes in vegetation regions 
affected by the forest fires. The results will be useful as a reference for future monitoring and 
management of forest resources. 

Keywords: spatiotemporal data fusion approach; vegetation phenology; forest fires; remote sensing; 
Greater Hinggan Mountain area 
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1. Introduction 

Forests play an irreplaceable role in maintaining the ecological balance of the terrestrial 
biosphere due to their wide coverage, complex distribution, and species diversity [1,2], multi-
function, and multi-value characteristics [3]. 

Fires are one of the serious disturbances globally and are particularly prevalent in boreal forests 
[4]. Forest fires promote dynamic changes in ecosystem structure and function, have positive and 
negative impacts on ecosystems, and have a profound impact on human life and regional 
developments [5–8]. On the one hand, it poses a severe health hazard to people living in the 
surroundings [9], impacts forest ecosystems, and burns an average of about 350 million ha of forest 
land per year, which is one of the primary causes for the decline in global forest stocks. The burning 
of forests severely causes local economic losses. Forest fires also have long term environmental and 
climate impacts. A certain frequency and intensity of fire can maintain the balance of forest ecology 
and play an essential role in preserving biodiversity. For example, fires can help regulate fuel 
accumulation, restore vegetation by removing fungi and microorganisms, control diseases and 
insects, and gain more energy by exposure to solar radiation, mineral soil, and nutrient release [10]. 
With climate change and global warming, the frequency of forest fires is increasing and receives 
increasing attention as an integral part of global environmental change studies [11,12]. 

Global fires emit about 2.1 PgC (1 PgC = 1015 g of carbon) of carbon flux per year, which is 
equivalent to 50%–200% of annual terrestrial carbon sinks. Among them, 35% are related to forests 
[13]. The post-fire forest regeneration process is extremely important. Carbon is emitted from forest 
fires that are injected into the atmosphere, post-fire vegetation regeneration and carbon sequestration 
of woody vegetation may help to reduce carbon emission in the atmosphere [14]. Forest disturbance 
and restoration can, therefore, affect the energy flow and biogeochemical cycles and thus is 
considered as the primary mechanism for the carbon transfer between the surface and the 
atmosphere, playing an important role in regional and global carbon cycles [15–17]. The detection of 
forest disturbances and the monitoring of post-fire forest restoration are essential for both ecological 
research and forest management. Understanding the dynamics of forest regeneration after a fire can 
help to assess forest resilience and adequately guide forest management after the disturbance. 
Therefore, information about the spatial patterns and temporal trends of the forest helps in 
restoration after a fire. 

Considering the small spatial coverage, limited sample points, low site accessibility, and high 
labor costs, site sampling is not suitable for monitoring large-scale vegetation dynamics after a fire, 
while satellite remote sensing provides an economical and effective tool for monitoring large-scale 
forest changes [18,19]. Fires can cause profound changes in ecosystems, where vegetation is 
consumed, leaf chlorophyll is destroyed, the soil is further exposed, and carbonization and moisture 
changes in vegetation roots cause a large number of spectral changes, which can be detected through 
satellite data [20,21]. Optical remote sensing data, such as the widely used Landsat images, have been 
proven to be very suitable for forest interference detection and forest change monitoring because they 
have the necessary spatial resolution (the resolution of 30 m, consistent with the scale of most local 
vegetation changes [22]) and spectral coverage (visible, near-infrared, short-wave infrared, and 
thermal infrared bands) to capture most forest disturbance events caused by natural or artificial 
management [23]. At the same time, time-series remote sensing data (40-year observations) (e.g., 
Landsat) provides excellent potential for trajectory monitoring of forest dynamics after fire [24,25], 
as long-term monitoring of forest recovery after a fire is often required [26,27]. 

Numerous studies have been carried out on different aspects of post-fire forest restoration 
[23,28–31]. Many scholars have also studied the phenology of vegetation. The experimental results of 
Frison et al. [32] show that radar data is more accurate for phenological estimation than optical data. 
Flavio et al. [33] have tested the phenology-based vegetation mapping method and proved it 
effective. Some studies have calculated the phenological characteristics of mangroves to derive 



Remote Sens. 2020, 12, 156 3 of 19 

 

environmental driving factors that affect their growth [34,35]. Vegetation phenology can provide 
information about the vegetation dynamics and response after forest fires [36]. However, there is less 
research on analyzing the influence of phenological factors caused by remote sensing data on the 
monitoring of dynamic vegetation changes. Due to the significant differences in vegetation 
phenology between different growth stages, in order to avoid the “pseudo-variation” of the time-
series vegetation index caused by the interannual vegetation phenological changes, some studies 
have chosen to use the images acquired at the time near the vegetation growth peak to monitor the 
post-fire forest recovery [37]. Remote sensing and geographic information tools have emerged as 
important tools to study vegetation phenology using long time-series of vegetation indexes to 
monitor the post-fire forest recovery [37]. However, due to current technical limitations, it is 
challenging to obtain remote sensing data with high spatial resolution and high temporal resolution 
simultaneously. The coarse resolution (e.g., MODIS, 250 m/500 m/1000 m) will obscure the details of 
the features and affect the observation results. The long revisit period (16 days) of satellites (e.g., 
Landsat), frequent cloud pollution, and other atmospheric conditions limit their application in long 
time-series detection of surface objects without phenological interference. Therefore, long-term 
observations by only using images located near the vegetation growth peak in cloudy areas may 
result in a gap in the study years.  

Taking the forest restoration in the Greater Hinggan Mountain area after the “5.6 fire” in 1987 
as an example, this study aims at demonstrating the effect of the spatiotemporal fusion algorithm in 
eliminating the phenological impact when monitoring vegetation restoration using remote sensing 
images. Here, we used the Landsat and MODIS time-series images to study the vegetation during 
2000–2018 based on the spatiotemporal fusion algorithm to eliminate the influence of phenological 
factors in Landsat images. We compared the band characteristics, NDVI and DI indices prior to and 
after the elimination of the phenology effect, and further explore the impact of phenology on forest 
dynamic monitoring. The results of this study prove that the spatiotemporal fusion algorithm can 
effectively eliminate phenological factors in remote sensing images. The elimination of the 
phenological effects can provide more reliable information on vegetation restoration. Thus, the 
present study provides a scientific reference for post-fire forest reconstruction and ecological 
restoration. 

2. Materials and Methods 

2.1. Study Area 

The Greater Hinggan Mountain area is located in Heilongjiang Province, in the northern part of 
Inner Mongolia Autonomous Region which is the watershed of the Mongolian Plateau and the 
Songliao Plain bounded by latitude 50°10′N to 53°33′N, longitude 121°12′E to 127°00′E (Figure 1). The 
area is more than 1200 km long and 200–300 km wide with an average altitude of 1200–1300 m above 
mean sea level. The Greater Hinggan Mountain area is a typical cold temperate continental monsoon 
climate with warm summers and cold winters. The annual average temperature of the area is −2.8 °C; 
the lowest temperature is −52.3 °C. The precipitation, which peaks in summer, is 420 mm annually 
and is unevenly distributed throughout the year, i.e., more than 60% occurs between June and August 
[38]. The Greater Hinggan Mountain is the largest modern state-owned forest area with a total area 
of 8.46 × 104 square kilometers and forest coverage of 6.46 × 104 square kilometers. Therefore, the 
forest coverage rate is about 76.4%, and the total storage capacity is about 5.01 × 108 m3, accounting 
for 7.8% of the national total [39]. 
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Figure 1. Location of the Greater Hinggan Mountain area and sample study area. 

The Greater Hinggan Mountain covers large forest resources, serving as an important state-
owned forest area with a vital timber production area in China. At the same time, this forest area has 
experienced one of the most severe forest fires in China. On 6 May 1987, a severe forest fire occurred 
in the northern part of the Greater Hinggan Mountain. The burned area was 1.133 × 107 km2 and the 
area of over-fired forest land was 1.114 × 107 km2, of which the affected area was 8.17 × 105 km2. The 
fire seriously affected the social, economic, and ecological benefits of the forest area, causing 
unprecedented heavy losses to the country. Since the catastrophic forest fires in the Greater Hinggan 
Mountains happened in 1987, this place has been one of the areas for research on fire prevention and 
post-fire forest management [38,40,41]. 

The burned area of the “5.6 Fire” was extracted in a previous study [42]. The entire burned forest 
area spanned two Landsat scenes (Path 121/122, Row 23), but it is difficult to acquire the two scenes 
simultaneously in each year. Considering that around 90% of the burned forest area is within the 
scene of path 122 row 23, we extracted a sample area (Figure 1) from Landsat path 122 row 23 as the 
study area for the recovery monitoring [39]. 

2.2. Data Used and Preprocessing 

A total of 16 Landsat surface reflectance data from Path 122, Row 23 with and below 10% cloud 
cover during the vegetation growth period from 2000 to 2018 was considered. The data was 
downloaded from the United States Geological Survey (USGS, https://earthexplorer.usgs.gov/); 
details of the data are given in Table 1. We have tried our best to find the images with the least cloud 
volume during the vegetation growth period each year. Although the cloud volume of the image in 
2001 is 10%, the study area is only part of an image, and most of the clouds are located outside the 
study area. Therefore, the image from 2001 was still used in the study. The Landsat surface reflectance 
data was corrected at the sub-pixel-level by topographic and atmospheric correction [43,44]. The 
FMASK algorithm was used to detect cloud cover and cloud shadow and to generate a mask [45,46]. 
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Table 1. Landsat data acquisition date, sensor type, and cloud volume. 

Data Acquisition Date Sensor Type Cloud Volume (%) 
2 June 2000 TM 0.00 
21 June 2001 TM 10.00 
15 May 2002 TM 0.00 
11 June 2003 TM 2.00 

4 September 2005 TM 2.00 
5 July 2006 TM 0.00 

11 August 2008 TM 4.00 
30 August 2009 TM 0.00 

2 September 2010 TM 0.00 
3 July 2011 TM 0.00 

22 June 2013 OLI 2.23 
24 May 2014 OLI 1.49 

31 August 2015 OLI 1.89 
18 September 2016 OLI 0.61 
21 September 2017 OLI 0.47 

3 May 2018 OLI 0.11 

The MODIS 16d synthetic vegetation index product MOD13Q1 for the periods 2000–2018 was 
downloaded from the National Aeronautics and Space Administration (NASA) and pre-processed. 
The zenith BRDF-adjusted reflectance product MCD43A4V006 with a spatial resolution of 500m was 
obtained from NASA, which is daily reflectance data for spatial and temporal fusion with Landsat 
data to generate the surface reflectance on the target date. The above MODIS data was converted 
from Sinusoidal projection to UTM projection with WGS84-51N coordinates. After all the detailed 
processing, the river, road and building areas in each image were masked based on the 10 m global 
resolution land cover data [47], supplemented by visual interpretation, and the boundary of the study 
area was extracted. 

2.3. Vegetation Phenological Information 

Two processes were used to extract phenological information: the smooth reconstruction of the 
temporal vegetation index and the extraction of phenological parameters. Previous scholars have 
done a lot of research on the smooth reconstruction of NDVI time-series data. Methods including 
least squares (i.e., Savitsky–Golay filtering, asymmetric Gaussian function fitting, logistic blending 
function fitting), and Fourier fitting, Fourier correction algorithms, harmonic analysis method and 
wavelet analysis based on spectrum analysis technology have been considered. There has also been 
a large number of studies on the extraction of phenological parameters [48–50]. Based on the 
comparison of all earlier methods, we used an adaptive Savitzky–Golay filter to reconstruct the 
MOD13Q1 NDVI time-series and used a dynamic threshold method to extract the vegetation 
phenological index of each year. For the processing of data, we used TIMESAT software [51]. 

The vegetation index has a large degree of uncertainty showing the highest value of the NDVI 
peak, and the determination of the beginning and end dates of the growth period is relatively easy; 
the determination of the mid-point of the growth period is more reliable, which is often located in 
the peak season of vegetation growth. Vegetation at the midpoint of the growth period in the study 
area in each year has a relatively consistent growth situation [52]. Comparing the remote sensing 
indices at this time of each year can effectively eliminate the phenological influence. Therefore, the 
midpoint of the vegetation growth period in the study area in each year was selected as the date of 
the image to be synthesized. 
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2.4. Synthesis of Target Image Based on STARFM Fusion Algorithm 

Traditional image fusion methods, such as intensity-hue-saturation (IHS) transformation [53], 
principal component substitution (PCS) [54], and wavelet decomposition [55], focus on combining 
the spectral properties of low-resolution data with the high spatial resolution of panchromatic images 
to generate high-resolution multispectral images. These methods are useful for exploiting the 
different spectral and spatial characteristics of multi-sensor data, but they cannot enhance both the 
spatial resolution and temporal coverage. In the present study, we have quantitatively captured the 
changes in radiation measurements (surface reflections) associated with the phenology and study 
their effects on the monitoring of vegetation restoration associated with fire. The STARFM (spatial 
and temporal adaptive reflection fusion model) algorithm is used to predict the reflectance of the 
target date. The algorithm considers the influence of spatial distance on predicted pixels and also 
considers the spectral difference and temporal difference between pixels. The homogeneous pixels in 
MODIS data show the relationship with the corresponding Landsat pixels as 𝐿(𝑥௜, 𝑦௜, 𝑡௞) = 𝑀(𝑥௜, 𝑦௜, 𝑡௞) + 𝜀௞ (1) 

where (𝑥௜, 𝑦௜) represents the spatial position of the homogeneous pixel; 𝑡௞  represents the image 
acquisition time; 𝐿(𝑥௜, 𝑦௜, 𝑡௞) represents the reflectivity of Landsat pixels; 𝑀(𝑥௜, 𝑦௜, 𝑡௞) represents the 
reflectivity of MODIS pixel; 𝜀௞ indicates the difference in reflectance between different data. At 𝑡଴, 
the following is the relationship between the MODIS reflectance and the Landsat reflectance of the 
same pixel: 𝐿(𝑥௜, 𝑦௜, 𝑡଴) = 𝑀(𝑥௜, 𝑦௜, 𝑡଴) + 𝜀଴ (2) 

When the ground cover type and the system error between the two types of data remain 
unchanged, 𝜀௞ = 𝜀଴, the above equation can be expressed as 𝐿(𝑥௜, 𝑦௜, 𝑡଴) = 𝑀(𝑥௜, 𝑦௜, 𝑡଴) + 𝐿(𝑥௜, 𝑦௜, 𝑡௞) − 𝑀(𝑥௜, 𝑦௜, 𝑡௞) (3) 

The MODIS pixels are mostly non-homogeneous pixels, and the solar bidirectional reflection 
changes, and the surface coverage type changes with time, which makes the above ideal conditions 
challenging to meet. Therefore, the key point of the method is to find similar pixels from neighboring 
pixels of the target pixel and replace the homogeneous pixels with similar pixels. We used a window-
based threshold method to search for similar pixels from the window. If the pixel in the moving 
window satisfies the following relationship, the pixel is considered to be a similar pixel of the target 
pixel. ห𝐿(𝑥௜, 𝑦௜, 𝑡௞) − 𝐿൫𝑥௪/ଶ, 𝑦௪/ଶ, 𝑡௞൯ห < 2 × 𝐿௦௧ௗ(𝑡௞)/𝐶 (4) 

where 𝑤  represents the size of the moving window; ൫𝑥௪/ଶ, 𝑦௪/ଶ൯ represents the position of the 
predicted pixel; 𝐿௦௧ௗ represents the standard deviation of Landsat surface reflectance; 𝐶 represents 
the classification number of ground objects in the moving window. Thus, the reflectance value of the 
predicted pixel can be expressed by the following equation: 𝐿 ൫𝑥௪/ଶ, 𝑦௪/ଶ, 𝑡଴൯ =   ෍ ෍ ෍ 𝑊௜௝௞ × (𝑀(𝑥௜, 𝑦௜, 𝑡଴) + 𝐿(𝑥௜, 𝑦௜, 𝑡௞)௡௞ୀଵ௪௝ୀଵ௪௜ୀଵ− 𝑀(𝑥௜, 𝑦௜, 𝑡௞)) 

(5) 

where 𝑛 represents the number of similar pixels in the window; 𝑊  represents the contribution 
weighting coefficient of the neighboring pixels to the target pixel. The weighting coefficient can be 
calculated using three factors: spectral distance, temporal distance, and spatial distance between 
adjacent pixels and central pixels. Spectral distance is the spectral difference of pixels between 
simultaneous MODIS and Landsat data in the same location. The MODIS pixel reflectance can be 
considered as a mixture of multiple Landsat pixel reflectance in the same region. The smaller the 
spectral distance, the more similar the Landsat pixel and target pixel, and the larger the weight 
coefficient assigned. Time distance is the difference between MODIS pixel values at different times, 
which represents the change of the surface coverage status in this period. The smaller the time 
distance value, the smaller the change of land cover, the larger the contribution of the pixel to the 
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central pixel value, and the larger the weight coefficient assigned. Spatial distance is the distance 
between the neighboring pixels and the target pixel. The smaller the spatial distance, the larger the 
weighting coefficient, which is calculated as follows: 𝑆௜௝௞ = |𝐿(𝑥௜, 𝑦௜, 𝑡௞) − 𝑀(𝑥௜, 𝑦௜, 𝑡௞)| (6) 𝑇௜௝௞ = |𝑀(𝑥௜, 𝑦௜, 𝑡௞) − 𝑀(𝑥௜, 𝑦௜, 𝑡଴)| (7) 

𝐷௜௝௞ = 1.0 + ඨ൬𝑥௪ଶ − 𝑥௜൰ଶ + ൬𝑦௪ଶ − 𝑦௝൰ଶ /𝐴  (8) 

where 𝑆௜௝௞ is the spectral distance; 𝑇௜௝௞ is the temporal distance; 𝐷௜௝௞ is the spatial distance; (𝑥௜, 𝑦௜) 
is the spatial position of similar pixels; 𝐴 is the weight adjustment coefficient, which is a constant. 

Normalized weight coefficients (𝐶௜௝௞), and the total weight coefficient (𝑊௜௝௞) are given as 𝐶௜௝௞ = 𝑆௜௝௞ × 𝑇௜௝௞ × 𝐷௜௝௞ (9) 𝑊௜௝௞ = (1/𝐶௜௝௞)/ ෍ ෍ ෍ ቆ 1𝐶௜௝௞ቇ௡௞ୀଵ௪௝ୀଵ௪௜ୀଵ  (10) 

After selection of similar pixels, we filtered to remove the poor-quality pixels. If the spectral and 
time distance of similar pixels are smaller compared to the target pixel in the center of the moving 
window, the pixel provides better spectral information and time information compared to the target 
pixel. Otherwise, the pixel is an unqualified similar pixel. When the uncertainty factors 𝜎௟ and 𝜎௠ 
of Landsat and MODIS surface reflectivity are introduced in the similar pixel screening, the qualified 
similar pixels must satisfy the following inequality relations: 𝑆௜௝௞ < max൫ห𝐿൫𝑥௪/ଶ, 𝑦௪/ଶ, 𝑡௞൯ − 𝑀൫𝑥௪/ଶ, 𝑦௪/ଶ, 𝑡௞൯ห൯ + 𝜎௟௠ (11)      𝑇௜௝௞ < max൫ห𝑀൫𝑥௪/ଶ, 𝑦௪/ଶ, 𝑡௞൯ − 𝑀൫𝑥௪/ଶ, 𝑦௪/ଶ, 𝑡଴൯ห൯ + 𝜎௠௠ (12) 

where 𝜎௟௠ represents the uncertainty factor between the MODIS and the Landsat reflectance value, 
and 𝜎௠௠ represents the uncertainty factor of the MODIS reflectance at different phases. When all 
observed pixel reflectance values are independent of each other, 𝜎௟௠ and 𝜎௠௠ are expressed as 𝜎௟௠ = ඥ𝜎௟ଶ + 𝜎௠ଶ (13) 𝜎௠௠ = ඥ𝜎௠ଶ + 𝜎௠ଶ = √2𝜎௠ (14) 

After extracting the phenological index of the vegetation, the corresponding date of the mid-
growth period of each year can be calculated as the date of the image to be synthesized, and the 
Landsat and MCD43A4V006 data are fused to construct reflectance data of vegetation with a 
relatively consistent growth period in different years. 

2.5. Vegetation Indices 

We used NDVI and DI to characterize post-fire vegetation restoration status. 

2.5.1. NDVI 

As one of the most famous vegetation indices, NDVI shows a good correlation with vegetation 
regeneration and the photosynthetic effective radiation ratio absorbed by plant canopy, leaf area, and 
biomass, so it is widely used to study vegetation response to wildfire disturbance [23,26,56–59]. NDVI 
is calculated using Equation (15): 𝑁𝐷𝑉𝐼 = (𝜌ேூோ − 𝜌ோ௘ௗ)(𝜌ேூோ + 𝜌ோ௘ௗ) (15) 

where 𝜌ேூோ  and 𝜌ோ௘ௗ  are the reflectance of the near-infrared band and red wavelengths, 
respectively. 
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2.5.2. DI 

The calculation of DI is based on the Tasseled Cap transformation [60,61], which is a spectral 
transformation that converts the original high covariant data into three uncorrelated indices known 
as brightness (B), greenness (G), and wetness (W). The calculation of DI is based on the observation 
that disturbed forests usually have higher brightness values and lower green and humidity values 
compared to undisturbed forest areas [61]. The linear combination of three Tasseled Cap 
transformation indices include brightness, greenness, and wetness. At the same time, the spectral 
normalization step is conducted, and the intra-image statistics are used to normalize the radiation 
variations as 𝐵௡ = (𝐵 − 𝐵ఓ)/𝐵ఙ (16) 𝐺௡ = (𝐺 − 𝐺ఓ)/𝐺ఙ (17) 𝑊௡ = (𝑊 − 𝑊ఓ)/𝑊ఙ (18) 

where 𝐵ఓ, 𝐺ఓ, and 𝑊ఓ represent the average Tasseled Cap transformation brightness, greenness, and 
wetness of the “forest in a particular scene”; 𝐵ఙ , 𝐺ఙ , and 𝑊ఙ  are the corresponding standard 
deviations, so 𝐵௡ , 𝐺௡ , and 𝑊௡  represent normalized brightness, greenness, and wetness, 
respectively. After normalization, the three components are linearly combined to obtain DI as 
follows: 𝐷𝐼 = 𝐵௡ − (𝐺௡ + 𝑊௡) (19) 

The disturbed forest area usually has a high positive value 𝐵௡ and low negative values of 𝐺௡ 
and 𝑊௡, thus showing a high DI value; in contrast, the undisturbed forest area shows a low DI value. 

3. Results 

3.1. Yearly Composite Image 

The date corresponding to the midpoint of the vegetation growth period in each year was 
obtained from the vegetation index. The reflectance data of vegetation with relatively consistent 
growth periods in different years were constructed by integrating Landsat and MODIS data. The 
image acquisition date of each year, the mid-point of the vegetation growth period, and the number 
of days between them are given in Table 2 (represented by the number of days in a year 
corresponding to the date). Since the MCD43A4V006 data has data gaps on some dates, in order to 
have the fusion image as complete as possible, the MCD43A4V006 image nearest to the original date 
and with the least data gaps was found close to the original date. The adjusted data date was marked 
in brackets of the original date. 

Table 2. Dates of image acquisition in each year, midpoint of vegetation growth period, and the 
number of days between the two. 

Year Date of Image 
Acquisition 

Midpoint of Vegetation Growth 
Period 

Number of Days 
Difference 

2000 154 200 (209) 55 
2001 172 (169) 202 (193) 24 
2002 134 205 71 
2003 162 200 (189) 27 
2005 247 204 43 
2006 185 201 16 
2008 224 194 30 
2009 241 201 40 
2010 245 190 55 
2011 184 199 (192) 8 
2013 173 211 (200) 27 
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2014 143 188 (180) 37 
2015 242 196 46 
2016 260 213 47 
2017 264 202 62 
2018 123 202 79 

The midpoint of vegetation growth in the study area in each year was almost always around the 
200th day of the year (Table 2). The years with the difference of less than 30 days between the image 
acquisition date and the midpoint of the vegetation growth are the years 2001, 2003, 2006, 2008, 2011, 
and 2013. The years with more than 50 days are 2000, 2002, 2010, 2017, and 2018. 

3.2. The Characteristics of Reflectance Prior to and after Eliminating Phenological Influence 

The average values of all bands in the study area prior to (original image) and after (fusion 
image) the elimination of the phenological influence in each year are given in Table 3 and are shown 
in Figure 2. In the blue and the red bands (Figure 2a,c), the average reflectance value of the study area 
after eliminating phenological influence is lower than that of the area with phenological influence in 
each year, indicating the greater absorption effect of vegetation. By comparing the mean reflectance 
values of the blue band in the study area prior to and after eliminating phenological influence, it can 
be found that the values of the two are very close to each other in the years 2006, 2008, and 2011, 
which is in line with the difference between the data dates of the two. The reflectance values in the 
years 2000, 2002, 2017, and 2018 were significantly different, which was consistent with the fact that 
the image acquisition date and image fusion date were far apart. However, in the years 2015 and 
2010, although the image acquisition date was not close to the image fusion date, the average 
reflectance of both in the blue band was very similar. The red band shows similarity with the blue 
band. 
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Figure 2. Long term variations of reflectance in different wavelengths before and after phenological 
influence elimination in each year.(a) Blue band reflectance characteristics (b) Green band reflectance 
characteristics (c) Red band reflectance characteristics (d) NIR band reflectance characteristics (e) 
SWIR 1 band reflectance characteristics (f) SWIR 2 band reflectance characteristics 

Table 3. Mean values of all bands prior to and after phenological influence elimination in each year. 

Year 
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Original 
Image 
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Reflectance 
Difference 

Original 
Image 

Fused 
Image 

Reflectance 
Difference 

Original 
Image 

Fused 
Image 

Reflectance 
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2009 0.03 0.02 0.00 0.05 0.05 0.00 0.03 0.03 0.01 
2010 0.03 0.02 0.00 0.05 0.05 0.00 0.04 0.03 0.01 
2011 0.02 0.02 0.00 0.05 0.05 0.00 0.03 0.03 0.00 
2013 0.02 0.02 0.00 0.05 0.05 0.00 0.03 0.02 0.00 
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2017 0.03 0.01 0.02 0.05 0.04 0.01 0.06 0.02 0.04 
2018 0.04 0.02 0.02 0.05 0.04 0.01 0.06 0.02 0.04 
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2003 0.25 0.28 0.03 0.18 0.18 0.00 0.10 0.08 0.02 
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2015 0.27 0.33 0.06 0.14 0.16 0.02 0.06 0.06 0.00 
2016 0.19 0.30 0.11 0.16 0.16 0.01 0.09 0.06 0.03 
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2017 0.18 0.31 0.13 0.17 0.17 0.01 0.10 0.07 0.03 
2018 0.16 0.29 0.13 0.22 0.16 0.06 0.14 0.06 0.08 

Figure 2d shows that the average reflectance value of the study area after eliminating 
phenological influence in the study area was greater than that without eliminating phenological 
influence in the near-infrared band for almost every year except the years 2006 and 2011, indicating 
that the vegetation has a stronger ability to reflect near-infrared signals during the mid-life phase. At 
the same time, after eliminating the influence of phenology, the inter-annual change curve of 
reflectance in the near-infrared band becomes more gradual. The inter-annual reflectance variance of 
the near-infrared band with phenological influence is 0.0026, while reduced to 0.0002 when the 
phenological influence is eliminated. 

Figure 2e,f show that the interannual change of the reflectance in the two short wave infrared 
bands is more gradual after eliminating the influence of phenology. There is a water absorption band 
near both short-wave infrared bands, and the one near the second short-wave infrared band (1.9 μm) 
has stronger water absorption than the one near the first short-wave infrared band (1.4 μm). Figure 
2f shows that in the second short-wave infrared band, the average reflectance of the study area after 
eliminating the phenological influence is almost lower than that prior to eliminating the phenological 
influence in every year. 

3.3. NDVI Characteristics Prior to and after Phenological Influence Elimination 

The mean values of NDVI in the study area prior to and after the phenological influence 
elimination in each year are given in Table 4 and shown in Figure 3. The changing trend of NDVI 
values of each year was more stable after the elimination of phenological influences. The NDVI 
without eliminating phenological effects shows a significant decreasing trend compared with the 
previous year for the years in 2002, 2009, and 2016, while the NDVI curve without phenological effects 
shows a slight increasing trend in these years. At the same time, it can be seen from Table 4 that the 
difference of NDVI prior to and after eliminating phenological influence was up to 0.4 or more, 
indicating that the impact of phenology on vegetation monitoring cannot be ignored. 

 
Figure 3. Trend of NDVI prior to and after phenological influence elimination in each year. 
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Table 4. Mean values of NDVI of the study area prior to and after phenological influence elimination 
in each year. 

Year 
Prior to Phenological 
Influence Elimination 

After Phenological 
Influence Elimination 

NDVI Difference Prior to and after 
Phenological Influence Elimination 

2000 0.60 0.78 0.17 
2001 0.76 0.82 0.06 
2002 0.54 0.85 0.30 
2003 0.63 0.74 0.12 
2005 0.74 0.84 0.10 
2006 0.79 0.80 0.01 
2008 0.81 0.83 0.03 
2009 0.74 0.83 0.09 
2010 0.74 0.84 0.10 
2011 0.82 0.83 0.01 
2013 0.84 0.86 0.02 
2014 0.70 0.84 0.14 
2015 0.80 0.84 0.04 
2016 0.60 0.85 0.25 
2017 0.50 0.87 0.36 
2018 0.43 0.85 0.42 

From the data after eliminating the impact of phenology, it can be seen that the NDVI value in 
this region increased during 2000–2002, and decreased significantly in the year 2003. NDVI shows 
fluctuation in the years 2006, 2011, 2014, and other years; the overall value of NDVI shows a slight 
increasing trend. By comparing the NDVI values of the study area prior to and after eliminating 
phenological effects, it can be found that the values of the two were very close in the year 2001, 2003, 
2006, 2008, 2011, and 2013, which was in line with the fact that the image acquisition date and image 
fusion date were very close. The NDVI values in the years 2002, 2010, 2015, 2017, and 2018 were quite 
different due to the difference in the dates of data acquisition. 

3.4. Characteristics of DI Changes Prior to and after Phenological Influence Elimination 

The mean values of DI in the study area prior to and after the phenological influence elimination 
in each year were calculated and are shown in Table 5 and Figure 4. Combined with Table 5 and 
Figure 4, it can be seen that the changing trend of DI values in each year is more gentle after 
eliminating the influence of phenology. The DI variations (Figure 4) without eliminating phenological 
influence show a significant upward trend in the years 2002, 2016, and 2018 compared with the 
previous year, while the DI variations after eliminating phenological effects are relatively flat in these 
years, with no obvious increase or decrease. Table 5 shows the difference in DI prior to and after 
eliminating phenological influence reached the maximum value of 4.067 in the year 2018, and the 
corresponding image acquisition date is 79 days prior to the midpoint of the vegetation growth 
period. 



Remote Sens. 2020, 12, 156 13 of 19 

 

 
Figure 4. Trend of DI prior to and after phenological influence elimination in each year. 

Table 5. Mean values of DI of the study area prior to and after phenological influence elimination in 
each year. 

Year Prior to Phenological 
Influence Elimination 

After Phenological 
Influence Elimination 

DI Difference Prior to and after 
Phenological Influence Elimination 

2000 4.27 1.24 3.03 
2001 1.83 0.91 0.92 
2002 4.36 0.98 3.39 
2003 2.63 1.13 1.49 
2005 1.64 0.97 0.67 
2006 1.36 0.93 0.42 
2008 1.14 0.71 0.43 
2009 1.13 0.70 0.44 
2010 1.80 0.77 1.04 
2011 1.22 1.14 0.08 
2013 0.90 0.66 0.23 
2014 1.64 0.96 0.67 
2015 1.02 0.70 0.32 
2016 2.29 0.80 1.49 
2017 1.56 0.56 1.01 
2018 4.76 0.69 4.07 

The DI variations after eliminating the impact of phenology in the study areas decreased from 
2000 to 2001 but increased in the year 2003. In the subsequent years, DI values show fluctuation in 
the years 2011, 2014, 2016, and 2018, showing a slight downward trend. By comparing the DI values 
of the study area prior to and after eliminating phenological influence, it can be found that the values 
of 2006, 2011, and 2013 were very close to each other, which is consistent with the close dates of the 
data acquired for analysis in the different years. The DI values in 2000, 2002, 2016, 2017, and 2018 
were different, due to different dates of data acquisition and image fusion date were far apart. 

Comparing Figures 3 and 4, it can be seen that after eliminating the influence of phenology, the 
mean values of NDVI and DI each year reflect more consistent vegetation change. In 2003, 2006, 2011, 
2014, and 2018, NDVI values decreased and DI values increased, reflecting a certain degree of 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

2000 2001 2002 2003 2005 2006 2008 2009 2010 2011 2013 2014 2015 2016 2017 2018

D
I

Year

Prior to phenological influence elimination

After phenological influence elimination

DI difference prior to and after phenological influence elimination



Remote Sens. 2020, 12, 156 14 of 19 

 

disturbance in the region; in the years 2001, 2005, 2013, and 2017, the NDVI values increased and the 
DI value decreased, showing directly that the forest in the region recovered to a certain extent. 

4. Discussion 

The comparison of the band characteristics shows that in the blue band and the red band, the 
average reflectance values of the study area after eliminating phenological influence was lower than 
that without eliminating phenological influence in each year, indicating that the vegetation has a 
stronger absorption ability. In the infrared band, the average reflectance value after eliminating the 
influence of phenology was greater than the value of the unremoved phenological influence in almost 
every year. In the second shortwave infrared band, the average reflectance value after eliminating 
phenological influence was lower than that with phenological influence in almost every year. Since 
this study used the corresponding date of the midpoint of the vegetation growth period of each year 
in the study area as the target date of image fusion, the mid-growth period of vegetation is often the 
period of peak vegetation growth, and most of the acquisition dates of the images cannot be in the 
peak period of vegetation growth. Therefore, vegetation located at the midpoint of the growing 
season tends to have better growth compared to the data acquisition date. 

At the same time, due to the influence of chlorophyll, plant structure, and water absorption, the 
vegetation at the midpoint of the growing season has stronger absorption in the blue, red, and 
shortwave infrared bands and stronger reflection in the near-infrared band compared with the image 
acquisition date. Meanwhile, in the fused image, the reflectance values of several bands (red band, 
near-infrared band, shortwave infrared band) tend to be stable, which show a great relationship with 
the state of vegetation growth, indicating that the method effectively eliminates the disturbance 
caused by phenology influence in the study of interannual growth and change of vegetation. 

When determining the fusion methodology, we considered a number of models. Finally, 
STARFM, developed by Gao et al. [62] combining Landsat and MODIS data to predict the daily 
surface reflectance at Landsat spatial resolution and MODIS temporal frequency, was considered. 
This method was tested in a conifer-dominated region in central British Columbia, Canada, and 
proved to generate daily surface reflectance with the same spatial resolution as Landsat data. The 
generated reflectance data is in good agreement with the actual Landsat reflectance data. Zurita-Milla 
et al. [63] developed another downscaling algorithm based on a linear hybrid model to produce 
images with medium resolution imaging spectrometer (MERIS) spectral characteristics and similar 
Landsat time resolution. However, this reduction algorithm requires high resolution land-use data 
for pixel unmixing and may not be suitable for many applications. The STARFM method does not 
require any auxiliary data compared to the downscaling algorithm. Zhu et al. [64] developed an 
enhanced spatial and temporal adaptive reflection fusion model (ESTARFM) based on the STARFM 
algorithm and tested the simulated and actual satellite data. The results show that ESTARFM 
improves the accuracy of reflectivity prediction, especially for heterogeneous landscapes. Taking the 
NIR band as an example, the ESTARFM prediction for a uniform region is slightly better than 
STARFM (average absolute difference (AAD) 0.0106 vs. 0.0129 reflection units); for complex 
heterogeneous environments, the prediction accuracy of ESTARFM was further improved compared 
with STARFM (AAD 0.0135 vs. 0.0194). Although the prediction accuracy of ESTARFM is slightly 
higher than STARFM, the former requires the input of one image before and after the predicted 
image, respectively, while the latter allows only one image of the time near the predicted image to be 
input. Considering that ESTARFM has high requirements for data, it cannot be fully realized in all 
the years of the study area, and most of the study area is covered by vegetation with a relatively 
homogeneous ground status, hence the STARFM is found to be more applicable to achieve the 
objectives of the study. In the future, the ESTARFM methodology can be tried when there is enough 
data as input. 

Although annual 30 m reflectance data of the study area cannot be obtained in this study to 
verify the accuracy of the fusion image, on the one hand, Gao et al. [62] tested the methodology in 
central British Columbia, Canada, and found that the daily surface reflectance generated by this 
method is in good agreement with the actual Landsat data. On the other hand, the 2011 image 
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acquisition date in this study is very close to the target date of image fusion, with only eight days 
difference. The reflectance value of each band of image acquisition dates is also very close to those of 
the target date in 2011 (mean absolute difference of each band on two dates in 2011 is 0.001, 0.001, 
0.001, 0.004, 0.004, and 0.001, respectively), indicating that the image obtained by the spatio-temporal 
fusion algorithm has certain reliability. 

The analysis results of NDVI and DI values in the study area of each year show that the NDVI 
and DI curves vary considerably without eliminating the phenological influence, and there is no 
obvious change in trend. After eliminating the phenological influence, the changing trend of NDVI 
and DI values in each year is more stable, and on the whole, NDVI shows a slight upward trend, 
while DI shows a slight downward trend. Therefore, the elimination of phenological influence plays 
an important role in monitoring vegetation changes. At the same time, after removing the impact of 
phenology, the NDVI and DI trend curves of the study areas in each year reflect relatively consistent 
vegetation changes, further illustrating the reliability of the phenology elimination method and the 
credibility of vegetation monitoring results. 

In the quantitative analysis of remote sensing, the relationship between surface property 
measurements at different spatial resolutions often causes concern [65]. Since vegetation cover can 
be highly heterogeneous spatially, subpixel variability is likely to introduce uncertainties in the 
vegetation indices at different resolutions [66]. Several studies have investigated the impact of spatial 
resolution on NDVI, but with conflicting results. Aman et al. [67] concluded that NDVI derived from 
the coarse spatial resolution sensor data can be used in lieu of NDVI integrated from fine spatial 
resolution without introducing significant errors. On the other hand, Price [68] noted that for a region 
consisting of a mixture of totally vegetated area and non-vegetated area, prominent discrepancies 
occur between NDVI derived from high-resolution measurements and NDVI derived from low 
resolution measurements, with the relative difference approaching 30%. This study used Landsat 
data with 30 m spatial resolution. In future studies, remote sensing data with different resolutions 
can be used to further explore the impact of eliminating phenological influences on post-fire 
vegetation restoration monitoring. 

5. Conclusions 

Taking the forest restoration in the Greater Hinggan Mountain area after the “5.6 fire” in 1987 
as an example,based on the MODIS and Landsat time-series images acquired from 2000 to 2018, this 
study took the midpoint of the vegetation growth period of each year as the target date and used the 
STARFM fusion algorithm to construct reflectance images of vegetation with relatively consistent 
growth periods. The influence of phenology on vegetation monitoring was analyzed using three 
aspects: band characteristics, NDVI and DI values. 

Based on the detailed analysis using remote sensing data, it can be concluded that eliminating 
phenological influences can more accurately reflect the changes of vegetation within the region, 
which implies that phenological factors in remote sensing images may affect the observation of 
vegetation changes. Observation of vegetation changes using remote sensing images of different 
periods of vegetation growth may cause great errors. The spatio-temporal data fusion method used 
in this study effectively eliminated the influence of phenological factors during the annual 
observation of vegetation by establishing vegetation reflection images with relatively consistent 
growth periods. At the same time, this method is conducive to improving the utilization of remote 
sensing data because researchers do not need to find remote sensing images with consistent 
vegetation growth conditions for monitoring but can use images located in different vegetation 
growth conditions and then transform them to more consistent conditions through the spatio-
temporal fusion method, thereby improving the temporal resolution of vegetation monitoring. After 
eliminating the influence of phenology, the results based on remote sensing indices in the study area 
showed that although the forest in this region was affected by disturbances in some years, its growth 
trend is generally better. The conclusion drawn in the present analysis provides a reference for future 
forest monitoring research and local forest management. 
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