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Abstract: Fires are frequent in boreal forests affecting forest areas. The detection of forest disturbances
and the monitoring of forest restoration are critical for forest management. Vegetation phenology
information in remote sensing images may interfere with the monitoring of vegetation restoration,
but little research has been done on this issue. Remote sensing and the geographic information system
(GIS) have emerged as important tools in providing valuable information about vegetation phenology.
Based on the MODIS and Landsat time-series images acquired from 2000 to 2018, this study uses the
spatio-temporal data fusion method to construct reflectance images of vegetation with a relatively
consistent growth period to study the vegetation restoration after the Greater Hinggan Mountain
forest fire in the year 1987. The influence of phenology on vegetation monitoring was analyzed
through three aspects: band characteristics, normalized difference vegetation index (NDVI) and
disturbance index (DI) values. The comparison of the band characteristics shows that in the blue
band and the red band, the average reflectance values of the study area after eliminating phenological
influence is lower than that without eliminating the phenological influence in each year. In the infrared
band, the average reflectance value after eliminating the influence of phenology is greater than the
value with phenological influence in almost every year. In the second shortwave infrared band,
the average reflectance value without phenological influence is lower than that with phenological
influence in almost every year. The analysis results of NDVI and DI values in the study area of each
year show that the NDVI and DI curves vary considerably without eliminating the phenological
influence, and there is no obvious trend. After eliminating the phenological influence, the changing
trend of the NDVI and DI values in each year is more stable and shows that the forest in the region
was impacted by other factors in some years and also the recovery trend. The results show that
the spatio-temporal data fusion approach used in this study can eliminate vegetation phenology
effectively and the elimination of the phenology impact provides more reliable information about
changes in vegetation regions affected by the forest fires. The results will be useful as a reference for
future monitoring and management of forest resources.
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1. Introduction

Forests play an irreplaceable role in maintaining the ecological balance of the terrestrial biosphere
due to their wide coverage, complex distribution, and species diversity [1,2], multi-function, and
multi-value characteristics [3].

Fires are one of the serious disturbances globally and are particularly prevalent in boreal forests [4].
Forest fires promote dynamic changes in ecosystem structure and function, have positive and negative
impacts on ecosystems, and have a profound impact on human life and regional developments [5–8].
On the one hand, it poses a severe health hazard to people living in the surroundings [9], impacts
forest ecosystems, and burns an average of about 350 million ha of forest land per year, which is one
of the primary causes for the decline in global forest stocks. The burning of forests severely causes
local economic losses. Forest fires also have long term environmental and climate impacts. A certain
frequency and intensity of fire can maintain the balance of forest ecology and play an essential role in
preserving biodiversity. For example, fires can help regulate fuel accumulation, restore vegetation by
removing fungi and microorganisms, control diseases and insects, and gain more energy by exposure
to solar radiation, mineral soil, and nutrient release [10]. With climate change and global warming, the
frequency of forest fires is increasing and receives increasing attention as an integral part of global
environmental change studies [11,12].

Global fires emit about 2.1 PgC (1 PgC = 1015 g of carbon) of carbon flux per year, which is
equivalent to 50%–200% of annual terrestrial carbon sinks. Among them, 35% are related to forests [13].
The post-fire forest regeneration process is extremely important. Carbon is emitted from forest fires
that are injected into the atmosphere, post-fire vegetation regeneration and carbon sequestration of
woody vegetation may help to reduce carbon emission in the atmosphere [14]. Forest disturbance and
restoration can, therefore, affect the energy flow and biogeochemical cycles and thus is considered
as the primary mechanism for the carbon transfer between the surface and the atmosphere, playing
an important role in regional and global carbon cycles [15–17]. The detection of forest disturbances
and the monitoring of post-fire forest restoration are essential for both ecological research and forest
management. Understanding the dynamics of forest regeneration after a fire can help to assess forest
resilience and adequately guide forest management after the disturbance. Therefore, information
about the spatial patterns and temporal trends of the forest helps in restoration after a fire.

Considering the small spatial coverage, limited sample points, low site accessibility, and high
labor costs, site sampling is not suitable for monitoring large-scale vegetation dynamics after a fire,
while satellite remote sensing provides an economical and effective tool for monitoring large-scale
forest changes [18,19]. Fires can cause profound changes in ecosystems, where vegetation is consumed,
leaf chlorophyll is destroyed, the soil is further exposed, and carbonization and moisture changes in
vegetation roots cause a large number of spectral changes, which can be detected through satellite
data [20,21]. Optical remote sensing data, such as the widely used Landsat images, have been proven
to be very suitable for forest interference detection and forest change monitoring because they have the
necessary spatial resolution (the resolution of 30 m, consistent with the scale of most local vegetation
changes [22]) and spectral coverage (visible, near-infrared, short-wave infrared, and thermal infrared
bands) to capture most forest disturbance events caused by natural or artificial management [23]. At the
same time, time-series remote sensing data (40-year observations) (e.g., Landsat) provides excellent
potential for trajectory monitoring of forest dynamics after fire [24,25], as long-term monitoring of
forest recovery after a fire is often required [26,27].

Numerous studies have been carried out on different aspects of post-fire forest
restoration [23,28–31]. Many scholars have also studied the phenology of vegetation. The experimental
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results of Frison et al. [32] show that radar data is more accurate for phenological estimation than
optical data. Flavio et al. [33] have tested the phenology-based vegetation mapping method and
proved it effective. Some studies have calculated the phenological characteristics of mangroves to
derive environmental driving factors that affect their growth [34,35]. Vegetation phenology can provide
information about the vegetation dynamics and response after forest fires [36]. However, there is less
research on analyzing the influence of phenological factors caused by remote sensing data on the
monitoring of dynamic vegetation changes. Due to the significant differences in vegetation phenology
between different growth stages, in order to avoid the “pseudo-variation” of the time-series vegetation
index caused by the interannual vegetation phenological changes, some studies have chosen to use the
images acquired at the time near the vegetation growth peak to monitor the post-fire forest recovery [37].
Remote sensing and geographic information tools have emerged as important tools to study vegetation
phenology using long time-series of vegetation indexes to monitor the post-fire forest recovery [37].
However, due to current technical limitations, it is challenging to obtain remote sensing data with high
spatial resolution and high temporal resolution simultaneously. The coarse resolution (e.g., MODIS,
250 m/500 m/1000 m) will obscure the details of the features and affect the observation results. The long
revisit period (16 days) of satellites (e.g., Landsat), frequent cloud pollution, and other atmospheric
conditions limit their application in long time-series detection of surface objects without phenological
interference. Therefore, long-term observations by only using images located near the vegetation
growth peak in cloudy areas may result in a gap in the study years.

Taking the forest restoration in the Greater Hinggan Mountain area after the “5.6 fire” in 1987
as an example, this study aims at demonstrating the effect of the spatiotemporal fusion algorithm in
eliminating the phenological impact when monitoring vegetation restoration using remote sensing
images. Here, we used the Landsat and MODIS time-series images to study the vegetation during
2000–2018 based on the spatiotemporal fusion algorithm to eliminate the influence of phenological
factors in Landsat images. We compared the band characteristics, NDVI and DI indices prior to and after
the elimination of the phenology effect, and further explore the impact of phenology on forest dynamic
monitoring. The results of this study prove that the spatiotemporal fusion algorithm can effectively
eliminate phenological factors in remote sensing images. The elimination of the phenological effects
can provide more reliable information on vegetation restoration. Thus, the present study provides a
scientific reference for post-fire forest reconstruction and ecological restoration.

2. Materials and Methods

2.1. Study Area

The Greater Hinggan Mountain area is located in Heilongjiang Province, in the northern part
of Inner Mongolia Autonomous Region which is the watershed of the Mongolian Plateau and the
Songliao Plain bounded by latitude 50◦10′ N to 53◦33′ N, longitude 121◦12′ E to 127◦00′ E (Figure 1).
The area is more than 1200 km long and 200–300 km wide with an average altitude of 1200–1300 m
above mean sea level. The Greater Hinggan Mountain area is a typical cold temperate continental
monsoon climate with warm summers and cold winters. The annual average temperature of the area
is −2.8 ◦C; the lowest temperature is −52.3 ◦C. The precipitation, which peaks in summer, is 420 mm
annually and is unevenly distributed throughout the year, i.e., more than 60% occurs between June and
August [38]. The Greater Hinggan Mountain is the largest modern state-owned forest area with a total
area of 8.46 × 104 square kilometers and forest coverage of 6.46 × 104 square kilometers. Therefore, the
forest coverage rate is about 76.4%, and the total storage capacity is about 5.01 × 108 m3, accounting for
7.8% of the national total [39].
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Figure 1. Location of the Greater Hinggan Mountain area and sample study area.

The Greater Hinggan Mountain covers large forest resources, serving as an important state-owned
forest area with a vital timber production area in China. At the same time, this forest area has
experienced one of the most severe forest fires in China. On 6 May 1987, a severe forest fire occurred
in the northern part of the Greater Hinggan Mountain. The burned area was 1.133 × 107 km2 and
the area of over-fired forest land was 1.114 × 107 km2, of which the affected area was 8.17 × 105 km2.
The fire seriously affected the social, economic, and ecological benefits of the forest area, causing
unprecedented heavy losses to the country. Since the catastrophic forest fires in the Greater Hinggan
Mountains happened in 1987, this place has been one of the areas for research on fire prevention and
post-fire forest management [38,40,41].

The burned area of the “5.6 Fire” was extracted in a previous study [42]. The entire burned forest
area spanned two Landsat scenes (Path 121/122, Row 23), but it is difficult to acquire the two scenes
simultaneously in each year. Considering that around 90% of the burned forest area is within the scene
of path 122 row 23, we extracted a sample area (Figure 1) from Landsat path 122 row 23 as the study
area for the recovery monitoring [39].

2.2. Data Used and Preprocessing

A total of 16 Landsat surface reflectance data from Path 122, Row 23 with and below 10%
cloud cover during the vegetation growth period from 2000 to 2018 was considered. The data was
downloaded from the United States Geological Survey (USGS, https://earthexplorer.usgs.gov/); details
of the data are given in Table 1. We have tried our best to find the images with the least cloud volume
during the vegetation growth period each year. Although the cloud volume of the image in 2001 is
10%, the study area is only part of an image, and most of the clouds are located outside the study
area. Therefore, the image from 2001 was still used in the study. The Landsat surface reflectance data
was corrected at the sub-pixel-level by topographic and atmospheric correction [43,44]. The FMASK
algorithm was used to detect cloud cover and cloud shadow and to generate a mask [45,46].

https://earthexplorer.usgs.gov/
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Table 1. Landsat data acquisition date, sensor type, and cloud volume.

Data Acquisition Date Sensor Type Cloud Volume (%)

2 June 2000 TM 0.00
21 June 2001 TM 10.00
15 May 2002 TM 0.00
11 June 2003 TM 2.00

4 September 2005 TM 2.00
5 July 2006 TM 0.00

11 August 2008 TM 4.00
30 August 2009 TM 0.00

2 September 2010 TM 0.00
3 July 2011 TM 0.00

22 June 2013 OLI 2.23
24 May 2014 OLI 1.49

31 August 2015 OLI 1.89
18 September 2016 OLI 0.61
21 September 2017 OLI 0.47

3 May 2018 OLI 0.11

The MODIS 16d synthetic vegetation index product MOD13Q1 for the periods 2000–2018 was
downloaded from the National Aeronautics and Space Administration (NASA) and pre-processed.
The zenith BRDF-adjusted reflectance product MCD43A4V006 with a spatial resolution of 500 m was
obtained from NASA, which is daily reflectance data for spatial and temporal fusion with Landsat
data to generate the surface reflectance on the target date. The above MODIS data was converted
from Sinusoidal projection to UTM projection with WGS84-51N coordinates. After all the detailed
processing, the river, road and building areas in each image were masked based on the 10 m global
resolution land cover data [47], supplemented by visual interpretation, and the boundary of the study
area was extracted.

2.3. Vegetation Phenological Information

Two processes were used to extract phenological information: the smooth reconstruction of the
temporal vegetation index and the extraction of phenological parameters. Previous scholars have done
a lot of research on the smooth reconstruction of NDVI time-series data. Methods including least
squares (i.e., Savitsky–Golay filtering, asymmetric Gaussian function fitting, logistic blending function
fitting), and Fourier fitting, Fourier correction algorithms, harmonic analysis method and wavelet
analysis based on spectrum analysis technology have been considered. There has also been a large
number of studies on the extraction of phenological parameters [48–50]. Based on the comparison of
all earlier methods, we used an adaptive Savitzky–Golay filter to reconstruct the MOD13Q1 NDVI
time-series and used a dynamic threshold method to extract the vegetation phenological index of each
year. For the processing of data, we used TIMESAT software [51].

The vegetation index has a large degree of uncertainty showing the highest value of the NDVI
peak, and the determination of the beginning and end dates of the growth period is relatively easy; the
determination of the mid-point of the growth period is more reliable, which is often located in the peak
season of vegetation growth. Vegetation at the midpoint of the growth period in the study area in
each year has a relatively consistent growth situation [52]. Comparing the remote sensing indices at
this time of each year can effectively eliminate the phenological influence. Therefore, the midpoint of
the vegetation growth period in the study area in each year was selected as the date of the image to
be synthesized.

2.4. Synthesis of Target Image Based on STARFM Fusion Algorithm

Traditional image fusion methods, such as intensity-hue-saturation (IHS) transformation [53],
principal component substitution (PCS) [54], and wavelet decomposition [55], focus on combining the
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spectral properties of low-resolution data with the high spatial resolution of panchromatic images to
generate high-resolution multispectral images. These methods are useful for exploiting the different
spectral and spatial characteristics of multi-sensor data, but they cannot enhance both the spatial
resolution and temporal coverage. In the present study, we have quantitatively captured the changes
in radiation measurements (surface reflections) associated with the phenology and study their effects
on the monitoring of vegetation restoration associated with fire. The STARFM (spatial and temporal
adaptive reflection fusion model) algorithm is used to predict the reflectance of the target date. The
algorithm considers the influence of spatial distance on predicted pixels and also considers the spectral
difference and temporal difference between pixels. The homogeneous pixels in MODIS data show the
relationship with the corresponding Landsat pixels as

L(xi, yi, tk) = M(xi, yi, tk) + εk (1)

where (xi, yi) represents the spatial position of the homogeneous pixel; tk represents the image
acquisition time; L(xi, yi, tk) represents the reflectivity of Landsat pixels; M(xi, yi, tk) represents the
reflectivity of MODIS pixel; εk indicates the difference in reflectance between different data. At t0,
the following is the relationship between the MODIS reflectance and the Landsat reflectance of the
same pixel:

L(xi, yi, t0) = M(xi, yi, t0) + ε0 (2)

When the ground cover type and the system error between the two types of data remain unchanged,
εk = ε0, the above equation can be expressed as

L(xi, yi, t0) = M(xi, yi, t0) + L(xi, yi, tk) −M(xi, yi, tk) (3)

The MODIS pixels are mostly non-homogeneous pixels, and the solar bidirectional reflection
changes, and the surface coverage type changes with time, which makes the above ideal conditions
challenging to meet. Therefore, the key point of the method is to find similar pixels from neighboring
pixels of the target pixel and replace the homogeneous pixels with similar pixels. We used a
window-based threshold method to search for similar pixels from the window. If the pixel in the
moving window satisfies the following relationship, the pixel is considered to be a similar pixel of the
target pixel. ∣∣∣L(xi, yi, tk) − L(xw/2, yw/2, tk)

∣∣∣ < 2× Lstd(tk)/C (4)

where w represents the size of the moving window; (xw/2, yw/2) represents the position of the predicted
pixel; Lstd represents the standard deviation of Landsat surface reflectance; C represents the classification
number of ground objects in the moving window. Thus, the reflectance value of the predicted pixel
can be expressed by the following equation:

L (xw/2, yw/2, t0) =
∑w

i=1
∑w

j=1
∑n

k=1 Wi jk × (M(xi, yi, t0) + L(xi, yi, tk)

−M(xi, yi, tk))
(5)

where n represents the number of similar pixels in the window; W represents the contribution weighting
coefficient of the neighboring pixels to the target pixel. The weighting coefficient can be calculated
using three factors: spectral distance, temporal distance, and spatial distance between adjacent pixels
and central pixels. Spectral distance is the spectral difference of pixels between simultaneous MODIS
and Landsat data in the same location. The MODIS pixel reflectance can be considered as a mixture
of multiple Landsat pixel reflectance in the same region. The smaller the spectral distance, the more
similar the Landsat pixel and target pixel, and the larger the weight coefficient assigned. Time distance
is the difference between MODIS pixel values at different times, which represents the change of the
surface coverage status in this period. The smaller the time distance value, the smaller the change of
land cover, the larger the contribution of the pixel to the central pixel value, and the larger the weight
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coefficient assigned. Spatial distance is the distance between the neighboring pixels and the target pixel.
The smaller the spatial distance, the larger the weighting coefficient, which is calculated as follows:

Si jk =
∣∣∣L(xi, yi, tk) −M(xi, yi, tk)

∣∣∣ (6)

Ti jk =
∣∣∣M(xi, yi, tk) −M(xi, yi, t0)

∣∣∣ (7)

Di jk = 1.0 +

√(
x w

2
− xi

)2
+

(
y w

2
− y j

)2
/A (8)

where Si jk is the spectral distance; Ti jk is the temporal distance; Di jk is the spatial distance; (xi, yi) is the
spatial position of similar pixels; A is the weight adjustment coefficient, which is a constant.

Normalized weight coefficients (Ci jk), and the total weight coefficient (Wi jk) are given as

Ci jk = Si jk × Ti jk ×Di jk (9)

Wi jk = (1/Ci jk)/
w∑

i=1

w∑
j=1

n∑
k=1

(
1

Ci jk
) (10)

After selection of similar pixels, we filtered to remove the poor-quality pixels. If the spectral and
time distance of similar pixels are smaller compared to the target pixel in the center of the moving
window, the pixel provides better spectral information and time information compared to the target
pixel. Otherwise, the pixel is an unqualified similar pixel. When the uncertainty factors σl and σm of
Landsat and MODIS surface reflectivity are introduced in the similar pixel screening, the qualified
similar pixels must satisfy the following inequality relations:

Si jk < max(
∣∣∣L(xw/2, yw/2, tk) −M(xw/2, yw/2, tk)

∣∣∣) + σlm (11)

Ti jk < max(
∣∣∣M(xw/2, yw/2, tk) −M(xw/2, yw/2, t0)

∣∣∣) + σmm (12)

where σlm represents the uncertainty factor between the MODIS and the Landsat reflectance value, and
σmm represents the uncertainty factor of the MODIS reflectance at different phases. When all observed
pixel reflectance values are independent of each other, σlm and σmm are expressed as

σlm =

√
σl

2 + σm2 (13)

σmm =
√
σm2 + σm2 =

√

2σm (14)

After extracting the phenological index of the vegetation, the corresponding date of the mid-growth
period of each year can be calculated as the date of the image to be synthesized, and the Landsat and
MCD43A4V006 data are fused to construct reflectance data of vegetation with a relatively consistent
growth period in different years.

2.5. Vegetation Indices

We used NDVI and DI to characterize post-fire vegetation restoration status.

2.5.1. NDVI

As one of the most famous vegetation indices, NDVI shows a good correlation with vegetation
regeneration and the photosynthetic effective radiation ratio absorbed by plant canopy, leaf area, and
biomass, so it is widely used to study vegetation response to wildfire disturbance [23,26,56–59]. NDVI
is calculated using Equation (15):

NDVI =
(ρNIR − ρRed)

(ρNIR + ρRed)
(15)
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where ρNIR and ρRed are the reflectance of the near-infrared band and red wavelengths, respectively.

2.5.2. DI

The calculation of DI is based on the Tasseled Cap transformation [60,61], which is a spectral
transformation that converts the original high covariant data into three uncorrelated indices known
as brightness (B), greenness (G), and wetness (W). The calculation of DI is based on the observation
that disturbed forests usually have higher brightness values and lower green and humidity values
compared to undisturbed forest areas [61]. The linear combination of three Tasseled Cap transformation
indices include brightness, greenness, and wetness. At the same time, the spectral normalization step
is conducted, and the intra-image statistics are used to normalize the radiation variations as

Bn = (B− Bµ)/Bσ (16)

Gn = (G−Gµ)/Gσ (17)

Wn = (W −Wµ)/Wσ (18)

where Bµ, Gµ, and Wµ represent the average Tasseled Cap transformation brightness, greenness,
and wetness of the “forest in a particular scene”; Bσ, Gσ, and Wσ are the corresponding standard
deviations, so Bn, Gn, and Wn represent normalized brightness, greenness, and wetness, respectively.
After normalization, the three components are linearly combined to obtain DI as follows:

DI = Bn − (Gn + Wn) (19)

The disturbed forest area usually has a high positive value Bn and low negative values of Gn and
Wn, thus showing a high DI value; in contrast, the undisturbed forest area shows a low DI value.

3. Results

3.1. Yearly Composite Image

The date corresponding to the midpoint of the vegetation growth period in each year was obtained
from the vegetation index. The reflectance data of vegetation with relatively consistent growth periods
in different years were constructed by integrating Landsat and MODIS data. The image acquisition
date of each year, the mid-point of the vegetation growth period, and the number of days between them
are given in Table 2 (represented by the number of days in a year corresponding to the date). Since the
MCD43A4V006 data has data gaps on some dates, in order to have the fusion image as complete as
possible, the MCD43A4V006 image nearest to the original date and with the least data gaps was found
close to the original date. The adjusted data date was marked in brackets of the original date.

The midpoint of vegetation growth in the study area in each year was almost always around the
200th day of the year (Table 2). The years with the difference of less than 30 days between the image
acquisition date and the midpoint of the vegetation growth are the years 2001, 2003, 2006, 2008, 2011,
and 2013. The years with more than 50 days are 2000, 2002, 2010, 2017, and 2018.
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Table 2. Dates of image acquisition in each year, midpoint of vegetation growth period, and the number
of days between the two.

Year Date of Image
Acquisition

Midpoint of Vegetation
Growth Period

Number of Days
Difference

2000 154 200 (209) 55
2001 172 (169) 202 (193) 24
2002 134 205 71
2003 162 200 (189) 27
2005 247 204 43
2006 185 201 16
2008 224 194 30
2009 241 201 40
2010 245 190 55
2011 184 199 (192) 8
2013 173 211 (200) 27
2014 143 188 (180) 37
2015 242 196 46
2016 260 213 47
2017 264 202 62
2018 123 202 79

3.2. The Characteristics of Reflectance Prior to and after Eliminating Phenological Influence

The average values of all bands in the study area prior to (original image) and after (fusion
image) the elimination of the phenological influence in each year are given in Table 3 and are shown in
Figure 2. In the blue and the red bands (Figure 2a,c), the average reflectance value of the study area
after eliminating phenological influence is lower than that of the area with phenological influence in
each year, indicating the greater absorption effect of vegetation. By comparing the mean reflectance
values of the blue band in the study area prior to and after eliminating phenological influence, it can be
found that the values of the two are very close to each other in the years 2006, 2008, and 2011, which is
in line with the difference between the data dates of the two. The reflectance values in the years 2000,
2002, 2017, and 2018 were significantly different, which was consistent with the fact that the image
acquisition date and image fusion date were far apart. However, in the years 2015 and 2010, although
the image acquisition date was not close to the image fusion date, the average reflectance of both in the
blue band was very similar. The red band shows similarity with the blue band.

Figure 2d shows that the average reflectance value of the study area after eliminating phenological
influence in the study area was greater than that without eliminating phenological influence in the
near-infrared band for almost every year except the years 2006 and 2011, indicating that the vegetation
has a stronger ability to reflect near-infrared signals during the mid-life phase. At the same time, after
eliminating the influence of phenology, the inter-annual change curve of reflectance in the near-infrared
band becomes more gradual. The inter-annual reflectance variance of the near-infrared band with
phenological influence is 0.0026, while reduced to 0.0002 when the phenological influence is eliminated.

Figure 2e,f show that the interannual change of the reflectance in the two short wave infrared
bands is more gradual after eliminating the influence of phenology. There is a water absorption band
near both short-wave infrared bands, and the one near the second short-wave infrared band (1.9 µm)
has stronger water absorption than the one near the first short-wave infrared band (1.4 µm). Figure 2f
shows that in the second short-wave infrared band, the average reflectance of the study area after
eliminating the phenological influence is almost lower than that prior to eliminating the phenological
influence in every year.



Remote Sens. 2020, 12, 156 10 of 19Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 20 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2. Long term variations of reflectance in different wavelengths before and after phenological 

influence elimination in each year.(a) Blue band reflectance characteristics (b) Green band 

reflectance characteristics (c) Red band reflectance characteristics (d) NIR band reflectance 

characteristics (e) SWIR 1 band reflectance characteristics (f) SWIR 2 band reflectance 

characteristics 

  

0.00

0.01

0.02

0.03

0.04

0.05

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
5

2
0
0
6

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

R
e
fl
e
ct
a
n
ce

Year

Blue

Original image

Fused image

Reflectance difference

0.00

0.02

0.04

0.06

0.08

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
5

2
0
0
6

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

R
e
fl
e
ct
a
n
ce

Year

Green

Original image

Fused image

Reflectance difference

0.00

0.02

0.04

0.06

0.08

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
5

2
0
0
6

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

R
e
fl
e
ct
a
n
ce

Year

Red

Original image

Fused image

Reflectance difference

0.00

0.10

0.20

0.30

0.40

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
5

2
0
0
6

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

R
e
fl
e
ct
a
n
ce

Year

NIR

Original image

Fused image

Reflectance difference

0.00

0.10

0.20

0.30

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
5

2
0
0
6

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

R
e
fl
e
ct
a
n
ce

Year

SWIR 1

Original image

Fused image

Reflectance difference

0.00

0.05

0.10

0.15

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
5

2
0
0
6

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

R
e
fl
e
ct
a
n
ce

Year

SWIR 2

Original image

Fused image

Reflectance difference

Figure 2. Long term variations of reflectance in different wavelengths before and after phenological
influence elimination in each year.(a) Blue band reflectance characteristics (b) Green band reflectance
characteristics (c) Red band reflectance characteristics (d) NIR band reflectance characteristics (e) SWIR
1 band reflectance characteristics (f) SWIR 2 band reflectance characteristics
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Table 3. Mean values of all bands prior to and after phenological influence elimination in each year.

Year
Blue Green Red

Original
Image

Fused
Image

Reflectance
Difference

Original
Image

Fused
Image

Reflectance
Difference

Original
Image

Fused
Image

Reflectance
Difference

2000 0.04 0.03 0.01 0.07 0.06 0.01 0.06 0.04 0.02
2001 0.03 0.03 0.00 0.06 0.05 0.00 0.04 0.03 0.01
2002 0.04 0.02 0.02 0.06 0.05 0.01 0.06 0.03 0.03
2003 0.04 0.03 0.01 0.06 0.06 0.00 0.05 0.04 0.01
2005 0.03 0.02 0.01 0.05 0.05 0.00 0.04 0.03 0.01
2006 0.03 0.03 0.00 0.05 0.05 0.00 0.04 0.03 0.00
2008 0.02 0.02 0.00 0.04 0.05 0.00 0.03 0.03 0.00
2009 0.03 0.02 0.00 0.05 0.05 0.00 0.03 0.03 0.01
2010 0.03 0.02 0.00 0.05 0.05 0.00 0.04 0.03 0.01
2011 0.02 0.02 0.00 0.05 0.05 0.00 0.03 0.03 0.00
2013 0.02 0.02 0.00 0.05 0.05 0.00 0.03 0.02 0.00
2014 0.03 0.02 0.01 0.06 0.05 0.01 0.04 0.03 0.02
2015 0.02 0.02 0.00 0.05 0.05 0.00 0.03 0.03 0.00
2016 0.02 0.01 0.01 0.05 0.04 0.01 0.05 0.02 0.02
2017 0.03 0.01 0.02 0.05 0.04 0.01 0.06 0.02 0.04
2018 0.04 0.02 0.02 0.05 0.04 0.01 0.06 0.02 0.04

Year
NIR SWIR 1 SWIR 2

Original
Image

Fused
Image

Reflectance
Difference

Original
Image

Fused
Image

Reflectance
Difference

Original
Image

Fused
Image

Reflectance
Difference

2000 0.24 0.29 0.05 0.19 0.18 0.01 0.10 0.10 0.00
2001 0.31 0.33 0.02 0.17 0.17 0.00 0.08 0.07 0.01
2002 0.20 0.32 0.12 0.20 0.17 0.03 0.12 0.07 0.05
2003 0.25 0.28 0.03 0.18 0.18 0.00 0.10 0.08 0.02
2005 0.27 0.31 0.04 0.15 0.17 0.02 0.07 0.07 0.00
2006 0.32 0.31 0.00 0.17 0.17 0.00 0.07 0.07 0.00
2008 0.29 0.31 0.03 0.15 0.16 0.01 0.06 0.06 0.00
2009 0.24 0.30 0.06 0.15 0.16 0.01 0.06 0.06 0.00
2010 0.24 0.32 0.08 0.15 0.16 0.01 0.06 0.06 0.00
2011 0.31 0.32 0.00 0.16 0.16 0.00 0.06 0.06 0.00
2013 0.33 0.33 0.00 0.16 0.16 0.00 0.07 0.06 0.01
2014 0.25 0.32 0.07 0.17 0.16 0.00 0.09 0.07 0.02
2015 0.27 0.33 0.06 0.14 0.16 0.02 0.06 0.06 0.00
2016 0.19 0.30 0.11 0.16 0.16 0.01 0.09 0.06 0.03
2017 0.18 0.31 0.13 0.17 0.17 0.01 0.10 0.07 0.03
2018 0.16 0.29 0.13 0.22 0.16 0.06 0.14 0.06 0.08

3.3. NDVI Characteristics Prior to and after Phenological Influence Elimination

The mean values of NDVI in the study area prior to and after the phenological influence elimination
in each year are given in Table 4 and shown in Figure 3. The changing trend of NDVI values of each
year was more stable after the elimination of phenological influences. The NDVI without eliminating
phenological effects shows a significant decreasing trend compared with the previous year for the years
in 2002, 2009, and 2016, while the NDVI curve without phenological effects shows a slight increasing
trend in these years. At the same time, it can be seen from Table 4 that the difference of NDVI prior
to and after eliminating phenological influence was up to 0.4 or more, indicating that the impact of
phenology on vegetation monitoring cannot be ignored.
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Table 4. Mean values of NDVI of the study area prior to and after phenological influence elimination
in each year.

Year Prior to Phenological
Influence Elimination

After Phenological
Influence Elimination

NDVI Difference Prior to
and after Phenological
Influence Elimination

2000 0.60 0.78 0.17
2001 0.76 0.82 0.06
2002 0.54 0.85 0.30
2003 0.63 0.74 0.12
2005 0.74 0.84 0.10
2006 0.79 0.80 0.01
2008 0.81 0.83 0.03
2009 0.74 0.83 0.09
2010 0.74 0.84 0.10
2011 0.82 0.83 0.01
2013 0.84 0.86 0.02
2014 0.70 0.84 0.14
2015 0.80 0.84 0.04
2016 0.60 0.85 0.25
2017 0.50 0.87 0.36
2018 0.43 0.85 0.42
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Figure 3. Trend of NDVI prior to and after phenological influence elimination in each year.

From the data after eliminating the impact of phenology, it can be seen that the NDVI value in
this region increased during 2000–2002, and decreased significantly in the year 2003. NDVI shows
fluctuation in the years 2006, 2011, 2014, and other years; the overall value of NDVI shows a slight
increasing trend. By comparing the NDVI values of the study area prior to and after eliminating
phenological effects, it can be found that the values of the two were very close in the year 2001, 2003,
2006, 2008, 2011, and 2013, which was in line with the fact that the image acquisition date and image
fusion date were very close. The NDVI values in the years 2002, 2010, 2015, 2017, and 2018 were quite
different due to the difference in the dates of data acquisition.

3.4. Characteristics of DI Changes Prior to and after Phenological Influence Elimination

The mean values of DI in the study area prior to and after the phenological influence elimination
in each year were calculated and are shown in Table 5 and Figure 4. Combined with Table 5 and
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Figure 4, it can be seen that the changing trend of DI values in each year is more gentle after eliminating
the influence of phenology. The DI variations (Figure 4) without eliminating phenological influence
show a significant upward trend in the years 2002, 2016, and 2018 compared with the previous year,
while the DI variations after eliminating phenological effects are relatively flat in these years, with
no obvious increase or decrease. Table 5 shows the difference in DI prior to and after eliminating
phenological influence reached the maximum value of 4.067 in the year 2018, and the corresponding
image acquisition date is 79 days prior to the midpoint of the vegetation growth period.

Table 5. Mean values of DI of the study area prior to and after phenological influence elimination in
each year.

Year Prior to Phenological
Influence Elimination

After Phenological
Influence Elimination

DI Difference Prior to
and after Phenological
Influence Elimination

2000 4.27 1.24 3.03
2001 1.83 0.91 0.92
2002 4.36 0.98 3.39
2003 2.63 1.13 1.49
2005 1.64 0.97 0.67
2006 1.36 0.93 0.42
2008 1.14 0.71 0.43
2009 1.13 0.70 0.44
2010 1.80 0.77 1.04
2011 1.22 1.14 0.08
2013 0.90 0.66 0.23
2014 1.64 0.96 0.67
2015 1.02 0.70 0.32
2016 2.29 0.80 1.49
2017 1.56 0.56 1.01
2018 4.76 0.69 4.07Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 20 
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Figure 4. Trend of DI prior to and after phenological influence elimination in each year.

The DI variations after eliminating the impact of phenology in the study areas decreased from
2000 to 2001 but increased in the year 2003. In the subsequent years, DI values show fluctuation in the
years 2011, 2014, 2016, and 2018, showing a slight downward trend. By comparing the DI values of
the study area prior to and after eliminating phenological influence, it can be found that the values of



Remote Sens. 2020, 12, 156 14 of 19

2006, 2011, and 2013 were very close to each other, which is consistent with the close dates of the data
acquired for analysis in the different years. The DI values in 2000, 2002, 2016, 2017, and 2018 were
different, due to different dates of data acquisition and image fusion date were far apart.

Comparing Figures 3 and 4, it can be seen that after eliminating the influence of phenology, the
mean values of NDVI and DI each year reflect more consistent vegetation change. In 2003, 2006,
2011, 2014, and 2018, NDVI values decreased and DI values increased, reflecting a certain degree of
disturbance in the region; in the years 2001, 2005, 2013, and 2017, the NDVI values increased and the
DI value decreased, showing directly that the forest in the region recovered to a certain extent.

4. Discussion

The comparison of the band characteristics shows that in the blue band and the red band, the
average reflectance values of the study area after eliminating phenological influence was lower than
that without eliminating phenological influence in each year, indicating that the vegetation has a
stronger absorption ability. In the infrared band, the average reflectance value after eliminating the
influence of phenology was greater than the value of the unremoved phenological influence in almost
every year. In the second shortwave infrared band, the average reflectance value after eliminating
phenological influence was lower than that with phenological influence in almost every year. Since
this study used the corresponding date of the midpoint of the vegetation growth period of each year
in the study area as the target date of image fusion, the mid-growth period of vegetation is often the
period of peak vegetation growth, and most of the acquisition dates of the images cannot be in the
peak period of vegetation growth. Therefore, vegetation located at the midpoint of the growing season
tends to have better growth compared to the data acquisition date.

At the same time, due to the influence of chlorophyll, plant structure, and water absorption,
the vegetation at the midpoint of the growing season has stronger absorption in the blue, red, and
shortwave infrared bands and stronger reflection in the near-infrared band compared with the image
acquisition date. Meanwhile, in the fused image, the reflectance values of several bands (red band,
near-infrared band, shortwave infrared band) tend to be stable, which show a great relationship with
the state of vegetation growth, indicating that the method effectively eliminates the disturbance caused
by phenology influence in the study of interannual growth and change of vegetation.

When determining the fusion methodology, we considered a number of models. Finally, STARFM,
developed by Gao et al. [62] combining Landsat and MODIS data to predict the daily surface reflectance
at Landsat spatial resolution and MODIS temporal frequency, was considered. This method was
tested in a conifer-dominated region in central British Columbia, Canada, and proved to generate daily
surface reflectance with the same spatial resolution as Landsat data. The generated reflectance data is
in good agreement with the actual Landsat reflectance data. Zurita-Milla et al. [63] developed another
downscaling algorithm based on a linear hybrid model to produce images with medium resolution
imaging spectrometer (MERIS) spectral characteristics and similar Landsat time resolution. However,
this reduction algorithm requires high resolution land-use data for pixel unmixing and may not be
suitable for many applications. The STARFM method does not require any auxiliary data compared
to the downscaling algorithm. Zhu et al. [64] developed an enhanced spatial and temporal adaptive
reflection fusion model (ESTARFM) based on the STARFM algorithm and tested the simulated and
actual satellite data. The results show that ESTARFM improves the accuracy of reflectivity prediction,
especially for heterogeneous landscapes. Taking the NIR band as an example, the ESTARFM prediction
for a uniform region is slightly better than STARFM (average absolute difference (AAD) 0.0106 vs.
0.0129 reflection units); for complex heterogeneous environments, the prediction accuracy of ESTARFM
was further improved compared with STARFM (AAD 0.0135 vs. 0.0194). Although the prediction
accuracy of ESTARFM is slightly higher than STARFM, the former requires the input of one image
before and after the predicted image, respectively, while the latter allows only one image of the time
near the predicted image to be input. Considering that ESTARFM has high requirements for data,
it cannot be fully realized in all the years of the study area, and most of the study area is covered
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by vegetation with a relatively homogeneous ground status, hence the STARFM is found to be more
applicable to achieve the objectives of the study. In the future, the ESTARFM methodology can be tried
when there is enough data as input.

Although annual 30 m reflectance data of the study area cannot be obtained in this study to verify
the accuracy of the fusion image, on the one hand, Gao et al. [62] tested the methodology in central
British Columbia, Canada, and found that the daily surface reflectance generated by this method is in
good agreement with the actual Landsat data. On the other hand, the 2011 image acquisition date
in this study is very close to the target date of image fusion, with only eight days difference. The
reflectance value of each band of image acquisition dates is also very close to those of the target date in
2011 (mean absolute difference of each band on two dates in 2011 is 0.001, 0.001, 0.001, 0.004, 0.004, and
0.001, respectively), indicating that the image obtained by the spatio-temporal fusion algorithm has
certain reliability.

The analysis results of NDVI and DI values in the study area of each year show that the NDVI
and DI curves vary considerably without eliminating the phenological influence, and there is no
obvious change in trend. After eliminating the phenological influence, the changing trend of NDVI
and DI values in each year is more stable, and on the whole, NDVI shows a slight upward trend,
while DI shows a slight downward trend. Therefore, the elimination of phenological influence plays
an important role in monitoring vegetation changes. At the same time, after removing the impact of
phenology, the NDVI and DI trend curves of the study areas in each year reflect relatively consistent
vegetation changes, further illustrating the reliability of the phenology elimination method and the
credibility of vegetation monitoring results.

In the quantitative analysis of remote sensing, the relationship between surface property
measurements at different spatial resolutions often causes concern [65]. Since vegetation cover
can be highly heterogeneous spatially, subpixel variability is likely to introduce uncertainties in the
vegetation indices at different resolutions [66]. Several studies have investigated the impact of spatial
resolution on NDVI, but with conflicting results. Aman et al. [67] concluded that NDVI derived from
the coarse spatial resolution sensor data can be used in lieu of NDVI integrated from fine spatial
resolution without introducing significant errors. On the other hand, Price [68] noted that for a region
consisting of a mixture of totally vegetated area and non-vegetated area, prominent discrepancies occur
between NDVI derived from high-resolution measurements and NDVI derived from low resolution
measurements, with the relative difference approaching 30%. This study used Landsat data with
30 m spatial resolution. In future studies, remote sensing data with different resolutions can be
used to further explore the impact of eliminating phenological influences on post-fire vegetation
restoration monitoring.

5. Conclusions

Taking the forest restoration in the Greater Hinggan Mountain area after the “5.6 fire” in 1987 as
an example, based on the MODIS and Landsat time-series images acquired from 2000 to 2018, this
study took the midpoint of the vegetation growth period of each year as the target date and used
the STARFM fusion algorithm to construct reflectance images of vegetation with relatively consistent
growth periods. The influence of phenology on vegetation monitoring was analyzed using three
aspects: band characteristics, NDVI and DI values.

Based on the detailed analysis using remote sensing data, it can be concluded that eliminating
phenological influences can more accurately reflect the changes of vegetation within the region, which
implies that phenological factors in remote sensing images may affect the observation of vegetation
changes. Observation of vegetation changes using remote sensing images of different periods of
vegetation growth may cause great errors. The spatio-temporal data fusion method used in this study
effectively eliminated the influence of phenological factors during the annual observation of vegetation
by establishing vegetation reflection images with relatively consistent growth periods. At the same
time, this method is conducive to improving the utilization of remote sensing data because researchers
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do not need to find remote sensing images with consistent vegetation growth conditions for monitoring
but can use images located in different vegetation growth conditions and then transform them to more
consistent conditions through the spatio-temporal fusion method, thereby improving the temporal
resolution of vegetation monitoring. After eliminating the influence of phenology, the results based on
remote sensing indices in the study area showed that although the forest in this region was affected by
disturbances in some years, its growth trend is generally better. The conclusion drawn in the present
analysis provides a reference for future forest monitoring research and local forest management.

Author Contributions: Conceptualization, Z.H. and C.C.; Data curation, Z.H. and B.X.; Formal analysis, Z.H. and
W.C.; Funding acquisition, C.C. and M.X.; Investigation, Z.H. and X.L.; Methodology, Z.H.; Project administration,
Z.H. and C.C.; Resources, M.X. and Y.D.; Visualization, Z.H.; Writing—original draft, Z.H.; Writing—review &
editing, W.C., R.P.S. and B.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (No. 2017YFD0600903) and
National Natural Science Foundation of China (No. 41601368).

Acknowledgments: The authors would like to thank the anonymous reviewers for their constructive and valuable
suggestions on the earlier drafts of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lucas, N.S.; Curran, P.J.; Plummer, S.E.; Danson, F.M. Estimating the stem carbon production of a coniferous
forest using ecosystem simulation models driven by the remotely sensed red edge. Int. J. Remote Sens. 2000,
21, 619–631. [CrossRef]

2. Flynn, K.M.; Traver, R. Green infrastructure life cycle assessment: A bio-infiltration case study. Ecol. Eng.
2013, 55, 9–22. [CrossRef]

3. Wood, T.; Cavaleri, M.; Reed, S. Tropical forest carbon balance in a warmer world: A critical review spanning
microbial- to ecosystem-scale processes. Biol. Rev. Camb. Philos. Soc. 2012, 87, 912–927. [CrossRef] [PubMed]

4. Forkel, M.; Thonicke, K.; Beer, C.; Cramer, W.; Bartalev, S.; Schmullius, C. Extreme fire events are related to
previous-year moisture conditions in permafrost-underlain larch forests of Siberia. Environ. Res. Lett. 2012,
7, 044021. [CrossRef]

5. McKenzie, D.; Shankar, U.; Keane, R.E.; Stavros, E.N.; Heilman, W.E.; Fox, D.G.; Riebau, A.C. Smoke
consequences of new wildfire regimes driven by climate change. Earth’s Future 2014, 2, 35–59. [CrossRef]

6. Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and
boreal forests: Disturbance impacts on biodiversity and services. Biol. Rev. 2016, 91, 760–781. [CrossRef]

7. Pastro, L.; Dickman, C.; Letnic, M. Burning for biodiversity or burning biodiversity? Prescribed burn vs.
wildfire impacts on plants, lizards, and mammals. Ecol. Appl. 2011, 21, 3238–3253. [CrossRef]

8. Huesca, M.; Litago, J.; Palacios-Orueta, A.; Montes, F.; Sebastián-López, A.; Escribano, P. Assessment of
forest fire seasonality using MODIS fire potential: A time series approach. Agric. For. Meteorol. 2009, 149,
1946–1955. [CrossRef]

9. Ueyama, M.; Iwata, H.; Nagano, H.; Tahara, N.; Iwama, C.; Harazono, Y. Carbon dioxide balance in
early-successional forests after forest fires in interior Alaska. Agric. For. Meteorol. 2019, 275, 196–207.
[CrossRef]

10. Volkova, L.; Weiss Aparicio, A.G.; Weston, C.J. Fire intensity effects on post-fire fuel recovery in Eucalyptus
open forests of south-eastern Australia. Sci. Total Environ. 2019, 670, 328–336. [CrossRef]

11. Flannigan, M.D.; Krawchuk, M.A.; Groot, W.J.D.; Wotton, B.M.; Gowman, L.M. Implications of changing
climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [CrossRef]

12. Linstädter, A.; Zielhofer, C. Regional fire history shows abrupt responses of Mediterranean ecosystems to
centennial-scale climate change (Olea–Pistacia woodlands, NE Morocco). J. Arid Environ. 2010, 74, 101–110.
[CrossRef]

13. Hicke, J.A.; Asner, G.P.; Kasischke, E.S.; French, N.H.F.; Field, C.B. Postfire response of North American
boreal forest net primary productivity analyzed with satellite observations. Glob. Chang. Biol. 2003, 9,
1145–1157. [CrossRef]

http://dx.doi.org/10.1080/014311600210461
http://dx.doi.org/10.1016/j.ecoleng.2013.01.004
http://dx.doi.org/10.1111/j.1469-185X.2012.00232.x
http://www.ncbi.nlm.nih.gov/pubmed/22607308
http://dx.doi.org/10.1088/1748-9326/7/4/044021
http://dx.doi.org/10.1002/2013EF000180
http://dx.doi.org/10.1111/brv.12193
http://dx.doi.org/10.1890/10-2351.1
http://dx.doi.org/10.1016/j.agrformet.2009.06.022
http://dx.doi.org/10.1016/j.agrformet.2019.05.020
http://dx.doi.org/10.1016/j.scitotenv.2019.03.226
http://dx.doi.org/10.1071/WF08187
http://dx.doi.org/10.1016/j.jaridenv.2009.07.006
http://dx.doi.org/10.1046/j.1365-2486.2003.00658.x


Remote Sens. 2020, 12, 156 17 of 19

14. Balzter, H.; Gonzalez, M.C.; Gerard, F.; Riano, D. Post-fire vegetation phenology in Siberian burn scars. In
Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain,
23–28 July 2007; pp. 4652–4655.

15. Diaz-Delgado, R.; Pons, X. Spatial patterns of forest fires in Catalonia (NE of Spain) along the period
1975–1995. For. Ecol. Manag. 2001, 147, 67–74. [CrossRef]

16. Chen, H.; Hu, Y.; Chang, Y.; Bu, R.; Li, Y.; Liu, M. Simulating impact of larch caterpillar (Dendrolimus superans)
on fire regime and forest landscape in Da Hinggan Mountains, Northeast China. Chin. Geogr. Sci. 2011, 21,
575–586. [CrossRef]

17. Soja, A.J.; Tchebakova, N.M.; French, N.H.F.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.;
Parfenova, E.I.; Chapin, F.S.; Stackhouse, P.W. Climate-induced boreal forest change: Predictions versus
current observations. Glob. Planet. Chang. 2007, 56, 274–296. [CrossRef]

18. Cohen, W.B.; Goward, S.N. Landsat’s role in ecological applications of remote sensing. BioScience 2004, 54,
535–545. [CrossRef]

19. Masek, J.G.; Huang, C.; Wolfe, R.; Cohen, W.; Hall, F.; Kutler, J.; Nelson, P. North American forest disturbance
mapped from a decadal Landsat record. Remote Sens. Environ. 2008, 112, 2914–2926. [CrossRef]

20. Matthews, S.; Sullivan, A.; Gould, J.; Hurley, R.; Ellis, P.; Larmour, J. Field evaluation of two image-based
wildland fire detection systems. Lancet 2011, 47, 54–61. [CrossRef]

21. Segah, H.; Tani, H.; Hirano, T. Detection of fire impact and vegetation recovery over tropical peat swamp
forest by satellite data and ground-based NDVI instrument. Int. J. Remote Sens. 2010, 31, 5297–5314.
[CrossRef]

22. Masek, J.G.; Goward, S.N.; Kennedy, R.E.; Cohen, W.B.; Huang, C. United States forest disturbance trends
observed using Landsat time series. Ecosystems 2013, 16, 1087–1104. [CrossRef]

23. Viedma, O.; Meliá, J.; Segarra, D.; Garcia-Haro, J. Modeling rates of ecosystem recovery after fires by using
Landsat TM data. Remote Sens. Environ. 1997, 61, 383–398. [CrossRef]

24. Townshend, J.R.; Masek, J.G.; Huang, C.; Vermote, E.F.; Gao, F.; Channan, S.; Sexton, J.O.; Feng, M.;
Narasimhan, R.; Kim, D.; et al. Global characterization and monitoring of forest cover using Landsat data:
Opportunities and challenges. Int. J. Digit. Earth 2012, 5, 373–397. [CrossRef]

25. Schroeder, T.A.; Wulder, M.A.; Healey, S.P.; Moisen, G.G. Detecting post-fire salvage logging from Landsat
change maps and national fire survey data. Remote Sens. Environ. 2012, 122, 166–174. [CrossRef]

26. Hope, A.; Tague, C.; Clark, R. Characterizing post-fire vegetation recovery of California chaparral using
TM/ETM+ time-series data. Int. J. Remote Sens. 2007, 28, 1339–1354. [CrossRef]

27. Leeuwen, W.J.D.V.; Casady, G.M.; Neary, D.G.; Bautista, S.; Alloza, J.A.; Carmel, Y.; Wittenberg, L.;
Malkinson, D.; Orr, B. Monitoring post-wildfire vegetation response with remotely sensed time-series data in
Spain, USA and Israel. Int. J. Wildland Fire 2010, 19, 75–93. [CrossRef]

28. Meng, R.; Wu, J.; Zhao, F.; Cook, B.D.; Hanavan, R.P.; Serbin, S.P. Measuring short-term post-fire forest
recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing
techniques. Remote Sens. Environ. 2018, 210, 282–296. [CrossRef]

29. Mitri, G.H.; Gitas, I.Z. Mapping post-fire forest regeneration and vegetation recovery using a combination of
very high spatial resolution and hyperspectral satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2013, 20,
60–66. [CrossRef]

30. Frazier, R.J.; Coops, N.C.; Wulder, M.A. Boreal Shield forest disturbance and recovery trends using Landsat
time series. Remote Sens. Environ. 2015, 170, 317–327. [CrossRef]

31. Chompuchan, C.; Lin, C.-Y. Assessment of forest recovery at Wu-Ling fire scars in Taiwan using multi-temporal
Landsat imagery. Ecol. Indic. 2017, 79, 196–206. [CrossRef]

32. Frison, P.-L.; Fruneau, B.; Kmiha, S.; Soudani, K.; Dufrêne, E.; Le Toan, T.; Koleck, T.; Villard, L.; Mougin, E.;
Rudant, J.-P. Potential of Sentinel-1 data for monitoring temperate mixed forest phenology. Remote Sens.
2018, 10, 2049. [CrossRef]

33. Marzialetti, F.; Giulio, S.; Malavasi, M.; Sperandii, M.G.; Acosta, A.T.R.; Carranza, M. Capturing coastal dune
natural vegetation types using a phenology-based mapping approach: The potential of Sentinel-2. Remote
Sens. 2019, 11, 1506. [CrossRef]

34. Pastor-Guzman, J.; Dash, J.; Atkinson, P. Remote sensing of mangrove forest phenology and its environmental
drivers. Remote Sens. Environ. 2018, 205, 71–84. [CrossRef]

http://dx.doi.org/10.1016/S0378-1127(00)00434-5
http://dx.doi.org/10.1007/s11769-011-0494-9
http://dx.doi.org/10.1016/j.gloplacha.2006.07.028
http://dx.doi.org/10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2
http://dx.doi.org/10.1016/j.rse.2008.02.010
http://dx.doi.org/10.1016/j.firesaf.2011.11.001
http://dx.doi.org/10.1080/01431160903302981
http://dx.doi.org/10.1007/s10021-013-9669-9
http://dx.doi.org/10.1016/S0034-4257(97)00048-5
http://dx.doi.org/10.1080/17538947.2012.713190
http://dx.doi.org/10.1016/j.rse.2011.10.031
http://dx.doi.org/10.1080/01431160600908924
http://dx.doi.org/10.1071/WF08078
http://dx.doi.org/10.1016/j.rse.2018.03.019
http://dx.doi.org/10.1016/j.jag.2011.09.001
http://dx.doi.org/10.1016/j.rse.2015.09.015
http://dx.doi.org/10.1016/j.ecolind.2017.04.038
http://dx.doi.org/10.3390/rs10122049
http://dx.doi.org/10.3390/rs11121506
http://dx.doi.org/10.1016/j.rse.2017.11.009


Remote Sens. 2020, 12, 156 18 of 19

35. Songsom, V.; Koedsin, W.; Ritchie, R.J.; Huete, A. Mangrove phenology and environmental drivers derived
from remote sensing in southern Thailand. Remote Sens. 2019, 11, 955. [CrossRef]

36. Van Leeuwen, W. Monitoring the effects of forest restoration treatments on post-fire vegetation recovery
with MODIS multitemporal data. Sensors 2008, 8, 2017–2042. [CrossRef]

37. Morresi, D.; Vitali, A.; Urbinati, C.; Garbarino, M. Forest spectral recovery and regeneration dynamics in
stand-replacing wildfires of central Apennines derived from Landsat time series. Remote Sens. 2019, 11, 308.
[CrossRef]

38. Yi, K.P.; Tani, H.; Zhang, J.Q.; Guo, M.; Wang, X.F.; Zhong, G.S. Long-term satellite detection of post-fire
vegetation trends in boreal forests of China. Remote Sens. 2013, 5, 6938–6957. [CrossRef]

39. Chen, W. Monitoring of post-fire forest recovery under different restoration modes based on time series
Landsat data. Eur. J. Remote Sens. 2014, 47, 153–168. [CrossRef]

40. Tan, K.; Piao, S.; Peng, C.; Fang, J. Satellite-based estimation of biomass carbon stocks for northeast China’s
forests between 1982 and 1999. For. Ecol. Manag. 2007, 240, 114–121. [CrossRef]

41. Fang, J. Changes in forest biomass carbon storage in China between 1949 and 1998. J. Sci. 2001, 292, 2320–2322.
[CrossRef]

42. Chen, W.; Sakai, T.; Moriya, K.; Koyama, L.; Cao, C. Extraction of burned forest area in the Greater Hinggan
Mountain of China based on Landsat TM data. In Proceedings of the 2013 IEEE International Geoscience
and Remote Sensing Symposium—IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 995–998.

43. Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Lim, T.K. A Landsat surface reflectance data set for North
America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [CrossRef]

44. Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI
land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [CrossRef]

45. Zhu, Z.; Wang, S.; Woodcock, C. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow,
and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277.
[CrossRef]

46. Zhu, Z.; Woodcock, C. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens.
Environ. 2012, 118, 83–94. [CrossRef]

47. Gong, P.; Liu, H.; Zhang, M.N.; Li, C.C.; Wang, J.; Huang, H.B.; Clinton, N.; Ji, L.Y.; Li, W.Y.; Bai, Y.Q. Stable
classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping
10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [CrossRef]

48. Yu, X.F.; Zhuang, D.F. Monitoring forest phenophases of northeast China based on MODIS NDVI data.
Resour. Sci. 2006, 28, 111–117.

49. Lin, Z.H.; Mo, X.G. Phenologies from harmonics analysis of AVHRR NDVI time series. Trans. Chin. Soc.
Agric. Eng. 2006, 22, 138–144.

50. Xiao, D.; Cai-Yan, W. The extraction of regional phonological information based on MODIS time series
vegetation index. Geomat. Spat. Inf. Technol. 2015, 91, 85–87.

51. Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput.
Geosci. 2004, 30, 833–845. [CrossRef]

52. Jia, D.; Wang, C.J.; Mu, S.G.; Zhao, H. Vegetation spatial and temporal dynamic characteristics based on
NDVI time series trajectories in grassland opencast coal mining. Chin. J. Appl. Ecol. 2017, 28, 1808–1816.

53. Carper, W.; Lillesand, T.; Kiefer, P. The use of intensity-hue-saturation transformations for merging SPOT
panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467.

54. Shettigara, V. A generalized component substitution technique for spatial enhancement of multispectral
images using a higher resolution data set. Photogramm. Eng. Remote Sens. 1992, 58, 561–567.

55. Yocky, A.D. Multiresolution wavelet decomposition image merger of Landsat thematic mapper and SPOT
panchromatic data. Photogramm. Eng. Remote Sens. 1996, 62, 1067–1074.

56. Telesca, L.; Lasaponara, R. Pre- and post-fire behavioral trends revealed in satellite NDVI time series. Geophys.
Res. Lett. 2006, 33. [CrossRef]

57. Leon, J.R.R.; Van Leeuwen, W.J.D.; Casady, G.M. Using MODIS-NDVI for the modeling of post-wildfire
vegetation response as a function of environmental conditions and pre-fire restoration treatments. Remote
Sens. 2012, 4, 598–621. [CrossRef]

http://dx.doi.org/10.3390/rs11080955
http://dx.doi.org/10.3390/s8032017
http://dx.doi.org/10.3390/rs11030308
http://dx.doi.org/10.3390/rs5126938
http://dx.doi.org/10.5721/EuJRS20144710
http://dx.doi.org/10.1016/j.foreco.2006.12.018
http://dx.doi.org/10.1126/science.1058629
http://dx.doi.org/10.1109/LGRS.2005.857030
http://dx.doi.org/10.1016/j.rse.2016.04.008
http://dx.doi.org/10.1016/j.rse.2014.12.014
http://dx.doi.org/10.1016/j.rse.2011.10.028
http://dx.doi.org/10.1016/j.scib.2019.03.002
http://dx.doi.org/10.1016/j.cageo.2004.05.006
http://dx.doi.org/10.1029/2006GL026630
http://dx.doi.org/10.3390/rs4030598


Remote Sens. 2020, 12, 156 19 of 19

58. Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variation in northern
vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. 2001,
106, 20069–20084. [CrossRef]

59. Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing post-fire vegetation
recovery using red–near infrared vegetation indices: Accounting for background and vegetation variability.
ISPRS J. Photogramm. Remote Sens. 2012, 68, 28–39. [CrossRef]

60. Crist, E.; Cicone, R. A physically-based transformation of thematic mapper data—The TM tasseled cap. IEEE
Trans. Geosci. Remote Sens. 1984, 22, 256–263. [CrossRef]

61. Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. Comparison of tasseled cap-based Landsat data
structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [CrossRef]

62. Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance:
Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218.

63. Zurita-Milla, R.; Kaiser, G.; Clevers, J.G.P.W.; Schneider, W.; Schaepman, M.E. Downscaling time series
of MERIS full resolution data to monitor vegetation seasonal dynamics. Remote Sens. Environ. 2009, 113,
1874–1885. [CrossRef]

64. Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion
model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [CrossRef]

65. Chen, J.M. Spatial scaling of a remotely sensed surface parameter by contexture. Remote Sens. Environ. 1999,
69, 30–42. [CrossRef]

66. Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference
vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [CrossRef]

67. Aman, A.; Randriamanantena, H.P.; Podaire, A.; Frouin, R. Upscale integration of normalized difference
vegetation index: The problem of spatial heterogeneity. IEEE Trans. Geosci. Remote Sens. 1992, 30, 326–338.
[CrossRef]

68. Price, J.C. Estimating vegetation amount from visible and near infrared reflectances. Remote Sens. Environ.
1992, 41, 29–34. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/2000JD000115
http://dx.doi.org/10.1016/j.isprsjprs.2011.12.007
http://dx.doi.org/10.1109/TGRS.1984.350619
http://dx.doi.org/10.1016/j.rse.2005.05.009
http://dx.doi.org/10.1016/j.rse.2009.04.011
http://dx.doi.org/10.1016/j.rse.2010.05.032
http://dx.doi.org/10.1016/S0034-4257(99)00006-1
http://dx.doi.org/10.1016/j.rse.2006.01.003
http://dx.doi.org/10.1109/36.134082
http://dx.doi.org/10.1016/0034-4257(92)90058-R
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data Used and Preprocessing 
	Vegetation Phenological Information 
	Synthesis of Target Image Based on STARFM Fusion Algorithm 
	Vegetation Indices 
	NDVI 
	DI 


	Results 
	Yearly Composite Image 
	The Characteristics of Reflectance Prior to and after Eliminating Phenological Influence 
	NDVI Characteristics Prior to and after Phenological Influence Elimination 
	Characteristics of DI Changes Prior to and after Phenological Influence Elimination 

	Discussion 
	Conclusions 
	References

