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Abstract: Majuro Atoll in the central Pacific has high coastal vulnerability due to low-lying islands,
rising sea level, high wave events, eroding shorelines, a dense population center, and limited
freshwater resources. Land elevation is the primary geophysical variable that determines exposure to
inundation in coastal settings. Accordingly, coastal elevation data (with accuracy information) are
critical for assessments of inundation exposure. Previous research has demonstrated the importance
of using high-accuracy elevation data and rigorously accounting for uncertainty in inundation
assessments. A quantitative analysis of inundation exposure was conducted for Majuro Atoll,
including accounting for the cumulative vertical uncertainty from the input digital elevation model
(DEM) and datum transformation. The project employed a recently produced and validated DEM
derived from structure-from-motion processing of very-high-resolution aerial imagery. Areas subject
to marine inundation (direct hydrologic connection to the ocean) and low-lying lands (disconnected
hydrologically from the ocean) were mapped and characterized for three inundation levels using
deterministic and probabilistic methods. At the highest water level modeled (3.75 ft, or 1.143 m),
more than 34% of the atoll study area is likely to be exposed to inundation (68% chance or greater),
while more than 20% of the atoll is extremely likely to be exposed (95% chance or greater). The study
demonstrates the substantial value of a high-accuracy DEM for assessing inundation exposure of
low-relief islands and the enhanced information from accounting for vertical uncertainty.

Keywords: inundation; flooding; sea-level rise; digital elevation model; vertical accuracy; uncertainty;
confidence level; error propagation; coastal vulnerability

1. Introduction

Low-lying islands are vulnerable to inundation (coastal flooding), whether the increased water
levels are from episodic events (storm surge, wave run-up, king tides) or from chronic conditions
(long-term sea-level rise). Atolls are particularly vulnerable to the effects of sea-level rise in the form of
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shoreline erosion, inundation, and saltwater intrusion into fresh groundwater [1]. Numerous studies
have assessed climate change-driven impacts and other environmental factors on the resilience of
low-lying islands, including biophysical changes [2–8] and biodiversity consequences [9,10].

Coastal vulnerability is inherently spatial, and this geographic dependence requires that risk
assessments of places, people, and assets be location specific [11]. For such assessments, mapping
and characterization of physical hazards are critical, and the need is great for detailed, localized
analyses rather than more general coarse-scale assessments [6]. In particular, detailed knowledge of
the topography is essential for assessing coastal inundation exposure, especially on low-lying lands,
and the lack of suitable elevation data has been noted [1,12–14].

Majuro Atoll, Republic of the Marshall Islands, in the central Pacific bears all the marks of high
coastal vulnerability, including low-lying islands [13], rising sea level (far greater than the global
average) [15,16], high wave events [17,18], eroding shorelines [3], a dense population center in an
expanding urban area [3], and limited freshwater resources [19]. Existing general assessments [2,9,10]
lack the spatially explicit detail that is needed for informing local adaptation planning, in part due to
the coarse nature of the topographic information used. New remote sensing-derived high-resolution,
high-accuracy elevation data for Majuro Atoll, including comprehensive uncertainty information [13],
represent a valuable resource for coastal hazard assessment. Previous research has demonstrated the
importance of using high-accuracy elevation data and rigorously accounting for uncertainty in coastal
flooding assessments [20–26]. The focus of this paper is a quantitative inundation exposure assessment
complete with best practices for considering vertical uncertainty, that demonstrates the advantages of
using a remote sensing-derived high-resolution, high-accuracy elevation model to produce spatially
explicit hazard information. The results are a first for Majuro Atoll and are useful for climate change
adaptation planning and mitigation.

2. Materials and Methods

2.1. Study Area

Majuro Atoll (Figure 1), located in the central Pacific Ocean approximately 3800 km southwest of
Hawaii, is a roughly oval-shaped string of over 60 low-relief islands that encircle a lagoon of about
300 km2. It is in the Ratak (eastern) Chain of the Marshall Islands and is centered at 7◦07′N latitude and
171◦12′E longitude. Majuro, the capital city of the Republic of the Marshall Islands (RMI), is located at
the eastern end of the atoll. The total land area of the atoll is about 10 km2. The portion of the atoll
used in this study is the entire connected southern half that runs from Laura in the west to Rita in the
northeast—a length of about 48 km.
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2.2. Digital Elevation Models

The high-resolution, high-accuracy digital elevation model (DEM) used in this assessment is
derived from unmanned aircraft system (UAS) imagery processed with structure-from-motion (SfM)
techniques [13]. The 1-m spatial resolution DEM represents bare ground conditions, as vegetation and
buildings have been removed (seawalls and other shoreline protection structures were not removed).
The dense three-dimensional (3D) point cloud was automatically classified in Agisoft PhotoScan into
two classes, ground points (bare earth) and unclassified (vegetation, buildings, water, and noise) points.
This classification was further manually and iteratively refined to derive a bare-earth DEM. Each
iteration consisted in manually comparing the previous bare-earth DEM with the 3D red, green, blue
(RGB) colored point cloud and area SfM orthomosaic to identify and fix points misclassified by the
automatic classifier.

Numerous global or near-global DEMs are available and they have been used extensively for
sea-level rise and coastal flooding assessments [25]. These DEMs have been assessed for Majuro Atoll
to help demonstrate the advantages of the high-accuracy elevation data for inundation modeling. The
following DEMs, summarized in Table 1, are included: Shuttle Radar Topography Mission (SRTM) [27],
ASTER Global Digital Elevation Model (GDEM) [28], ALOS World 3D (AW3D30) [29], and TerraSAR-X
add-on for Digital Elevation Measurement (TanDEM-X) [30]. In addition to these freely available global
DEMs, a commercial DEM product derived from WorldView high-resolution satellite stereo-optical
imagery, the DigitalGlobe Advanced Elevation Series (DG-AES) [31], was also included in the analysis.

Table 1. Digital elevation models available for Majuro Atoll.

DEM Grid Spacing Accuracy Specification (RMSE 1 in m)

UAS-SfM 2 1 m 0.30
SRTM 3 1-arc-s (30 m) 9.73

ASTER GDEM 4 1-arc-s (30 m) 10.20
AW3D30 5 1-arc-s (30 m) 5.0

TanDEM-X 6 0.4-arc-s (12 m) 6.08
DG-AES 7 2 m 2.43

1 RMSE: root mean square error. 2 UAS-SfM: Unmanned aircraft system—Structure-from-motion. 3 SRTM: Shuttle
Radar Topography Mission. 4 ASTER GDEM: ASTER Global Digital Elevation Model. 5 AW3D30: ALOS World
3D. 6 TanDEM-X: TerraSAR-X add-on for Digital Elevation Measurement. 7 DG-AES: DigitalGlobe—Advanced
Elevation Series.

Accuracy Assessment

To characterize vertical uncertainty, the absolute vertical accuracy of each of the DEMs was
measured by comparison with a very large set of independent reference points. The nearly 69,000
high-accuracy geodetic control points from a Global Navigation Satellite System (GNSS) real-time
kinematic (RTK) survey have a vertical root mean square error (RMSE) of 0.03 m [13], and so they are
an excellent reference dataset with which to validate the DEMs. To gather the required error statistics
that describe vertical accuracy, the independent reference points are compared to the DEMs at each
point location. In each case, the DEM elevation is extracted via bilinear interpolation at the exact point
location and the difference in reference elevation and DEM elevation is recorded, with the difference
representing the vertical error. The differencing operation is done by subtracting the reference point
elevation from the DEM elevation. In this way, the difference statistics from the full set of points are
easy to interpret; that is, a positive mean error indicates that on average the DEM is too high (the DEM
has a positive bias). Conversely, a negative mean error indicates that on average the DEM is too low (it
has a negative bias).

Before comparing the DEM and the reference data, both datasets must be in the same vertical
reference frame, so that the difference statistics do not contain any artificial biases. The DEMs and
reference point data include a mix of different vertical reference systems: SRTM, ASTER GDEM, and
AW3D30 are referenced to the Earth Gravitational Model 1996 (EGM96) geoid; TanDEM-X is referenced
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to the World Geodetic System 1984 (WGS84)-G1150 ellipsoid; and the UAS-SfM DEM and check points
are referenced to the International Terrestrial Reference Frame 2008 (ITRF2008) ellipsoid. The check
points and each DEM were brought into the same vertical reference frame with a standard procedure
employed in DEM assessments [32].

2.3. Tidal Datums

The high-resolution, high-accuracy UAS-SfM DEM was originally produced in ellipsoid referenced
vertical coordinates (due to the geodetic control point information acquired via GNSS survey that was
used to georeference the UAS imagery), but was transformed to orthometric (mean sea level referenced)
elevations with a local geoid model developed from leveled benchmarks located throughout the
atoll [13]. Long-term water level data were processed to derive tidal datums so that inundation
modeling could be done in a sea-level reference frame. Hourly water level data from the Majuro tide
gauge (located on the lagoon shoreline at the east end of the atoll) for the period May 1993 through July
2017 were downloaded from the Pacific Sea Level and Geodetic Monitoring Project (Australian Bureau
of Meteorology) [33], which includes 12 gauges in the Pacific that are part of the Permanent Service for
Mean Sea Level (PSMSL) network [34]. The hourly data were processed to derive the vertical offsets
from local mean sea level (LMSL) for mean lower low water (MLLW) and mean higher high water
(MHHW). Based on the processed tide gauge record, MLLW is 0.616 m below LMSL and MHHW is
0.645 m above LMSL, resulting in a mean tidal range of 1.261 m.

2.4. Inundation Assessment Parameters

When conducting an inundation exposure assessment, a critical parameter is the increment of
water level increase that is modeled. Previous research has established that the chosen water level
increment must be supported by the inherent accuracy of the underlying elevation data [23–25,35]. In
other words, relative to the DEM uncertainty (vertical error), the increment must not be so small that
it is “within the noise”; thus, a highly accurate DEM is required to model fine increments of water
level increase with high confidence results. Using published methods [25], the minimum allowable
increments of increased water level at specific confidence levels were calculated for the UAS-SfM DEM
based on its measured vertical accuracy. Modeling inundation using a DEM is essentially an elevation
contouring operation wherein the “contour” is delineated at the elevation of the increased water level.
Consequently, the use of contour accuracy standards is an effective way to determine the increment of
water level increase (or the contour interval) at a specified statistical confidence level given the vertical
accuracy of the DEM [25].

2.5. Inundation Mapping

The selected water levels were mapped with three approaches, including one that does not consider
vertical uncertainty (elevation model error) and two others that account for vertical uncertainty in
different ways. The inundation model is a simple hydrostatic [36] model (still water or flat water,
so no effect of waves), which is often referred to as a bathtub model. Bathtub inundation has also
been called single-value surface [35], equilibrium [37], planar [38], and static inundation [39]. In this
study, inundation from a direct surface hydrologic connection to the ocean [40] is marine inundation,
and the low elevations below the specified water level that are disconnected hydrologically from the
ocean are designated as low-lying areas. In some cases, these areas have been referred to as areas with
“groundwater inundation” [41,42], although the inundation may be due to not only raised groundwater
levels but also king tides, run-up of high waves, runoff from precipitation, or some combination of
these factors. The importance of mapping these low-lying areas has been recognized in numerous
studies [8,22,43–49].
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2.5.1. Deterministic

The simplest, and most often employed, method of mapping projected inundation onto the land
surface raises the water level on a coastal DEM by delineating all areas that fall below a specified
elevation (at the height of the raised water level). This approach is called deterministic as the location
and extent of the projected inundated area are determined simply by where the specified elevation of
the raised water level falls on the land [25]. Exposure assessments that use the deterministic mapping
approach have no indication of the quality of the mapping, nor is there any statement of confidence
level of the results. The primary limitation of deterministic mapping is that the implications of vertical
uncertainty (elevation error) are unrepresented and cannot be factored into the use of the assessment
results. The user of such an assessment is provided with no information about the quality of the results.
For this study, deterministic mapping is included to help demonstrate its limitations and the increased
information in inundation exposure mapping methods that consider the inherent vertical uncertainty
present in all elevation-based assessments.

2.5.2. Modified Deterministic

An alternative, and improved, approach to simple deterministic mapping considers vertical
uncertainty by applying a global error metric associated with the DEM, such as the widely used RMSE,
or a related measure like “linear error at 95% confidence” (LE95) [50]. The modified deterministic
approach [25] equally applies the full global error everywhere, thereby assuming that all areas are
subject to the full range of vertical error and the results reflect a range incorporating the minimum and
maximum extremes of error. The full vertical error is subtracted from and added to the elevation of the
raised water level, and then those two elevations are used to delineate the minimum and maximum
projected inundation zones. Each delineation is still a deterministic mapping approach, thus the name,
modified deterministic. This modified approach has the advantage over the simple deterministic
approach because it accounts for vertical uncertainty by bounding the projected area and assigning a
confidence label based on the portion of the full error probability distribution represented by the error
metric (for instance 68% confidence for RMSE or 95% confidence in the case of LE95). For assessments
conducted with the modified deterministic method, the confidence level indicates how confident a
user can be that the true extent of the projected inundation zone is contained within the stated range
(between the minimum and maximum areas).

2.5.3. Probabilistic

The third approach to inundation mapping includes the most complete treatment of vertical
uncertainty. The probabilistic method [25] produces results that indicate the likelihood, or probability,
of any location falling above or below a specified elevation (the height of the raised water level in
an inundation exposure assessment). In implementing the method, the elevation error is modeled
and then that error is propagated spatially through Monte Carlo simulation [51] using maps of the
spatial distribution of probable errors. Random error fields that match the error distribution of the
DEM (as derived from a vertical accuracy assessment) are generated and applied spatially. To account
for spatial autocorrelation in the errors [52], spatial filtering using a low pass, or smoothing, filter is
performed before the error model is applied to the DEM in each realization [52–54]. For this study, the
Monte Carlo simulation included 750 realizations of probable cumulative vertical error to build the
spatial map of inundation probability at the given water level scenarios. Note that the inundation
probability in this case only considers elevation uncertainty and water level recurrence (or return
interval) is not included. For this study, three discrete water levels were modeled (see Section 3.1),
although the probability of future water levels has been incorporated into some previous inundation
assessments [21].

There is a rich heritage of treating elevation error probabilistically [52,55–57], and the method
has been successfully applied and its advantages demonstrated in numerous recent sea-level rise and
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inundation assessment studies [21,46,49,53,58–62]. For users of an assessment conducted with the
probabilistic method, the stated probability indicates the likelihood, or chance, that the mapped area
will be impacted at the specified increased water level, for example a 68% chance (or at least 68 times
out of 100) that the area will be inundated.

3. Results

3.1. Cumulative Vertical Uncertainty and Corresponding Minimum Inundation Levels

The primary source of vertical uncertainty in an inundation exposure assessment is the DEM error.
For this reason, using a high-accuracy DEM is desirable and allows fine increments of water level
increases to be modeled, which is especially important for low-relief environments. Figure 2 shows
the elevation error statistics for the UAS-SfM DEM of Majuro Atoll as determined in the absolute
vertical accuracy assessment using the reference GNSS survey points. For purposes of inundation
modeling, there is an additional source of vertical accuracy that should also be considered. As
previously stated, the UAS-SfM DEM’s native vertical coordinates are ellipsoid referenced. However,
it is important to include local water level information when mapping projected inundation [63] by
delineating impact areas above the high tide line as areas below this line are already subject to periodic
inundation from the normal action of tides. To do such delineation, the DEM must first be transformed
to orthometric elevations from its native ellipsoid referenced elevations. The required transformation
is done by applying the local geoid; however, the geoid model also has vertical uncertainty that must
be considered. The vertical uncertainty of the local geoid model is estimated at 0.061 m (one sigma
error) [64], which is the standard deviation of the differences between the predicted point values
and the actual point values derived from cross validation of the results of empirical Bayesian kriging
used to generate the geoid surface [13]. The geoid error of 0.061 m is combined with the DEM error
of 0.179 m (RMSE) via a root sum of squares (or summing in quadrature) resulting in a cumulative
vertical uncertainty of 0.189 m (7.44 inches [in.]) RMSE. When accounting for vertical uncertainty
in inundation assessments, combining DEM error and datum transformation error into cumulative
vertical uncertainty is a recognized best practice that has been successfully employed in numerous
recent studies [22–24,46,65–68].

The minimum allowable increment of water level increase for specific confidence levels was
calculated using established methods [25]. Given the cumulative vertical uncertainty of 0.189 m, a
15 in. (1.25 ft, or 0.381 m) increment can be mapped with 68% confidence, a 30 in. (2.5 ft, or 0.762 m)
increment at 95% confidence, and a 45 in. (3.75 ft, or 1.143 m) increment at 99% confidence. Note that
English units are used here, and following, as those units are most commonly used in the Marshall
Islands. For context on these increments of water level increase, consider the following: an increase
in water level of 25.4 in. (0.645 m) would be the equivalent of LMSL moving up to the current high
tide line (MHHW). Under such a scenario, and assuming the tidal range stays the same, an additional
9% of currently “dry” land (land currently above MHHW) would be subject to regular inundation by
normal tides.

The three selected water levels (1.25 ft, 2.5 ft, and 3.75 ft, or 0.381 m, 0.762 m, and 1.143 m,
respectively) were mapped using the three approaches described above. For comparison purposes,
Table 2 displays the results of the vertical accuracy assessments of the other DEMs available for Majuro
Atoll, as well as the corresponding minimum inundation increments. Additional information on the
uncertainty of the DEMs is presented in Figures S1–S3 in the Supplementary Materials. As reflected in
the values in Table 2, less accurate DEMs, even though the measured accuracies are better than product
specifications (Table 1), do not allow high confidence mapping of small water level increases, and
thus have little or no value for spatially explicit inundation exposure assessment of low-relief coastal
settings like Majuro Atoll.
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Table 2. Measured absolute vertical accuracies (expressed as RMSE) for Majuro Atoll DEMs and
corresponding minimum inundation increments at 68% and 95% confidence. The mean error is also
given, which can indicate an overall elevation bias in a DEM.

DEM Mean Error (m)
Measured
Accuracy

(RMSE in m)

Minimum
Increment (m)

68% Confidence

Minimum
Increment (m)

95% Confidence

UAS-SfM 0.022 0.179 0.357 0.700
SRTM 0.114 2.234 4.467 8.756

ASTER GDEM 5.170 6.136 12.272 24.054
AW3D30 −0.026 1.237 2.475 4.851

TanDEM-X −1.904 2.771 5.542 10.862
DG-AES −0.032 0.374 0.748 1.466

3.2. Inundation Maps

Digital datasets delineating projected land areas exposed to inundation were produced with the
three mapping approaches described above using the three specified water level increase scenarios
(1.25 ft, 2.5 ft, and 3.75 ft, or 0.381 m, 0.762 m, and 1.143 m, respectively). ArcGIS was used to conduct
the inundation exposure mapping, with much of the processing automated by Python scripting.
The resulting datasets are freely available through a USGS data release [69].

3.2.1. Hydrostatic Inundation

Estimates of the area of Majuro Atoll (land area above MHHW) exposed to inundation in the
different mapping approaches and water increase scenarios are presented in Tables 3 and 4. The areas
are presented as percent of the total land area above MHHW (3.601 m2, or 9.326 km2, for the study area
portion of the atoll). Table 3 shows the results for the deterministic and modified deterministic mapping
methods. Note that for the modified deterministic approach, a range is given, which reflects the
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minimum and maximum projected areas as mapped with the extremes of the full range of cumulative
vertical error. Table 4 shows the results for the probabilistic mapping method with the likelihood
categories of projected inundation also being labeled with the terminology used in Intergovernmental
Panel on Climate Change (IPCC) assessment reports [70].

Table 3. Majuro Atoll areas exposed to inundation, expressed as percent of land area above MHHW
(deterministic and modified deterministic mapping methods).

Method
1.25 ft (0.381 m) 2.5 ft (0.762 m) 3.75 ft (1.143 m)

Marine
Inundation

Low-Lying
Areas

Marine
Inundation

Low-Lying
Areas

Marine
Inundation

Low-Lying
Areas

Deterministic 4.50% 1.92% 13.03% 5.42% 41.27% 0.79%

Modified
Deterministic 68%

confidence
2.12–7.48% 0.93–3.40% 7.43–21.62% 3.37–7.95% 21.45–53.81% 0.83–7.93%

Modified
Deterministic 95%

confidence
0.06–12.86% 0.40–5.34% 4.58–40.94% 0.78–1.94% 13.20–65.42% 0.21–5.51%

Table 4. Majuro Atoll areas exposed to inundation, expressed as percent of land area above MHHW
(probabilistic mapping method). IPCC is Intergovernmental Panel on Climate Change.

Probability of
Inundation

1.25 ft (0.381 m) 2.5 ft (0.762 m) 3.75 ft (1.143 m)

Marine
Inundation

Low-Lying
Areas

Marine
Inundation

Low-Lying
Areas

Marine
Inundation

Low-Lying
Areas

68% chance (IPCC:
“Likely”) 3.13% 1.17% 9.46% 3.90% 33.62% 0.43%

95% chance (IPCC:
“Extremely Likely”) 0.54% 0.42% 5.38% 1.90% 20.44% 0.09%

The estimates of area exposed to inundation resulting from the deterministic mapping method
have no indication of quality. The modified deterministic approach provides bounds for projected
inundation with a corresponding confidence level that the true area falls somewhere within the stated
range. However, the range can become large, especially at a higher water level (for instance see
marine inundation of 3.75 ft, or 1.143 m, at 95% confidence), which may limit the usefulness of the
estimate. For the results of the probabilistic approach, note how the estimated area generally tends to
be much closer to the low end of the range of the corresponding modified deterministic results; for
example, 9.46% for 2.5 ft (0.762 m) of marine inundation at 68% probability (Table 4) compared to the
modified deterministic range of 7.43–21.62% at 68% confidence. With the probabilistic approach, any
probability of inundation (between 0% and 100%) can be used; 68% and 95% are used here to match the
confidence levels used in the modified deterministic approach. When comparing probabilistic results
with corresponding deterministic results (same water level and same inundation type) (Tables 3 and 4),
in all cases, the areas exposed to inundation are less for the probabilistic approach than the deterministic
approach. Thus, in addition to results from deterministic mapping carrying no confidence level, the
method consistently overpredicts the size of the area exposed to inundation.

Maps of example inundation areas help illustrate some of the effects of various mapping methods
and confidence/probability levels. Figure 3 shows the location of detailed areas displayed in Figures 4–8.
These four subsets are used to display results with sufficient detail for a variety of land use/land cover
(dense urban development, infrastructure, rural).
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Figure 8. The input dataset for probabilistic inundation mapping, which is derived from spatial error
propagation through Monte Carlo simulation. The probability of inundation at any location for a
given water level increase is simply the count of the number of times the location was included in
the inundation mask divided by the number of realizations (750 for this study). Figures 6 and 7 were
derived from the continuous variable (inundation probability) grid by applying different probability
thresholds (68% and 95% for Figures 6 and 7, respectively). (A–D) are the detailed areas (subsets of the
full study area) of Majuro Atoll as indicated in Figure 3.
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Figures 4–6 show the progression of projected areas exposed to inundation as the water level
increases through the three scenarios (when mapping method and probability are held constant).
Note that not only do the exposed areas increase, as would be expected, but also low-lying areas
are “converted” to marine inundation areas as water level increases. At higher water levels, a direct
hydrologic connection to the ocean becomes available, a connection that is not present at lower water
levels. The percent of low-lying area converted to marine inundation at the next higher water level was
calculated for all the mapping methods. Generally, about 10–15% of the low-lying area becomes marine
inundation when increasing from 1.25 ft (0.381 m) to 2.5 ft (0.762 m). More than 95% of low-lying areas
convert to marine inundation when increasing water level from 2.5 ft (0.762 m) to 3.75 ft (1.143 m),
which is likely a reflection of the overall low-relief nature of the atoll land.

Comparison of Figures 6 and 7 shows the effect of portraying different chances of inundation from
the probabilistic mapping products. In this case, the projected area exposed to inundation decreases
when thresholding the inundation probability grid (Figure 8) at 68% probability (33.62% of land, from
Table 4) and then 95% probability (20.44% of land, from Table 4). The areas that remain in the projected
inundation exposure are those that are at an elevation range below the specified water level even
when cumulative vertical uncertainty of the DEM is factored in, while the areas that are removed by
changing the probability threshold are high enough even when the error is included.

The source of marine inundation, either the lagoon-facing shore or the open ocean-facing shore,
has also been identified through spatial processing. Such a distinction can be important for mitigation
planning as differences in the character of the two types of shorelines have been identified [3] and both
sources of inundation have been observed multiple times [18]. The elevation of the lagoon shoreline
is generally lower, and it is less armored than the ocean-facing shoreline [18]. The results of marine
inundation mapping distinguished by source support the previously identified differing shoreline
characteristics. Of the 21 instances of marine inundation delineation (across all methods, water level
increases, and confidence levels/probabilities), more than three-quarters (16 of 21) showed that lagoon
inundation contributed a greater percent of the total marine inundation than did ocean inundation. In
the five cases where the portion of ocean shore inundation exceeded lagoon inundation, three were at
the highest water level (3.75 ft, or 1.143 m) and two at the 2.5 ft (0.762 m) water level. Also important
are those cases where certain areas were identified as being exposed to marine inundation from both
the lagoon-facing shore and the ocean-facing shore. The percentage of the total marine inundation
that was included in both lagoon and ocean inundation was calculated for all delineations, and in all
cases that percentage increased with increasing water level, which would be expected. The actual
percentage varied according to mapping method and confidence level/probability. However, for any
given instance of marine inundation delineation, these “combined” lagoon and ocean inundation
areas are important because they reflect a greater degree of exposure. These areas are indicative of the
narrow width of the land (and low relief) at specific locations along the atoll.

3.2.2. Event-Based Inundation

Many coastal inundation exposure assessments are aimed toward analysis of long-term, gradual
changes along the shore because of sea-level rise. However, fast onset changes also can have substantial
impacts on populations and resources in coastal environments. There have been discussions on
the use of the terms for temporary conditions when dry areas become wet, either periodically or
episodically, (“flooding”) and permanent conditions of submergence (“inundation”) [71]. Regardless
of the terminology used, the concepts (for example, minimum increment of water level increase) and
mapping methods described in this study are applicable to both gradual and fast onset water level
increases. Figure 9 shows the results of an analysis of a projected water level increase event, in this
case wave run-up, on the densely populated eastern end of Majuro Atoll. Wave run-up forecasts
are routinely generated for Majuro and other islands by the Pacific Islands Ocean Observing System
(PacIOOS) [72]. The projected area subject to wave run-up was mapped with the deterministic and
probabilistic methods, and the results demonstrate the increased information from the probabilistic
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approach. The deterministic method projected 43.40% of the forecast zone to be subject to impacts of the
wave run-up, but this number has no quality information (confidence level or probability) associated
with it. The probabilistic method delineated an area of 31.73% of the forecast zone with a 68% chance
of flooding (Figure 9), and a projected area of 17.26% of land in the forecast zone having a 95% chance
of flooding. Accounting for vertical uncertainty in the underlying elevation data used for spatial
projections of such inundation events improves the flexibility and quality of the mapped information.Remote Sens. 2019, 11, x 13 of 20 
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Figure 9. Results of a demonstration of probabilistic mapping of an inundation event (run-up of high
waves from a seaward angle of 50 degrees) on the eastern end of Majuro Atoll. The wave run-up
forecast is from a Pacific Islands Ocean Observing System (PacIOOS) web page (left center) for the
forecast zone of the eastern portion of Majuro Atoll (upper right). The map shows the areas with a 68%
chance of being impacted by the specified forecast peak run-up (8.26 ft, or 2.518 m, above mean lower
low water [MLLW], which is equivalent to 4.12 ft, or 1.256 m, above MHHW).

4. Discussion

4.1. The Use of High-Accuracy Elevation Data for Coastal Assessments

The use of a high-resolution, high-accuracy DEM for coastal inundation exposure assessment has
clear advantages, especially for a low-relief setting like Majuro Atoll, where the average elevation is
less than 2 m above sea level [13]. Using a high-accuracy elevation dataset like the UAS-SfM DEM
employed in this study, with a vertical uncertainty of better than 20 cm RMSE, allows modeling
and projection of inundation with fine increments of water level increase at high confidence levels.
Conversely, the use of global elevation models, which have been widely employed in such coastal
assessments, leads to results with very low confidence [25]. SRTM in particular has been extensively
used for coastal assessments [25], including studies that focus on island environments [9,10]. Often
these studies use sea-level rise increments on the order of 1 or 2 m, which are well within the vertical
error bounds of the SRTM DEM (Table 2). The use of such DEMs for inundation assessment is especially
flawed for low-relief settings like Majuro Atoll, where the average land elevation is less than the
inherent vertical uncertainty of SRTM: 1.80 m average elevation [13] versus 2.23 m RMSE (Table 2).
Thus, the veracity of results is called into question for studies that project substantial island land
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loss (and corresponding impacts like displacement of populations) [9,10] from climate change-related
sea-level rise.

Testing with SRTM data for inundation mapping over Majuro Atoll confirms the severe limitations
of such global DEMs. SRTM data were used in deterministic and modified deterministic approaches
and the results, which reflect the characteristics of SRTM data, are very different than those derived
from the UAS-SfM high-accuracy DEM. The deterministic results are the same for all three water level
increase scenarios (3.60% of land above MHHW for marine inundation, and 0.90% of land for low-lying
areas). These results reflect the fact that elevation values in the SRTM DEM are quantized to 1 m, while
the water level intervals used are specified to the millimeter, and also that the SRTM data have a spatial
resolution of about 30 m, thus limiting the detail of the shoreline that can be portrayed. The modified
deterministic results with SRTM show a bit more variability than the deterministic results across the
three water levels, but the projected areas are still much smaller than corresponding results from the
UAS-SfM DEM. Some of the other DEMs available for Majuro have better vertical accuracy than SRTM,
especially the DG-AES DEM (Table 2), but none are accurate enough to allow for use in modeling
inundation increments on the order of a foot (0.3048 m) as can be done with the UAS-SfM DEM.

4.2. Implications of Results for Vulnerability Assessments

Accounting for vertical uncertainty is advantageous for the use of inundation exposure mapping
in vulnerability assessments. Many elevation-based assessments of inundation or coastal flooding
exposure have not considered the inherent vertical uncertainty, and users of such assessment results
have no indication of the quality associated with the products and findings [25]. The comparison of
the different inundation mapping methods documented here shows that the probabilistic approach
handles vertical uncertainty most rigorously and provides the most flexibility in the use of output
products (selectable probability levels for maps or statistics of areas exposed to inundation). However,
the probabilistic approach does require access to sufficient computer resources for error propagation
through Monte Carlo simulation, especially if input data have high spatial resolution, the study area is
large, and multiple inundation scenarios are to be modeled. If probabilistic mapping is not practical or
possible, then the modified deterministic approach is preferred, as it accounts for vertical uncertainty
by bounding the elevation error and allows for presenting results with a specified confidence level. The
simple deterministic method does not include any consideration of vertical uncertainty and therefore
is not the best approach for use in inundation exposure assessments.

For areas included in the inundation exposure zone (by any of the methods), the DEM and
specified water level can be used to generate a map of flood depth. Such a map may be especially
important for projections of event-based inundation (see Section 3.2.2), where it could be advantageous
to show the varying severity of the hazard according to location.

The delineations of areas exposed to inundation in this assessment of Majuro Atoll are restricted
to modeling of hydrostatic inundation, otherwise termed still water or flat water inundation. The
projected impact zones do not include the effects of dynamic coastal processes, such as wave run-up,
coastal erosion, sediment accretion, storms, and groundwater hydrodynamics. Recent research results
clearly show that inclusion of these factors is critical for highly accurate estimates of exposed area,
population, and resources [8,73,74]. Until such factors can be added to an inundation exposure
assessment, the current results represent the initial spatially accurate delineation of areas vulnerable to
sea-level rise and coastal flooding events.

4.3. Limitations and Caveats for the Use of Results

In addition to the limitation of hydrostatic modeling and exclusion of dynamic coastal processes,
there are other known limiting factors for the assessment results. The UAS-SfM DEM used as the
basis for inundation modeling has high vertical accuracy overall, but the accuracy does vary spatially
primarily due to the presence of surface features, namely built structures and vegetation. The SfM
process used to develop the DEM uses a point cloud derived from stereoscopic imagery, and if the
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ground is not captured in the images then the point cloud, and subsequent DEM, will not include
direct measurements of the ground elevation. In these cases, the ground elevations are interpolated
based on nearby ground points, but in areas of dense vegetation (for instance, coconut trees) and
large buildings the vertical accuracy can be degraded. In a low-relief setting like Majuro, where small
changes in slope can affect water flow, these interpolated areas may not capture local land surface
configuration as accurately as other areas where the UAS images captured the ground directly.

Additionally, not all flood protection barriers (seawalls, rip-rap) and drainage modifications that
can affect water flow (ditches, culverts) are accurately portrayed in the DEM. Future improvements
to the DEM used for inundation modeling should include addition of these features. Terrestrial,
or ground-based, lidar (light detection and ranging) scanning is a useful source of high-resolution,
high-accuracy elevation data that can be used to acquire these critical features for integration into an
enhanced DEM [23,68,75].

The projected areas subject to inundation may be conservative (less extensive than actual
conditions) due to the way in which local sea level datums were applied to the elevation model. As
described previously, prior to inundation mapping the DEM was transformed to orthometric (mean sea
level referenced) elevations from its native ellipsoid referenced vertical coordinates through application
of a local geoid model. The geoid model was constructed from a local network of leveled benchmarks,
which are tied to LMSL through a tidal benchmark for the Majuro tide gauge. The orthometric height of
that tidal benchmark references LMSL as defined by tide records recorded in 1968–1969 [64]. However,
as with many tide gauge locations, there is a rising trend in LMSL at the Majuro gauge [76], and LMSL
is now about 7 in. (0.178 m) higher than it was in 1969 when the orthometric elevation reference
for the leveled benchmarks was established. Thus, the local geoid used to apply orthometric height
referencing to the DEM represents a lower LMSL than current conditions. The net effect is that the
DEM is slightly lower relative to current LMSL; therefore, any inundation area projections also are
lower, in a vertical sense, on the landscape. One simple test was conducted to check the type of effects
possible on inundated area projections. Using 2.5 ft (0.762 m) of marine inundation in the modified
deterministic method (minimum extent) resulted in an increase of 13% in exposed land area when
incorporating an increase of nearly 7 inches (0.178 m) to LMSL. Updating of the LMSL referencing of
the DEM is a future enhancement to be considered.

The increased water levels used in this study (1.25 ft, 2.5 ft, and 3.75 ft, or 0.381 m, 0.762 m, and
1.143 m, respectively) do not have a specific date associated with them in the context of sea-level
rise rates, but rather are plausible increases that help illustrate potential impacts to aid in mitigation
planning. The current mean sea level trend at the Majuro tide station is 3.60 mm/yr [76], which is
close to the global mean sea level trend and equates to a change of 1.18 ft (0.360 m) in 100 years.
However, projections of sea-level rise in the second half of the century show accelerated rates across the
equatorial Pacific Ocean [15,16], and so the higher increments may be realized by 2100 due primarily
to contributions from Antarctica ice melt [77].

5. Conclusions

Like many other low-lying oceanic islands, Majuro Atoll is vulnerable to coastal inundation,
whether the source of increased water levels is sea-level rise or fast onset events. Coarse-scale
vulnerability assessments that include these islands have been conducted, but the results are severely
limited for use in local-scale planning. Detailed information on the topography is critical for assessing
coastal inundation exposure, but the lack of appropriate elevation data is often a constraint for many
studies. A high-resolution, high-accuracy DEM derived from UAS imagery using SfM techniques has
proven useful for conducting a first ever detailed, spatially explicit quantitative inundation exposure
assessment for Majuro Atoll, RMI. The high vertical accuracy afforded by the DEM is especially
important for a low-relief setting like Majuro Atoll, where a relatively small increase in coastal water
level can have large effects.
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While the DEM used for this assessment does have high vertical accuracy, it still carries vertical
uncertainty, as all elevation datasets do, and the most effective mapping methods rigorously account
for that uncertainty. By properly considering the inherent vertical uncertainty, the inundation modeling
results are expressed with specified confidence levels or probabilities that provide the user with data
quality information. For this study, the probabilistic mapping approach provided results with the
most flexibility (for example, selectable risk levels). For the middle of three water levels modeled, 2.5
ft (0.762 m), an amount of sea-level rise quite plausible by the end of the current century, more than
13% of the atoll study area has a 68% chance of being exposed to the effects of coastal inundation. In
IPCC terms, the inundation of this area is “Likely.” At 95% chance of inundation, or what IPCC calls
“Extremely likely,” more than 7% of the atoll study area will be exposed. At the highest water level
modeled, 3.75 ft (1.143 m), more than 34% of the atoll study area is likely to be exposed to inundation
(68% chance or greater), while more than 20% of the atoll is extremely likely to be exposed (95% chance
or greater).

Atolls are subject to multiple threats from increasing coastal water levels [1], and these highly
dynamic landforms [4] require detailed topographic mapping, and subsequent monitoring, so that
geomorphic changes can be understood in the context of sea-level rise to inform adaptation planning [78].
To meet the critical need for detailed, high-accuracy elevation information required for coastal
assessments, the UAS approach used to develop the DEM employed in this study is an appealing,
cost-effective alternative to manned airborne systems that can have significant logistical challenges
operating in remote, isolated locations [13]. Also, UAS and associated SfM methods are technologies
that can be effectively acquired and employed by local entities in the island communities that need
improved mapping for adaptation planning.
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