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Abstract: In earth observation systems, especially in the detection of small and weak targets, the
detection and recognition of long-distance infrared targets plays a vital role in the military and civil
fields. However, there are a large number of high radiation areas on the earth’s surface, in which cirrus
clouds, as high radiation areas or abnormal objects, will interfere with the military early warning
system. In order to improve the performance of the system and the accuracy of small target detection,
the method proposed in this paper uses the suppression of the cirrus cloud as an auxiliary means of
small target detection. An infrared image was modeled and decomposed into thin parts such as the
cirrus cloud, noise and clutter, and low-order background parts. In order to describe the cirrus cloud
more accurately, robust principal component analysis (RPCA) was used to get the sparse components
of the cirrus cloud, and only the sparse components of infrared image were studied. The texture of
the cirrus cloud was found to have fractal characteristics, and a random fractal based infrared image
signal component dictionary was constructed. The k-cluster singular value decomposition (KSVD)
dictionary was used to train the sparse representation of sparse components to detect cirrus clouds.
Through the simulation test, it was found that the algorithm proposed in this paper performed better
on the the receiver operating characteristic (ROC) curve and Precision-Recall (PR) curve, had higher
accuracy rate under the same recall rate, and its F-measure value and Intersection-over-Union (IOU)
value were greater than other algorithms, which shows that it has better detection effect.

Keywords: fractal dictionary learning; robust principal component analysis (RPCA); cirrus detection;
infrared imagery

1. Introduction

Space infrared detector is an essential part of the earth observation and remote sensing system,
which plays a vital role in early warning, missile interception, and other aspects, and is one of the
research hotspots in the military field [1]. Infrared detection technology has such advantages as
strong survivability, good portability, and the ability to detect radar blind areas [2]. The infrared and
visible light detectors and telescopes carried by satellites are used to detect and track target aircraft,
ships, etc. These infrared radiations are represented as infrared dim small targets in satellite infrared
images, and the performance of infrared target detection algorithm is mainly reflected in the detection
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ability of infrared dim small targets. With the continuous development of infrared imaging detection
system, algorithms for small target detection and recognition have been emerging in recent years [3–11].
However, because there are a large number of natural landscapes with high radiation in the imaging
band of infrared images, such as cirrus, which is similar to the target in the satellite infrared image and
has high gray level, it may cause false alarm of early warning system and interfere with small target
detection, thus, it is difficult to detect small targets directly. In order to solve the problems existing in
small target detection, it is necessary to study the imaging characteristics and detection methods of
cirrus, so as to improve the accuracy and response speed of the ground detection system.

Cirrus cloud detection is also a vital part of data processing, which plays an essential role in
ecological environment monitoring, weather forecasting, natural disaster prevention, and so on.
Domestic and foreign scholars have proposed many cirrus cloud detection methods. They can detect
cirrus clouds based on physical models such as infrared radiation and atmospheric attenuation [12,13],
which requires prior knowledge. It can also be based on the time series of automatic screening detection
methods [14,15], but there are difficulties in data acquisition. In recent years, with the development
of artificial intelligence, many methods based on machine learning and neural network have been
proposed [16,17], but this method relies on large sample image data and is not suitable for most cases.
The method proposed in this paper is based on small sample image data, and the cirrus cloud is
detected from the visual features and sparse representation of the cirrus cloud.

The classic principal component analysis (PCA) [18] model is to transform the high-dimensional
data to the low-dimensional data, obtain the main information by reducing the dimension, and remove
the sparse irrelevant information. At the same time, principal component analysis can be used to
obtain sparse components, so as to obtain sparse images with cirrus clouds. PCA has always been
an essential research hotspot, widely used in the signal field [19,20], but it is highly dependent on
data because the noise of data assumed by PCA is Gaussian. In order to improve the PCA algorithm,
Wright et al. proposed robust principal component analysis (RPCA) [21]. RPCA, on the other hand,
does not assume Gaussian noise, and its core idea is that the data matrix Y can be represented as the
superposition of a low-rank matrix L and a sparse matrix S under the optimization criterion, that is,
Y = L + S, as shown in Figure 1. In a physical sense, the rank of a matrix measures the correlation
between the columns and columns of a matrix. If the rows or columns of the matrix are linearly
independent, the matrix is full rank, which means the rank is equal to the number of rows. There’s
some correlation between the rows in this matrix, thus, this matrix is generally low rank. The sparse
matrix means that the number of 0 elements in the matrix is much larger than the number of non-zero
elements, and the distribution of 0 elements is irregular. Typical practical applications are face shadow
removal [22], background estimation [23,24], and infrared dim target detection [25,26]. Face shadow
removal and background estimation are mainly used to analyze the low-rank components obtained
by RPCA, because faces are low-rank relative to shadows and backgrounds are low-rank relative to
moving objects. The detection of infrared small and small targets is to analyze the sparse components
obtained by RPCA, because small and small targets are sparse compared with the infrared background.
Since different setting parameters can obtain different degrees of sparse components, while the virtual
alarm source is sparse compared with the infrared background, while the background is low-rank,
RPCA can be used to obtain the sparse components of the infrared image, including the virtual alarm
source, noise, and clutter.

With the development of image algorithms, sparse representation, and dictionary learning are
increasingly applied to target detection [27], image reconstruction [28], image denoising [29], image
compression [30], and other aspects. Sparse representation is to express most or all of the data matrix
Y with a linear combination of fewer basic signals. Find a coefficient matrix A and a dictionary
matrix D, so that D*A can restore Y as much as possible, and A is as sparse as possible. A is the
sparse representation of Y. Dictionary learning is to find the appropriate dictionary for the samples of
common dense expressions and transform the samples into appropriate sparse expressions, so as to
simplify the learning task and reduce the complexity of the model. The overall strategy for solving
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the above problems is to optimize the dictionary D and sample sparse representation A iteratively.
To start, initialize dictionary D, 1. Fix dictionary D to optimize A. 2. Fix A to optimize dictionary D.
Repeat the above two steps to obtain the sparse representation of A for the final D and Y, where each
column di in D represents the dictionary atom, and each row αi in A represents the sparse coefficient
corresponding to di. In recent years, dictionary construction in sparse representation has developed
from an orthogonal basis to over complete dictionary [31]. Compared with a complete orthogonal basis,
the basis of an overcomplete basis is usually redundant, that is, the number of base elements is larger
than the number of dimensions. Given an initial dictionary and a signal to be trained, the dictionary
learning algorithm constantly adjusts the dictionary atoms to make the description of the signal more
accurate, and finally achieve the goal of constructing redundant dictionary. K-clustering with singular
value decomposition (K-SVD) [32], a representative dictionary learning algorithm, is used to construct
a dictionary by minimizing the reconstruction error of the original sample in compressed sensing of
images [33] and image denoising [34,35], which achieves good results.

In the cirrus cloud detection based on sparse representation, the construction of redundant
dictionary is a difficult problem. Through the texture analysis of the false alarm source in the
infrared image, it is found that it has fractal characteristics. Fractal characteristics mainly refer to the
self-similarity of objective things, which is embodied in fractal dimension, fractal error and multifractal
index. In recent years, fractal features have been widely applied in texture analysis [36,37], Image
sampling [38,39] and segmentation of medical signals (one-dimensional (1D), two-dimensional (2D), or
three-dimensional (3D)) [40,41]. The study shows that most of the natural objects in nature have strong
fractal characteristics, which can be consistent with the fractal model. Different types of signals have
different shapes and attributes, with low correlation, while the same type of signal has high correlation;
thus, the specific type of signal components in infrared image can be efficiently represented by the
same type of over complete dictionary [42]. The random fractal image constructed by diamond square
method is similar to cloud image, thus, the redundant dictionary constructed by fractal image can
effectively represent cirrus.

In this paper, a new method based on RPCA and fractal dictionary learning to detect the cirrus
cloud is proposed. By studying the component composition of infrared images, it was found that
cirrus, noise, and clutter are sparse relative to the background, while the background is low-rank.
Infrared images are composed of low-rank images and sparse images, as shown in Figure 1. In order
to study the cirrus cloud more accurately, the sparse components of the infrared image were obtained
by means of Robust Principal Component Analysis (RPCA), and only the sparse components of the
infrared image were studied. Because the fractal can describe cirrus well, the over-complete dictionary
based on the fractal structure can characterize cirrus well. The construction of fractal dictionary can
be generated according to random fractal images. The fractal dictionary can be constructed from
the random fractal image obtained by diamond square algorithm [43]. Then, the fractal dictionary
Ds was studied and sparsely coded by the k-clustering with singular value decomposition (KSVD)
method, and the sparsely represented images were obtained. Finally, the sparse represented images
were segmented by threshold values to obtain the cirrus cloud false alarm source detection results. The
method proposed in this paper has a higher accuracy under the same recall rate and a larger F-measure
value and Intersection-over-Union (IOU) value for the best detection effect, indicating that it has a
better detection effect. As a matter of convenience, Table 1 represents the nomenclature of this paper.
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Table 1. This table represents the nomenclature of this paper.

Nomenclature

PCA principal component analysis DA the sparse representation image
RPCA robust principal component analysis E the error estimation matrix
KSVD k-clustering singular value decomposition E′ the error estimation matrix after zero removal
OMP Orthogonal Matching Pursuit αi the ith row in the sparse coefficient matrix
ROC the receiver operating characteristic
PR Precision -Recall αi

′ the sparse coefficient after zero removal
AUC Area Under ROC Curve

AUCpr Area Under PR Curve di the ith atom in the over-complete dictionary
F-measure comprehensive evaluation index

IOU intersection over union s the size of atomic sample block for constructing
fractal dictionary

Y the data matrix
L the low-rank matrix ψ the sparse transform basis
S the sparse matrix T0 the sparsity
D the over-complete dictionary TPR true positive rate
Ds the fractal dictionary FPR false positive rate
Dl the learnt dictionary TP true positive
A the coefficient matrix FP false positive
As the coefficient matrix of sparse component TN true negative

FN false negative

2. Materials and Methods

In this paper, a new method based on fractal dictionary learning to detect cirrus was proposed.
The key is to learn the constructed fractal dictionary to detect cirrus. In this section, we first introduce
Robust Principal Component Analysis (RPCA), which is used to obtain sparse components of the
original image. Then, the algorithm of generating random fractal image is introduced, and the fractal
dictionary is constructed by fractal image. Finally, a dictionary learning algorithm based on KSVD is
introduced to obtain sparse representation images of sparse components and detect cirrus.

2.1. Robust Principal Component Analysis

The component composition of infrared image shows that cirrus, noise and clutter are sparse
with respect to the background, while the background is low-rank. Then, the original infrared image
can be superposed by sparse component and low-rank component, that is, Y = L + S; Y represents
the original infrared image, L represents low-rank background component, and S represents sparse
cirrus, noise, and clutter component. Among them, the noise refers to the point-like salt and pepper
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noise, while the clutter refer to the coastline, water ripple, and other long impurities that will interfere
with cirrus detection. Because cirrus clouds have fractal features and fractal-based dictionaries can
better sparsely represent cirrus clouds, these clutters will not be detected incorrectly. Robust Principal
Component Analysis (RPCA) is a current popular model, which is used in this paper to obtain the
sparse Component S of infrared images, as shown in Figure 2.

Principal component analysis (PCA) is to find a low rank matrix L, which minimizes the difference
between L and Y. It is considered that Y is contaminated by Gaussian noise and the optimal solution
can be obtained by singular value decomposition (SVD). However, due to the existence of cirrus, noise,
and clutter, the effect of PCA is poor, and the proposal of RPCA makes up for the shortcomings of PCA.
Because the noise of the data assumed by the PCA is Gaussian, the PCA will be affected by it, while the
RPCA does not exist this hypothesis, but only assumes that the noise is sparse. Therefore, RPCA can
be used to obtain the sparse image with the cirrus cloud. Restoring sparse matrix S is a two-objective
optimization problem:

minL,S(rank(L) + λ‖S‖0) s.t. Y = L + S (1)

where rank(·) is the rank of the matrix; ‖·‖0 is the zero norm of the matrix, which represents the non-zero
number of the matrix; and λ is the compromise factor, which can control the proportion of low-rank
images and sparse images.

The optimal convex approximation is as follows:

minL,S‖L‖∗ + λ‖S‖1 s.t. Y = L + S (2)

RPCA is often used to remove image noise, and the sparse components containing cirrus can also
be obtained. Different sparse images can be obtained by changing the value of λ, where the larger the λ
is, the smaller the original image component of the sparse image is, as shown in Figure 2.Remote Sens. 2020, 12, 142 6 of 26 
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There are many models to solve RPCA, such as the dual method, Accelerated Proximal Gradient
(APG) [44], Iterative Thresholding (IT) [45], Exact Augmented Lagrange Multiples (EALM), and Inexact
Augmented Lagrange Multiples (IALM) [46]. IALM is an improvement of EALM, which requires
fewer SVD times and has higher accuracy and convergence speed. Therefore, IALM is used to solve
RPCA problems.

Sparse images obtained from RPCA mainly consist of cirrus component YS, noise, and clutter
component n. When the sparse component is acquired by the RPCA method, the images with different
sparseness can be acquired by controlling parameter λ. In order to get more complete cirrus clouds,
there are still many noises and clutters. The specific type of signal in infrared image can be efficiently
represented by the over-complete dictionary of the same type of signal, thus, the dictionary constructed
by random fractal image can be used to represent cirrus clouds in infrared image. Then, the method
based on fractal dictionary learning can remove noise and cirrus clouds that do not have fractal features.
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2.2. Random Fractal

For the objective existence of coastlines, cirrus clouds, rivers, snow mountains, etc. in nature,
when some of them are taken out and enlarged appropriately, the images obtained are not the same as
the original ones. However, the complexity of dense bending is similar to the original ones, thus, the
self-similarity of natural landscape is called random self-similarity. Fractals with random self-similarity
are called random fractals. The random fractal images obtained by the Diamond-Square algorithm
are similar to the texture images of clouds, thus, the fractal dictionary constructed from this image
can efficiently represent cirrus. Next, the Diamond-Square algorithm [43] is introduced to generate
random fractal images.

To generate random fractal images, the number of iterations n is first determined, and the square
ABCD is meshed to generate (2n + 1) × (2n + 1) resolution fractal images. The generation process is
shown in Figure 3. The random value X at the midpoint M of the square ABCD is generated, and the
calculation formula is as follows:

X = Ht
× 2−tH (3)

where H represents the value of Hurst index, and t represents the number of current iterations; the
calculation formula for the gray value at the middle point M is as follows:

M = X +
(A + B + C + D)

4
(4)

The midpoints of edge AB, BC, CD, and DA are E, F, G, and H, respectively. The gray values of
point E are calculated according to the gray values of A, B, and M. The formulas are as follows:

E = X +
(A + B + M + M)

4
(5)

Similarly, the gray value of point F is calculated according to the gray value of B, C, and M, the
gray value of point G is calculated according to the gray value of C, D, and M, and the gray value of
point H is calculated according to the gray value of D, A, and M.Remote Sens. 2020, 12, 142 7 of 26 
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2.3. Sparse Representation and Dictionary Learning 

Figure 3. Generation process of random fractal images.

The average m of four vertices gray value of small square EBFM is calculated, and the sum of
average m and random value X is taken as the gray value of the middle point of small square EBFM.
By analogy, the gray value of the middle point of small square MFCG, HMGD, and AEMH is obtained.
Repeat the above steps until the current iteration times satisfy n < t, and get the random fractal image,
as shown in Figure 4.
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Each pixel point in a random fractal image of M ×N size is taken as the center, and the atomic
sample block with the size of s× s pixels is selected to convert the atomic sample block into a column
vector, so as to obtain (M × N) sample atoms. According to the sample atoms, an over-complete
dictionary D is formed, that is, an original dictionary atomic matrix with (s× s) rows and (M × N)
columns is obtained. The construction process is shown in Figure 5.
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2.3. Sparse Representation and Dictionary Learning

The purpose of sparse representation is to represent the signal with as few atoms as possible in a
given over-complete dictionary, so as to obtain the information in the signal more easily and facilitate
further processing of the signal, such as compression and encoding. The sparse representation model
can be described as:

S = ψ×A (6)

where ψ is expressed as a sparse transform basis and A is expressed as a sparse coefficient. The key to
sparse representation is the choice of ψ. At present, the most widely used is the sparse representation
based on redundant dictionary D. The redundant dictionary is composed of vectors, in which each
column is the atom of the dictionary. Dictionary learning is mainly to update the dictionary after the
initial dictionary is fixed and adjust the redundant dictionary according to the specific iterative method,
so as to get a better sparse representation.

Sparse representation and dictionary learning were first used to solve the signal processing
problem in compressed sensing, but now they are increasingly used in image processing. By applying
sparse representation and dictionary learning methods to image processing, noise in image can be
separated simply and efficiently, and image quality can be improved.
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2.3.1. Orthogonal Matching Pursuit Algorithm

The sparse representation model can be transformed into the following forms:

α̂i = argminai‖Si −Dsαi‖
2
2 subject to ‖αi‖0 ≤ T0 (7)

where S = {s1, s2, · · · , sn−1, sn}, A = {α1,α2, · · · ,αn−1,αn}, α̂i represents the column with index i in the
sparse coefficient matrix A, and T0 represents the sparsity. The goal of sparse representation is to solve
for A.

The greedy algorithm based on redundant dictionary is widely used because of its high efficiency
and high accuracy. Matching Pursuit (MP) and Orthogonal Matching Pursuit (OMP) [47] are commonly
used in greedy algorithms.

OMP algorithm is an improvement on the MP algorithm with faster convergence speed. The
improvement is to orthogonalize all selected atoms at each step of decomposition. The main idea
of OMP algorithm is to select the best atom to enter the atom set according to the matching degree,
find the projection of the measured signal in the orthogonal space of the atom set, get the optimal
sparse approximate solution of the original signal by solving the least square problem, update the
signal margin, and make it enter the next iteration. Finally, the signal is linearly represented by atoms
through a certain iteration process.

2.3.2. Dictionary Learning Based on KSVD

KSVD algorithm is mainly divided into two stages, the first is sparse coding and the second is
dictionary learning. The KSVD algorithm is used to fix the initial dictionary D first, and then, the
following two stages are carried out. The objective function of dictionary learning is:

D, A= argminD,A‖S−DA‖22 s.t. ∀i, ‖αi‖0 < T0 (8)

where S ∈ Rm×n is a matrix to be decomposed, D ∈ Rm×k is a dictionary (when k � m, D is an
over-complete dictionary), A ∈ Rk×n is a sparse coefficient matrix, and αi denotes the row with the
subscript i in the sparse coefficient matrix A.

In the first stage, the OMP algorithm is mainly used to solve the sparse coefficient matrix A.
In the second stage, dictionary learning is a further operation of sparse representation. The

objective function can ignore the penalty term ‖αi‖0 and change it to the following form:

min‖S−DA‖22 = min
∑

i

(
‖Si −Dαi‖

2
2

)
(9)

The KSVD algorithm is used to update dictionary and sparse coding simultaneously. The dictionary
is updated by column by column. When column k is updated, other atoms remain unchanged.

min

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
S−

∑
i,k

diαi

− dkαk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

= min‖Ek − dkαk‖
2
2 (10)

where E is the error estimation matrix and αk is the sparse coefficient corresponding to the atom in the
kth column to be updated, which is the kth row of the sparse coefficient matrix.

The Singular Value Decomposition (Singular Value Decomposition, SVD) method can be used to
solve the two solutions. Firstly, the zero element in Ek should be removed, that is, the position of 0 in
the corresponding αk of Ek is removed, and the new E′k matrix and α′k vector can be obtained. In this
case, the optimization problem can be described as:

mindk,αk
‖E′k − dkα

′

k‖
2
2 (11)
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Singular value decomposition of E′k is performed to obtain E′k = U∆VT. Take the first column
vector u1 = U(:, 1) of left singular value matrix U as dk, that is, dk = u1. Take the product of the first
row vector of the right singular value matrix and the first singular value as a product of α′k, that is,
α′k = ∆(1, 1)VT(1, :), and get the corresponding αk according to α′k.

After fixing the fractal dictionary, learn the dictionary according to ksvd algorithm, as shown in
Figure 6. Figure 6a shows the initial dictionary constructed according to the random fractal image,
Figure 6b shows the initial fractal dictionary displayed by converting each column of atoms into image
blocks, and Figure 6c shows the learned fractal dictionary.
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2.4. Cirrus Detection by RPCA and Fractal Dictionary Learning

The algorithm flow is shown in Table 2. First of infrared image Y ∈ Rm×n RPCA decomposition,
get sparse component S ∈ Rm×n, the parameter λ value of 0.03. Next, block column vectorization is
carried out for S. In this paper, image blocks of size s × s are selected, with each pixel point as the
center point, image blocks are selected and converted into column vectors to obtain a matrix of size
s2
× (m× n), which is still named S. Because the sparse component of cirrus has fractal characteristic,

thus, the use of the diamond–square algorithm to generate random fractal image I ∈ RM×N to construct
a complete dictionary Ds ∈ Rs2

×k (if M ×N > k, then Ds has k columns; if M by N is less than k, let
k be M by N). Then the sparse component S is sparsely represented by KSVD algorithm, and the
learned dictionary Dl and sparse coefficient matrix A are obtained. Sparse representation of sparse
component S is reconstructed by Dl and A; then, morphological filtering and threshold segmentation
are performed. Morphological filtering is the application of open and close operations to selectively
remove noise and irrelevant targets at specified scales in texture details while retaining other useful
information. Open operation removes the smaller points in the image. Closed operation transforms
the fracture structure into a whole. Finally, the detected cirrus image C ∈ Rm×n is obtained.
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Table 2. Cirrus detection method based on RPCA and fractal dictionary learning.

INPUT: Infrared image Y ∈ Rm×n, λ, k, Hurst exponent
OUTPUT: Cirrus detection image C ∈ Rm×n

1. The infrared image Y is decomposed by RPCA, and the appropriate sparse component S is obtained
according to λ

2. According to Hurst exponent, random fractal image I ∈ RM×N is obtained by Diamond–Square algorithm
3. An over-complete dictionary Ds ∈ Rs2

×k = {d1, d2 · · · dk} based on random fractal images is constructed
(if M × N > k, then Ds has k columns; if M by N is less than k, let k be M by N)
4. Sparse coding and dictionary updating are carried out by using KSVD algorithm:
Block column vectorization of sparse component S is used to obtain block matrix S′ of image
Obtaining Sparse Coefficient Matrix A ∈ Rk×n = {α1,α2 · · ·αk}

T by OMP Algorithm
for i = 1:k do

The error estimation matrix Ei is obtained when updating column i of the dictionary
Ei = S

′

−
∑
j,i

djαj

SVD is performed after de-zero operation of Ei
Ei = U∆VT

u1 = U(:, 1)
di = u1
αi = ∆(1, 1)VT(1, :)

end for
5. Sparse Representation Image DA Based on D and A
6. DA was processed by morphological filtering and threshold segmentation
7. The cirrus detection image C is obtained

3. Results

In order to better illustrate the performance of infrared imaging cirrus detection method based
on fractal dictionary learning, nine representative cirrus infrared images are tested in this paper, as
shown in Figure 7. The test data was derived from the near-infrared band of Landsat8 data set. Let
us introduce the morphology and distribution of cirrus. The cirrus in test image (a) are slender and
sparsely distributed in the image, with sky and large clouds in the background. The image size is
320 × 256. The cirrus cloud shape of the test image (b) is filamentous and coiled, which are densely
distributed in the whole image. The image size is 230 × 162. The cirrus clouds in the test image (c)
are densely distributed point-shaped, with mountains and coastlines in the background. The image
size is 232 × 162. In the test image (d), strip and cluster cirrus clouds are randomly distributed over
the coast and sea water. The image size is 247 × 156. The test images (e) and (f) are similar to each
other and both are clustered cirrus clouds with sparse distribution. The image sizes are 349 × 265 and
255 × 171, respectively. The cirrus clouds in the test images (g) and (h) are spot-shaped and densely
distributed in the images. The image sizes are both 2035 × 1291. The cirrus clouds in the test image
(g) are densely distributed in the lower left, and the test image (h) is densely distributed in the entire
image. The cirrus clouds in the test image (i) are large and small, and are sparsely distributed in the
entire image. The image size is 329 × 241. These nine test images cover the shape and distribution of
most cirrus images, and their test experiments are more convincing.

In order to objectively evaluate the method proposed in this paper, it is compared with the cirrus
detection method based on extracting fractal features and the classical detection method. The objective
evaluation methods include the receiver operating characteristic (ROC) curve, Precision-Recall (PR)
curve, comprehensive evaluation index (F-Measure), and Intersection-over-Union (IOU). The software
used is MATLAB R2018.
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the correlation operation characteristic curve, because it is used as the standard by comparing two 
operation characteristics (TPR and FPR). Its abscissa is FPR and its ordinate is TPR. In addition, Area 
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FN, and TN are illustrated by the obfuscation matrix in Table 3. 

Figure 7. Cirrus images of nine scenes. (a) Slender cirrus; (b) wispy and curly cirrus; (c)pointy cirrus;
(d) strip and cluster cirrus; (e) cluster cirrus; (f) cluster cirrus; (g) pointy cirrus; (h) densely distributed
punctate cirrus; (i) sparse distribution of large and small cirrus.

3.1. Parameter Settings

First, the method proposed in this paper is to perform block decomposition of image I ∈ Rm×n.
The specific step is to select an image block of size s × s, with each pixel as the center point, and convert
it into column vectors to obtain a matrix of size s2

× (m× n). The key problem is to find the appropriate
s value. In this paper, the s value was set to 8, 15, 20, 30, 40, 45 to find the best s value.

In order to objectively evaluate the value of s, the receiver operating characteristic (ROC) curve
and Precision-Recall (PR) curve were used to evaluate six of the images.

The ROC curve is a functional image that describes the sensitivity. ROC curve can be achieved
by describing true positive rate (TPR) and false positive rate (FPR). The ROC curve is also known as
the correlation operation characteristic curve, because it is used as the standard by comparing two
operation characteristics (TPR and FPR). Its abscissa is FPR and its ordinate is TPR. In addition, Area
Under Curve (AUC) can be used as a quantitative evaluation index of ROC Curve. Generally, the
larger the AUC, the better the detection effect of ROC curve.

ROC and PR curves are supervised evaluations, which need to manually mark the ground truth
image as shown in Figure 8a. The predicted image is shown in Figure 8b. The concepts of TP, FP, FN,
and TN are illustrated by the obfuscation matrix in Table 3.
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Table 3. Cirrus detection method based on RPCA and fractal dictionary learning.

groundtruth 1 groundtruth 0

predicted 1 TP FP

predicted 0 FN TN

TPR =
TP

TP + FN
(12)

FPR =
FP

FP + TN
(13)

where TP represents the total number of pixels in which the pixel value after I threshold segmentation
is 1 and the pixel value in ground truth is also 1. FP represents the total number of pixels whose I
threshold value is 1 and the corresponding ground truth is 0. FN represents the total number of pixels
whose pixel value after I threshold segmentation is 0 and the pixel value in ground truth is also 1. TN
represents the total number of pixels whose pixel value after I threshold segmentation is 0 and the
pixel value in ground truth is also 0.

In this paper, the ROC curve of Figure 9 will be used to represent the detection effect of different
images under different s values, and the closer to the upper left corner, the better. The PR curve in
Figure 10 is closer to the upper right corner, the better the detection effect. Table 4 shows the area
under the curve of ROC curve in Figure 9, and Table 5 shows the area under the curve of PR curve in
Figure 10. The closer the value is to 1, the better the detection effect is.

Table 4. AUC of ROC curve in Figure 9.

Size blockSize8 blockSize15 blockSize20 blockSize30 blockSize40 blockSize45

Img1 0.9981 0.9995 0.9862 0.9982 0.9966 0.9956

Img2 1 0.9893 0.9737 0.9586 0.9499 0.9477

Img3 0.9882 0.9828 0.9743 0.9227 0.9052 0.8956

Img4 0.9652 0.9813 0.9689 0.9672 0.9591 0.9578

Img5 0.9878 0.9869 0.9806 0.9574 0.9526 0.9507

Img6 0.9769 0.9864 0.9844 0.9792 0.9738 0.9689
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Table 5. AUCpr of PR curve in Figure 10.

Size blockSize8 blockSize15 blockSize20 blockSize30 blockSize40 blockSize45

Img1 0.9701 0.9226 0.8690 0.7852 0.7207 0.6857

Img2 0.9994 0.8771 0.7974 0.6969 0.6296 0.5972

Img3 0.7951 0.8349 0.8032 0.6966 0.6403 0.6215

Img4 0.8449 0.8469 0.7959 0.7078 0.6443 0.6196

Img5 0.8736 0.8776 0.8276 0.7362 0.6861 0.6643

Img6 0.7908 0.8136 0.7831 0.7286 0.6820 0.6600
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Figure 10. PR curves of 6 images under different s values.

In order to solve the shortcomings of ROC curve, PR curve is proposed, which is precision-recall
curve, recall as abscissa axis, precision as ordinate axis. When the output image is labeled as the target,
the recall rate will be equal to 100%, but the precision rate is very low. However, for ROC images, the
evaluation effect is still very good. At this time, the PR curve will play a vital role.

precision =
TP

TP + FP
(14)

recall =
TP

TP + FN
(15)

According to ROC curve of Figure 9 and PR curve of Figure 10, it was found that the effect is
better when s is 8 and 15, but when s is 15, the running time is 19.620 s, and when s is 8, the running
time is 12.983 s. Therefore, the s value was set to 8.
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3.2. Experimental Results and Analysis

The experimental results of the proposed algorithm for the test image of Figure 7 are shown in
Figure 11. (a) Represents the sparse image obtained by RPCA decomposition. (b) The coefficients
obtained by updating and sparse encoding fractal dictionary using KSVD algorithm are used to
represent the image. (c) Represents the final result of threshold segmentation.
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Figure 11. Detecting results. (a) Sparse images obtained by RPCA. (b) Sparse representation image
reconstructed by KSVD algorithm. (c) The image after threshold segmentation.

From Figure 11, it can be seen that the low rank components of infrared images can be removed
by robust principal component analysis, and the sparse components including cirrus can be obtained.
Then the sparse representation image is obtained by updating the fractal dictionary and sparse coding
according to the KSVD algorithm. At this time, most of the noise and clutter in the image have been
removed, and some image selection has been normalized. Finally, threshold segmentation is carried
out according to OTSU method to obtain the final detection result image.

3.3. Evaluation

In order to evaluate the performance of the algorithm objectively, the receiver operating
characteristic (ROC) curve, Precision-Recall (PR) curve, comprehensive evaluation index (F-measure),
and Intersection-over-Union (IOU) are used to evaluate the performance of the algorithm. The proposed
method will be compared with fractaldim [40], DivisorstepTP [48], MaxMedian, EightpixelTP [49],
singularityExponent [50], and areaMeasure methods [51].

The method based on fractal dictionary proposed in this paper has time advantages in other
methods of extracting fractal features. The time complexity of RPCA is O(CNlgN), where C represents
the number of iterations and N represents the number of image pixels. The KSVD algorithm is mainly
divided into two stages, the first is sparse coding and the second is dictionary learning. The time
complexity of dictionary learning algorithm based on KSVD is O (t(nˆ2*m+mˆ2*n)), where t is the number
of iterations and m*n is the size of the image. The total time complexity is O(CNlgN+t(nˆ2*m+mˆ2*n)).
Table 6 shows the average running time of different methods.

Table 6. The average running time of the different methods.

Methods DivisorstepTP EightpixelTP MaxMedian areaMeasure fractaldim SingularityExponent Proposed

Time(s) 13.287 13.083 4.124 22.089 15.440 51.059 12.983
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In order to observe the experimental results more intuitively, the ROC curve in Figure 12 shows
the overall evaluation of the detection effect of different algorithms in different test images. Each point
on the curve represents the false alarm rate and recall rate under different thresholds. Where, the ROC
curves of (a–i) in Figure 12 respectively represent the ROC curves of (a–i) images in Figure 7. Table 7
shows the area under the ROC curves in Figure 12. The closer the value is to 1, the better the detection
effect. The bold number in the table represent the maximum value.
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Figure 12. ROC curves of different test images. The ROC curve of (a–i) in the figure respectively
corresponds to the detection effect of (a–i) image in Figure 7. The closer a curve is to the top-left corner,
the better the corresponding method is.

Table 7. AUC of ROC curve in Figure 12. (The bold number represent the maximum value.)

Methods DivisorstepTP EightpixelTP MaxMedian areaMeasure fractaldim SingularityExponent Proposed

Img1 0.9520 0.5702 0.8020 0.9572 0.8894 0.8805 1

Img2 0.7866 0.5090 0.6603 0.8163 0.7723 0.5954 1

Img3 0.9810 0.5212 0.9623 0.9686 0.9670 0.8322 1

Img4 0.9216 0.9202 0.8643 0.8495 0.9449 0.8320 1

Img5 0.9710 0.9651 0.7689 0.9811 0.9618 0.8741 0.9656

Img6 0.9143 0.9105 0.6902 0.9827 0.9176 0.7660 0.9550

Img7 0.9644 0.4705 0.6117 0.8111 0.9485 0.9577 0.8505

Img8 0.8579 0.5264 0.5997 0.7149 0.8311 0.7200 0.8988

Img9 0.9541 0.9481 0.7759 0.9768 0.9458 0.8475 0.9729

Figure 13 shows the PR curves of different test images. Each point on the curve represents recall
and precision under different thresholds. Through the analysis of 9 PR curve images, it can be seen
that the proposed algorithm has a higher accuracy under the same recall rate, which indicates that it
has a better detection effect. Where, the PR curves of (a–i) in Figure 13 respectively represent the PR
curves of (a–i) images in Figure 7. Table 8 shows the area under the PR curves in Figure 13. The closer
the value is to 1, the better the detection effect.
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Figure 13. PR curves of different test images. The PR curve of (a–i) in the figure respectively corresponds
to the detection effect of (a–i) image in Figure 7. The closer a curve is to the top-right corner, the better
the corresponding method is.

Table 8. AUCpr of PR curve in Figure 13. (The bold number represent the maximum value.)

Methods Divisorstep TP Eightpixel TP MaxMedian areaMeasure fractaldim SingularityExponent Proposed

Img1 0.0455 0.0053 0.2048 0.2218 0.0266 0.0597 0.8259

Img2 0.6480 0.3772 0.6079 0.6843 0.6095 0.4428 0.7668

Img3 0.6487 0.0500 0.8050 0.5956 0.4578 0.1371 0.9993

Img4 0.2390 0.2299 0.4871 0.4791 0.3633 0.1676 0.9994

Img5 0.3714 0.3180 0.3370 0.8053 0.2928 0.1257 0.8878

Img6 0.2132 0.2038 0.2609 0.7875 0.2389 0.1336 0.8075

Img7 0.3886 0.0154 0.0760 0.3304 0.3355 0.2511 0.6601

Img8 0.5310 0.1898 0.3171 0.4804 0.5023 0.3488 0.8455

Img9 0.3385 0.2985 0.3378 0.7672 0.2759 0.1401 0.8782

The conflict between precision and recall may occur, thus, they need to be considered
comprehensively. The most common method is F-Measure (also known as F-Score). F-Measure
is the weighted harmonic average of precision, and recall:

F−Measure =

(
α2 + 1

)
precison× recall

α2(precison + recall)
(16)

The value of α2 is generally 0.3, which increases the weight of precision and considers the precision
to be more essential than the recall. Because when the model marks all the output images as targets,
the recall rate will be equal to 100%, but the precision rate is very low.

Table 9 shows the F-Measure corresponding to the detection results of the above methods in nine
test images. For each test image, the maximum value is shown in bold. It can be seen that the method
proposed in this paper not only has better precision rate, but also has a good recall rate and better
detection effect in the detection of false alarm source.
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Table 9. F-Measure of nine test images. (The bold number represent the maximum value.)

Methods Divisorstep TP Eightpixel TP MaxMedian areaMeasure fractaldim SingularityExponent Proposed

Img1 0.1168 0.0127 0.4124 0.3989 0.0717 0.1803 1

Img2 0.2951 0.0122 0.2886 0.3171 0.3108 0.0222 0.9275

Img3 0.6315 0.4334 0.5450 0.5450 0.6318 0.4750 0.9963

Img4 0.6181 0.0824 0.7882 0.8228 0.4831 0.1772 0.9973

Img5 0.3782 0.3348 0.4603 0.5261 0.3222 0.1998 0.8287

Img6 0.4015 0.3587 0.4844 0.5327 0.3504 0.1822 0.8371

Img7 0.5094 0.0274 0.1988 0.2709 0.4661 0.3542 0.8172

Img8 0.5229 0.2163 0.3327 0.4339 0.5019 0.3994 0.8661

Img9 0.3283 0.3162 0.5214 0.6046 0.4006 0.2476 0.9723

The full Intersection of IOU is called Intersection over Union, which is the ratio of intersection
and union of result image obtained by threshold segmentation of image I (predicted) and ground
truth image.

IOU =
predicted∩ groundtruth
predicted∪ groundtruth

(17)

Table 10 shows the IOU corresponding to the detection results of the above method in 9 test
images. For each test image, the maximum value is shown in bold. It can be seen that the method
proposed in this paper has better IOU on the cirrus detection and better detection effect.

Table 10. IOU of nine test images. (The bold number represent the maximum value.)

Methods DivisorstepTP EightpixelTP MaxMedian areaMeasure fractaldim SingularityExponent Proposed

Img1 0.0685 0.0097 0.2054 0.2048 0.0543 0.1295 1

Img2 0.1676 0.0084 0.1409 0.1535 0.1545 0.0168 0.8722

Img3 0.5016 0.3704 0.3722 0.3722 0.4952 0.3704 0.9967

Img4 0.4602 0.0493 0.5897 0.6705 0.3538 0.1352 0.9886

Img5 0.2472 0.2201 0.2858 0.3744 0.2309 0.1453 0.6627

Img6 0.2852 0.2441 0.2953 0.3829 0.2483 0.1260 0.6884

Img7 0.3041 0.0212 0.0881 0.1299 0.2876 0.2426 0.5495

Img8 0.3801 0.1706 0.1892 0.2394 0.3460 0.2790 0.6411

Img9 0.2272 0.2242 0.3477 0.4032 0.2712 0.1571 0.9283

4. Discussion

With the continuous development of infrared imaging detection system, in recent years, small
target detection and recognition algorithms continue to emerge, but there are few algorithms to assist
small and weak target detection by detecting the false alarm source. In this paper, a new method
to detect the false alarm source of the cirrus cloud based on RPCA and fractal dictionary learning
was proposed. Considering the sparsity of the cirrus cloud, the sparse component of infrared image
was obtained by RPCA, which includes the cirrus cloud and noise. Then, the noise in the image
was removed by using the fractal dictionary learning method, and finally, the cirrus cloud image
was obtained.

Fractal is more and more widely used, and new methods of extracting fractal features are emerging,
including the box counting method (fractaldim) to extract fractal dimension, the step-by-step triangular
prism method (DivisorstepTP) to extract fractal dimension, the eight pixel triangular prism method
(EightpixelTP) to extract fractal dimension, multi-scale fractal area (areaMeausre), and the singular
index of multifractal analysis (singularityExponent). Because the cirrus cloud has self-similarity, it
can be detected by extracting fractal features. The fractal Dictionary of this paper is also based on the
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fractal characteristics of the cirrus cloud, and it also verifies that the algorithm of fractal dictionary is
better than other fractal algorithms.

The performance of the proposed algorithm is fully verified by experiments. According to the
ROC curve in Figure 12, it can be seen that the proposed algorithm curve is generally closer to the
upper left corner, so its detection effect is better. Figure 13 shows the PR curve of nine images. The
algorithm curve proposed in this paper is closer to the upper right corner, with better effect. Tables 7
and 8, respectively, represent the area under the ROC curve (AUC) in Figure 12 and the area under the
PR curve (AUCpr) in Figure 13. Generally, the higher the AUC value, the better the detection effect.
The algorithm proposed in this paper showed that the effect of the ROC curve and AUC value was
lower than that of other algorithms, for example, as shown in Figure 12g, the Fractaldim algorithm,
DivisorstepTP algorithm, and singularityExponent algorithm correspond to the ROC curve with a
large AUC value. However, when the points on the curve were observed, the false alarm rate was
relatively high. As can be seen from the PR curve evaluation in Figure 13g, the accuracy rate was not
high and the detection effect was not good. According to the ROC curve, it can be seen that in the
proposed algorithm, the recall rate is high, there is a low false alarm rate, the AUC value is bigger,
and it gives better detection results. Because ROC curve ignores the accuracy, in order to evaluate the
detection effect more accurately, the ROC curve and PR curve are used to evaluate the algorithm at the
same time. Table 9 shows the comprehensive evaluation index (F-measure) of nine test images. It can
be seen from the bold value that the F-measure of the proposed method is higher than other methods
after combining the precision and recall indexes. Table 10 shows the intersection over union (IOU). It
can be seen from the bold value that the IOU value of this method is higher than other algorithms,
indicating that the segmentation detection effect of this method is better. In conclusion, the method
based on RPCA and fractal dictionary learning proposed in this paper has good detection performance
for the detection of cirrus false alarm source.

5. Conclusions

In this paper, a novel infrared cirrus detection method based on RPCA and fractal dictionary
learning was proposed to suppress the false alarm sources in infrared detection system. The algorithm
focuses on the construction of fractal dictionary for dictionary learning, in order to characterize cirrus
cloud more reasonably and completely. Cirrus clouds usually satisfy fractal distribution, such as
irregular shape, rough gray surface, complex texture, self-similarity, etc. Since the signal components
of a specific type in infrared images can be effectively represented by an over-complete dictionary of
the same type of signals, fractal dictionaries based on random fractal construction can well represent
false alarm sources. Compared with the traditional detection method, the improved scheme has
better detection performance and precision; its quality index, such as ROC, PR, AUC, IOU value,
and F-measure, also shows better performance. As an auxiliary scheme, cirrus false alarm source
detection and forecast is effective approach to improve the performance of photoelectric detection
system, especially in small target detection. The proposed method is suitable for infrared images with
single false alarm source. If there are several false alarm sources coexisting in the imaging area, more
complex algorithms need to be further considered, such as hybrid modeling with multiple features for
infrared imagery and more complete adaptive dictionary learning scheme.
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