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Abstract: Synthetic aperture radar (SAR) has become one of the most important means of information
acquisition in today’s society and shows great potential in many fields. Target identification and
classification of SAR images are also the focus of research. With the vigorous development of
deep learning, many researchers apply this method to SAR target classification to obtain a more
automatic process and more accurate results. In this paper, a novel deep forest model constructed by
multi-grained cascade forest (gcForest), which is different from the traditional neural network (NN)
model, is employed to classify ten types of SAR targets in the moving and stationary target acquisition
and recognition (MSTAR) dataset. Considering that the targets of input images may be off-center and
of different sizes in practical applications, two improved models based on varying weights by image
features have been put forward, and both obtain better results. A series of experiments have been
conducted to optimize model parameters, and final results with the MSTAR dataset illustrate that the
two improved models are both superior to the original gcForest model. This is the first attempt to
classify SAR targets using the non-NN model.
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1. Introduction

As an active microwave remote-sensing device, synthetic aperture radar (SAR) is capable of
providing high-resolution images independent of weather conditions and sunlight illumination, and is
of great application value in military reconnaissance, environmental monitoring, geological exploration,
disaster prediction, and other fields [1–5]. High-resolution SAR images contain a wealth of detailed
information, which can immensely widen its application areas [6–9]; however, this also makes SAR
image interpretation extremely complicated. Unlike optical images, the same landform or targets
in SAR images show completely different information characteristics, so successful classification
algorithms for optical images cannot be used directly on SAR images. In addition, a lack of effective
characteristics, geometric distortion, false targets, speckle noise, and other issues make SAR images
become more difficult to understand [5,10,11]. From the above points, it becomes harder and harder to
meet the growing application demand utilizing only regular means of image interpretation. In recent
years, with the development of deep learning, increasingly intelligent methods have been applied to
SAR image interpretation. Deep learning is regarded as a feature learning tool in which image data can
be directly taken as input without additional manual image processing or other complex operations. It
can independently extract features that best express the target from SAR image data, and realize image
and target classification automatically and efficiently [12–20].
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Over the past few years, many different methods of SAR image automatic interpretation have been
proposed. Chen employed an unsupervised sparse auto-encoder in SAR target recognition, replacing
the classical backpropagation algorithm, to obtain convolutional kernels used in convolutional neural
networks (CNN) [21]. Geng and Fan proposed a new approach to extract image features named deep
convolutional auto-encoder (DCAE), which can also perform target classification automatically [22].
Chen and Wang presented a new all-convolutional network to reduce overfitting due to being limited
by a small number of classified training samples [23]. For the same purpose, Xue and Pei proposed a
method based on a heterogeneous CNN ensemble which can reduce training samples and improve the
recognition performance and generalization ability of the network [24]. Kang and He developed a
classification method built on a multi-layer network and transfer learning [25]. Li divided the CNN
into two parts to achieve automatic recognition: One is a convolutional auto-encoder (CAE) which is
used to extract advanced features; the other is a classifier named shallow neural network (SNN), and
this system can achieve a faster training speed than ever before [26]. Zhang and Song presented a fast
training method for largescale SAR sample recognition based on CNN [27]. Zhao and Liu proposed
the algorithm of a multi-stream convolutional neural network for SAR automatic target recognition
(ATR), which integrated multi-view information from different angles of the same target, maximized
the use of limited SAR image data, and improved the recognition performance [28]. Gao and Huang
combined the deep CNN and support vector machine (SVM) to enhance the recognition of the moving
and stationary target acquisition and recognition (MSTAR) database [29]. Jiang and Zhou put forward
a robust recognition method via a hierarchical fusion of CNN and attributed scattering center (ASC)
matching [30].

Most deep learning methods used for SAR target classification are based on neural network
(NN) systems. NN systems can learn multi-layer non-linear relations of datasets by building multiple
hidden layer models, which is beyond the reach of existing nonlearning-based approaches [31].
However, due to the inherent shortcomings of NN-style models, there are many problems in the
application of SAR target classification for the following reasons. First, it is well known that most
deep learning methods require a large amount of training data to obtain good network performance,
while the open-labeled SAR image datasets are still limited because of the excessive cost of labeling.
Second, the high computational and time cost in the training process of NN is a major inconvenience
for practical usage. Third, network performance relies too much on hyper-parameters. These problems
undoubtedly restrict the development of SAR image interpretation and need to be solved urgently.
In this paper, a brand new nonNN model proposed by Zhou [32], named deep forest, which is
implemented by a multi-grained cascade forest (gcForest), is applied to SAR target classification for the
first time. This nonNN deep model consists of two major parts: multi-grained scanning and cascade
forest. The latter provides the ability of representation learning through layer-by-layer structure and
this ability can be further enhanced by the former, hence gcForest has the potential to be structurally
aware. In addition, the deep forest needs much fewer hyper-parameters, and the structure is less
dependent on hyper-parameter settings. The most important thing is that deep forest can automatically
determine the number of training layers, so it has the ability to deal with small datasets just like SAR
datasets and obtain a satisfactory result.

The remainder of this paper is organized as follows. In the second section, the deep forest
algorithm and two proposed modified versions are introduced in detail. The third section uses the
MSTAR dataset to verify the performance of the deep forest algorithm and the two adjusted algorithms.
Then, the relevant results are compared with several methods proposed in articles published in recent
years (e.g., Multi-Scale Convolutional Auto-Encoder (MSCAE) [33], Euclidean distance restricted
auto-encoder (ED-AE) [34]). In Section 4, a detailed explanation regarding the technical aspects of the
deep forest model is provided. The last section is a summary.
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2. Methods

2.1. Preprocessing of MSTAR Images

Images from the MSTAR dataset used in this paper are collected by a high-resolution spotlight
SAR operating in the X band with single polarization (HH). The images are slices of static targets.
According to the SAR image characteristics, continuous strong reflection sources usually correspond to
artificial targets [35]. The contrast between the targets and background can be used to identify such
objects. However, due to the existence of clutters, the contrast between the targets and the background
is usually too low to identify objects and details. So, it is necessary to adjust the images’ contrast
before they are input in order to classify. This paper carries out two steps of Gamma transformation
preprocessing on the original images for enhancement.

Iout(x, y) = cIin(x, y)γ (1)

Equation (1) represents a Gamma transformation of a greyscale image I. I(x, y) is the intensity of the
pixel at the (x, y) location of the input image; c and γ are positive constants. A Gamma transformation
with a certain range of γ maps a narrow range of cramped input greyscale into a broader range of
output greyscale, with the opposite being true for higher input. In other words, if γ > 1, low-intensity
pixels are darkened, and vice versa when γ < 1. In this experiment, a Gamma transformation of γ > 1
will be done on the images in the first step. This operation can effectively highlight the area containing
targets. Then, the obtained image will be dynamically divided according to its gray value to obtain a
slice of the target area. Finally, a Gamma transformation with γ < 1 will be performed on the slice to
improve the dark details of the target; this operation can also increase the image’s contrast at the low
gray level, which is more conducive to distinguishing the image details.

2.2. Introduction of the Deep Forest Construction Method

Multi-grained cascade forest (gcForest) is an approach to construct a deep forest [32]. It is a novel
ensemble method with a cascade decision tree structure, which can enhance its representation learning
ability. The deep forest is made up of two parts, multi-grained scanning and cascade forest, which
will be introduced in the following part. Since gcForest is the main method to achieve a deep forest,
gcForest will be mainly used instead of the name deep forest in the following section.

2.2.1. Multi-Grained Scanning

As shown in Figure 1, sliding windows are used to scan the input original images. The original
d*d image is partitioned into n*n panes of m*m size, in which m is the side length of a sliding window
and n can be computed as follows:

n =
d−m

p
+ 1, (2)

where p is the step size of sliding windows.
Then, n2 instances are put into classifiers such as random forest that can obtain classification types.

The classification probability of the input instances obtained by the classifier constitutes the first-stage
feature vectors. Suppose there are k classes to classify, these k classes can constitute a k-dimensional
vector, so each classifier gets n2 k-dimensional first-stage feature vectors. The first-stage feature vectors
of each classifier are sorted according to class k and rearranged into second-stage feature vectors with k
n*n-dimensional as shown in Figure 2.
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As shown in Figure 3, the second-stage feature vectors are pooled to obtain the final features
vectors of the multi-grained scanning stage. The side length of the pooling block (framed by a yellow
dotted line in Figure 3) is set as t, and the pooling block is composed of t2 sliding blocks of the
second-stage feature vectors. The final feature vectors can be obtained by averaging the prediction
probability of the second-stage feature vectors within the pooling block.
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2.2.2. Cascade Forest

Cascade forest is a cascade structure, as illustrated in Figure 4. This layer-by-layer processing
configuration improves the representation learning ability of deep forest. Each layer of the cascade
is an ensemble of classifiers, and it receives the feature vectors (i.e., the classification probability)
processed by the previous layer classifiers. Then these feature vectors are brought into the classifiers of
the current layer for classification and the classification probability is output to the next layer as a result.
Theoretically, classifiers used here can be of any form, such as random forest or logistic regression.
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pane is different, which affects the classification probability of second-stage feature vectors in the 
pooling block. Nevertheless, these influences are ignored in the pooling process. Such an average 
pooling process method is not accurate for samples with the target in the center, which will directly 
affect whether the generated features are representative enough or accurate enough. In order to 
overcome this problem, two improved methods for pool layer processing are proposed, which can 
effectively improve the classification accuracy without affecting the training speed. They are 
Euclidean distance weighted pooling (distance gcForest) and overlap degree weighted pooling 
(overlap gcForest). 

Figure 4. Process of the cascade.

To lower the risk of overfitting, the cascade forest uses k-fold cross-validation to generate every
class vector. More concretely, each input instance will be used as training data k-1 times to generate k-1
class vectors, and the output class vector is produced by averaging these k-1 class vectors as enhanced
features. After cross-validation, a new layer of cascade forest is generated. Since gcForest has a
characteristic that automatically determines the number of cascade levels, the training procedure will
be terminated if a new layer leads to almost no improvement. The overall framework of gcForest is
elucidated in Figure 5.
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2.3. Optimized Deep Forest

To gather new image features, multi-grained scanning is used to assort sizes of sliding panes to
deal with the original image as shown in Figure 6. Thus, the proportion of the object in each sliding
pane is different, which affects the classification probability of second-stage feature vectors in the
pooling block. Nevertheless, these influences are ignored in the pooling process. Such an average
pooling process method is not accurate for samples with the target in the center, which will directly
affect whether the generated features are representative enough or accurate enough. In order to
overcome this problem, two improved methods for pool layer processing are proposed, which can
effectively improve the classification accuracy without affecting the training speed. They are Euclidean
distance weighted pooling (distance gcForest) and overlap degree weighted pooling (overlap gcForest).
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2.3.1. Distance gcForest

Distance gcForest measures the proportion of the target in the sliding pane in a relatively
straightforward way by calculating the Euclidean distance d between O (the center of the image) and P
(the center of the sliding block), as shown in Figure 7a. Assuming that the distance between P and O is
less than some value and that the pool block will contain the entire target, there is no need to weight
by distance. Accordingly, the second-stage feature vectors in pooling blocks are weighted differently
according to the extent of d. The distance range is the minimum to maximum value of d, and this range
is divided into two parts as described in the first column of Table 1. l is the side length of the input
image and q is a parameter that can be adjusted according to the average proportion of the target to the
input image. A and B are weighted areas shown in Figure 7b.
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Table 1. Weights for different distance panes.

d Update Weights

d >
√

2
q l wdi =

ui
Zd

d−kei
i , i = 1, 2, · · · , N

d <
√

2
q l wdi =

1
t2 , i = 1, 2, · · · , N

Inspired by the weight updating mode of the Boosting classifier [36], the updated weight can be
formulated as follows.

The initial weight distribution of each feature vector in the block is

Wo = (u1, u2, · · · , ui), ui =
1
t2 , i = 1, 2, · · · , N, (3)

N = m× n, (4)
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where m and n are the size of the pooling block (usually choose m = n). Then, the feature vector’s
updated weight distribution is

Wd =
(
wd1 , wd2 , · · · , wdi

)
, (5)

wdi =
ui
Zd

d−kei
i , i = 1, 2, · · · , N, (6)

where k is an adjustable parameter, ei is the misjudgment probability of a second-stage feature vector
in the pooling block, and Zd is the scaling factor,

Zd =
N∑

i=1

uid
−kei
i , (7)

which makes Wd a probability distribution.
In conclusion, the weighting mode divided by d is shown in Table 1.

2.3.2. Overlap gcForest

Overlap gcForest is a method that weights the second-stage feature vector in the pooling block
according to the overlap degree. As shown in Figure 8, SW is the cross area of the sliding pane and the
target region (indicated by the yellow area), and S is the target area (indicated by the red box). The
overlap degree I is defined as the ratio of SW to S.

I =
SW

S
. (8)
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Similar to the last section, the initial weight ui is the average number of panes in the pooling block
and the updated overlap degree weight distribution is

WI =
(
wI1 , wI2 , · · · , wIi

)
, (9)
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i , i = 1, 2, · · · , N, (10)

where k is an adjustable parameter and ZI is the scaling factor,

ZI =
N∑

i=1

uiI
−kei
i , (11)

which makes WI a probability distribution.
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3. Results

3.1. MSTAR Dataset

The experimental data used in this paper are provided by the SAR sensor of Sandia national
laboratory, collected by a spotlight SAR with 0.3 m × 0.3 m resolution. Defense Advanced Research
Projects Agency and the Air Force Research Laboratory co-hosted the data collection, which is a vital
part of the MSTAR project. The project gathered hundreds of thousands of SAR images, including
target types, azimuth, pitch, barrel turning, and contour configuration changes of various ground
military targets.

The dataset used in this paper includes 10 different classes of ground military vehicles, which
are 2S1 (self-propelled howitzer), BMP2 (infantry fighting vehicle), BRDM2 (armored reconnaissance
vehicle), BTR60 (armored transport vehicle), BTR70 (armored transport vehicle), D7 (bulldozer), T62
(tank), T72 (tank), ZIL131 (cargo truck), and ZSU234 (self-propelled anti-aircraft gun) as shown in
Figure 9. The same type of target in the training set and the test set has the same model number, but
their imaging elevation angle and azimuth angle are different. The training SAR image was collected
at 17 pitch angles and the test SAR image was collected at 15 pitch angles, a difference of 2 pitch angles
that can be considered negligible. The sample numbers of each target type in the dataset are different
and are listed in Table 2. The initial size of samples is 128 * 128, and then images are cut into size
96 * 96 to reduce the amount of computation.
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Table 2. Ten classes of moving and stationary target acquisition and recognition (MSTAR) targets and
their sample numbers.

Training Set Test Set

2S1 299 274
BMP2 233 195

BRDM2 298 274
BTR60 256 195
BTR70 233 196

D7 299 274
T62 298 273
T72 232 196

ZIL131 299 274
ZSU234 299 274

Total 2746 2425

3.2. Classification Results of Optimized gcForest

The hardware environment producing these experiment results in this paper is a computer using
an Intel Core I5-6500 CPU of 3.20 GHz with a 64-bit operating system and 24 GB of internal storage.
It is worth noticing that the running efficiency of gcForest and optimized gcForest is good without
GPU acceleration.

Table 3 shows the confusion matrix for the classification results of the MSTAR dataset using the
parameter optimized gcForest, which is described in Section 4. The rows in the confusion matrix
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represent the actual target category, and the columns represent the experimentally predicted category.
The experiment results demonstrate that deep forest can obtain high classification accuracy in most
categories. It is feasible to apply deep forest to SAR target classification, but the algorithm still needs
further improvement. The classification accuracies of BMP2 and BTR60 are not satisfactory, and other
categories are prone to be misconceived as T72 and ZIL131. The main reason for these cases is that
different incident angles of the electromagnetic wave have different contributions to the final imaging
results, making the same vehicle object look completely different.

Table 3. Confusion matrix of the MSTAR dataset using gcForest.

2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Recall

2S1 261 3 3 4 0 1 1 0 0 1 95.26%
BMP2 0 170 2 9 2 0 0 12 0 0 87.18%

BRDM2 0 0 268 0 0 0 0 0 1 5 97.81%
BTR60 0 1 4 173 4 0 0 2 11 0 88.72%
BTR70 0 0 0 1 193 0 0 2 0 0 98.47%

D7 0 0 0 0 0 271 0 0 3 0 98.90%
T62 0 0 0 0 0 0 271 0 1 1 99.27%
T72 0 1 2 0 0 0 0 193 0 0 98.47%

ZIL131 0 0 0 0 0 1 0 0 272 1 99.27%
ZSU234 0 0 0 0 0 1 0 0 0 273 99.63%

Avg. 96.70%

3.3. Effect of Optimized gcForest and Improved gcForests

The MSTAR dataset is then used to evaluate the performance of two improved methods. The first
four rows in Table 4 present the classification results for each class using several kinds of gcForests,
where the initial gcForest is the model using the original parameters. Comparing the results of the
initial gcForest and optimized gcForest, it can be found that the adjustment of parameters has greatly
improved the classification accuracy of gcForest. This part will be explained in detail in the next section.
The distance and overlap gcForests using optimized parameters further improve the classification
accuracy, and the latter one improved BMP2 and BTR60 significantly.

Table 4. Detailed comparison of the classification performance under different methods.

2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Avg.

Optimized gcForest 95.26% 87.18% 97.81% 88.72% 98.47% 98.90% 99.27% 98.47% 99.27% 99.64% 96.70%
Distance gcForest 94.16% 85.64% 97.81% 90.77% 98.47% 99.64% 99.27% 98.98% 99.27% 99.64% 96.74%
Overlap gcForest 94.53% 88.21% 97.45% 91.28% 97.96% 98.91% 98.90% 98.47% 99.27% 99.64% 96.78%
Initial gcForest 56.57% 80.00% 71.17% 84.10% 90.31% 87.23% 63.74% 90.31% 99.64% 99.64% 81.77%

MSCAE 97.44% 85.64% 94.16% 99.48% 97.44% 98.91% 99.49% 92.67% 99.27% 99.64% 96.54%
ED-AE 93.80% 87.90% 96.72% 91.79% 92.86% 98.91% 94.14% 79.55% 94.53% 99.64% 91.29%
NMF 100% 91.01% 97.91% 94.87% 97.87% 98.32% 96.38% 94.70% 97.27% 95.54% 94.20%
MSR 88.1% 76.02% 78.2% 97.8% 97.1% 99.3% 96.9% 99.3% 97.4% 99.6% 92.79%

Riemannian Manifolds 88.3% 96.9% 82.1% 98.5% 96.7% 99.3% 99.6% 97.8% 99.6% 99.6% 94.88%

Table 4 also lists the results of comparative methods, namely, MSCAE, Non-negative Matrix
Factorisation (NMF) [37], ED-AE, Sparse Representation of Monogenic Signal (MSR) [38], and
Riemannian Manifolds [39]. The training results obtained by the comparison approach in this paper
are all based on the dataset without artificial expansion. It is not hard to find that the classification
accuracies of the optimized and the two improved gcForests are higher than the other algorithms.

4. Discussion

This section discusses the influence of classifiers and parameter selection on multi-grained
scanning and cascade forest respectively, based on the working process of gcForest, and then selects
the most suitable training parameters for the MSTAR dataset.
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The default parameters of gcForest are listed in Table 5. The training and test set classification
accuracies are 98.18% and 81.77%. Training time is divided into two parts: Multi-grained scanning
costs 567,858 s, cascade takes 126,179 s, and the total time consumed is 8 days, 47 min, and 27 s. The
accuracies using initial parameters are not very ideal and the training is inefficient, there is still a
long way to go for a specific category of classification tasks. Therefore, it is necessary to adjust the
parameters to achieve a better classifier performance and shorter time cost. Not only that, comparison
and analysis of the results can further help to understand the working process of gcForest and prove
the feasibility and superiority of the proposed method.

Table 5. Initial experimental parameter setting.

gcForest Models Parameter Setting

Multi-Grained Scanning

Number of Classifiers 2

Types of Classifiers ExtraTreesClassifier
RandomForestClassifier

Condition to Stop Growing Trees Tree depth reaches 500
Size of Sliding Panes 12, 24, 48

Cascade

Number of Classifiers 8

Types of Classifiers

XGBClassifier
RandomForestClassifier

ExtraTreesClassifier
LogisticRegression

Condition to Stop Growing Trees Tree depth reaches 500

4.1. Factors Affecting Multi-Grained Scanning

This stage involves feature extraction, which enhances the ability of the network to process input
image data. The quality of feature extraction directly affects the accuracy and performance of the
model, and it also influences the training time of the whole network. The following subsections explain
the influence of the sliding pane size, classifier type and classifier parameters on accuracy.

4.1.1. Size of the Sliding Pane

In this experiment, ExtraTreesClassifier is used for classification to observe the influence of the
change of the pane size on the accuracy and training time.

The size of the sliding pane determines the number and completeness of features. Sliding panes
that are too small can cause the target to be too scattered, with most of them not even having parts
associated with the target. Experiment results listed in Table 6 demonstrate that a small-pane size not
only leads to a decrease in accuracy, but also significantly reduces training efficiency. Too large a pane
size may contain lots of useless background information, which also reduces training accuracy to some
extent but has little effect.

Table 6. Effects of different sliding panes sizes on accuracy and training time.

12 * 12 24 * 24 36 * 36 48 * 48 60 * 60 72 * 72 84 * 84 90 * 90 96 * 96

Training Set 57.74% 69.92% 78.08% 83.72% 84.71% 86.72% 89.15% 90.05% 89.15%
Test Set 29.44% 36.54% 45.24% 57.86% 63.55% 68.82% 76.54% 80.54% 79.55%

Training Time (s) 97,024 89,666 63,686 55,896 40,255 11,122 1504 399 19

4.1.2. Type of Classifiers

In theory, gcForest can use any kind of classifier, and it imports various kinds of base classifiers
to enhance model diversity. Unlike the original setting, this experiment adds LogisticRegression at
the multi-grained scanning stage, the sliding pane size is set as 84, and the parameter settings of the
classifiers are formulated in Table 7.
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Table 7. Original experimental parameter setting of multi-grained scanning.

Classifier Types Parameter Setting

RandomForestClassifier
Criterion = ‘gini’, max_features = sqrt(n_features),

n_estimators = 500, max_depth = 100,
min_samples_leaf = 10

ExtraTreesClassifier
Criterion = ‘gini’, max_features = sqrt(n_features),

n_estimators = 500, max_depth = 100,
min_samples_leaf = 10

LogisticRegression Penalty = ‘l2’, tol = 0.0001

Table 8 illustrates the accuracy of each classifier. RandomForestClassifier and ExtraTreesClassifier
achieve high accuracy on the training set, but the accuracies of their test sets are slightly lower, while
LogisticRegression has better accuracy in both sets. However, in the multi-grained scanning phase,
LogisticRegression significantly increases the memory footprint and reduces the training speed, so it
will not be used on a large scale.

Table 8. Accuracy using different classifiers.

Classifier Types Training Set Test Set

RandomForestClassifier 88.64% 72.70%
ExtraTreesClassifier 87.98% 76.62%
LogisticRegression 86.13% 85.65%

4.1.3. Size of Classifier

The parameter adjustment of the classifier mainly focuses on the number of estimators and the
max depth, which will affect the classification accuracy and training speed. Five groups of parameters
are used in this experiment to observe their effects. The parameters are adjusted up and down
proportionally centered on n_estimators = 500, max_depth = 100. Table 9 illustrates their influence on
accuracy, and Figure 10 shows the corresponding time consumption.

Table 9. Accuracy of RandomForestClassifier and ExtraTreesClassifier with different sizes.

Parameter Setting RandomForestClassifier ExtraTreesClassifier

Training Set Test Set Training Set Test Set

n_estimators = 100,
max_depth = 20 88.20% 72.49% 88.60% 76.21%

n_estimators = 250,
max_depth = 50 87.91% 72.78% 89.29% 76.26%

n_estimators = 500,
max_depth = 100 88.93% 72.91% 89.15% 76.54%

n_estimators = 600,
max_depth = 120 88.35% 72.78% 87.87% 76.78%

n_estimators = 750,
max_depth = 150 89.15% 72.82% 88.75% 76.41%

The results show that for the same classifier, the variation of parameters has little effect on the
classification accuracy, but the accuracies of different classifiers using the same parameter are quite
different. ExtraTreesClassifier takes less time and performs better than RandomForestClassifier. On the
premise of ensuring the classification accuracy, especially that of the test set, the final model in this stage
selects a parameter that uses less training time. Finally, RandomForestClassifier and ExtraTreesClassifier
choose n_estimators = 500, max_depth = 100 and n_estimators = 600, max_depth = 120 as their
parameters, respectively.
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Combined with the previous discussion, the classifiers selection and their parameters settings of
the multi-grained scanning stage are listed in the following Table 10. As can be seen from Table 17
in Section 4.3, the improvement of multi-grained scanning plays a significant role in shortening the
training time.
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Table 10. Final configuration of multi-grained scanning.

Classifier Types Parameter Setting Pane Size

ExtraTreesClassifier
Criterion = ‘gini’, max_features =
sqrt(n_features), n_estimators =

600, max_depth = 120
72, 84, 90, 96

RandomForestClassifier
Criterion = ‘gini’, max_features =
sqrt(n_features), n_estimators =

500, max_depth = 100
72, 84, 90, 96

LogisticRegression Penalty = ‘l2’, tol = 0.0001 84, 90

4.2. Factors Affecting Cascade

Cascade forest carries the predictive results trained by multi-grained scanning as a new extracted
feature for training classification. This section discusses the effects of the type, parameter setting, and
quantity of classifiers inside the cascade forest in detail.

4.2.1. Type of Classifier

Based on the ensemble learning theory, the introduction of individual classifiers with differences
can improve the overall performance of the network which is also the foundation of the gcForest
algorithm. Therefore, a new classifier SGDClassifier is introduced to improve the performance of
gcForest. The parameter setting is shown in Table 11.

The average classification accuracies of each layer are shown in Table 12. The accuracies of built-in
classifiers are listed in the first five lines, and the last line is that of gcForest configured with these
parameters. Figures 11 and 12 records the changes in the accuracy of the training set and test set at
each layer of the built-in classifiers and gcForest.
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Table 11. Initial experimental parameter setting of the cascade forest.

Classifier Types Parameter Setting

ExtraTreesClassifier Criterion = ‘gini’, max_features = sqrt(n_features),
n_estimators = 500, max_depth = 100

RandomForestClassifier Criterion = ‘gini’, max_features = sqrt(n_features),
n_estimators = 500, max_depth = 100

XGBClassifier
base_score = 0.5, booster = ‘gbtree’, max_depth = 5,
learning_rate = 0.1, n_estimators = 500, objective =

‘multi: softprob’
LogisticRegression Penalty = ‘l2’, tol = 0.0001

SGDClassifier Penalty = ‘l2’, loss = ‘modified_huber’

Table 12. Mean classification accuracy of gcForest and built-in classifiers.

Classifier Types Training Set Test Set

ExtraTreesClassifier 98.82% 94.88%
RandomForestClassifier 98.77% 94.60%

XGBClassifier 98.62% 95.20%
LogisticRegression 98.80% 95.52%

SGDClassifier 97.41% 95.96%
gcForest 98.81% 95.52%
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During the training stage, the performance of the SGDClassifier is not as good as the other four
basic classifiers, but in the test stage, the accuracy of the SGDClassifier is the best. However, two
classifiers, ExtraTreesClassifier and RandomForestClassifier, that achieved better performances in the
training stage turned out to be worse in testing. GcForest integrates these five kinds of classifiers and
achieves high accuracy and stable performance in both stages.

On account of the classification accuracies of ExtraTreesClassifier and RandomForestClassifier
falling short of the other three classifiers and being lower than that of gcForest, an experiment was
carried out using a new classifier combination. It used each of the above-mentioned classifiers, except
for ExtraTreesClassifier and RandomForestClassifier. The gcForest accuracy using this combination
was 98.43% in the training set and 95.84% in the test set. This result is just slightly better than the
result above, which uses a network without optimization. To some extent, the result also shows
that increasing the diversity of classifiers in gcForest is beneficial to improving its performance. The
classifiers used in the network support each other and play a complementary role.

4.2.2. Parameter Selection of Built-In Classifiers

This part debates the effects of classifier size and loss function selection on experiment results
from three perspectives, respectively.

i. Size of Two Forest Classifiers
Similar to the experiment in the previous section, several combinations of parameters are selected

to compare their effects on the test set. Their influence on classification accuracy is shown in Figures 13
and 14, where different numbers of estimators are represented by different colors, their corresponding
descriptions are listed below, and the max depths corresponding to estimators’ number are listed on
the Y-axis. These parameter settings have a slight effect on accuracy, and the training time increases
as the estimator number and max depth increase. Except for the first two sets of parameters, the
average costing time per layer of RandomForest is 33.4 s and ExtraTreesClassifier is 14.2 s. These
results indicated that ExtraTreesClassifier performs quickly. In consideration of time consumption and
slight differences in accuracy, RandomForestClassifier selects max_depth = 100, n_estimators = 600
and ExtraTreesClassifier selects max_depth = 100, n_estimators = 500 as the model parameters in the
following experiments.
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ii. Size of XGBClassifier
The performance verification of the XGBClassifier is divided into three groups according to the

numbers of estimators, which are 500, 750, and 1000, and they are distinguished by three colors in
Figure 15. For each group, there are three kinds of max depth for the estimators, which are 5, 6, and 10.
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Figure 15 shows the max depth required for each set of estimators to obtain the best classification
results; the bar chart shows the accuracy and the line chart represents the average training time. The
training time very closely relates to the number of estimators used in XGBClassifier; classifiers with
the same estimator number but different max depths take almost the same amount of time. Therefore,
the training time of the classifier with the same number of estimators is averaged to represent the
time cost. It is not hard to find from the composite structure diagram that classification accuracy
can be improved by using more estimators, but the more estimators are used, the more time it takes.
Considering the accuracy and time consumption, the alternative parameters are chosen as max_depth
= 10, n_estimators = 750 and max_depth = 5, n_estimators = 500.

iii. Loss Function of SGDClassifier
SGDClassifier is a simple and effective classification method. Since gradient descent is extremely

sensitive to the range of data, it is necessary to adjust its parameters. In this experiment, the loss
functions are chosen as modified_huber and log. Modified_huber is a smooth hinge loss function, where
the hinge is a linear support vector machine, and log is a logistic regression function. The loss function
modified_huber only updates the model parameters when the sample violates the marginal constraint.
Table 13 shows that the classification accuracy of modified_huber is not as high as that of log in both
datasets, so log is selected as the final loss function of the SGDClassifier.
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Table 13. The average training precision of different loss functions of the SGDClassifier.

Parameter Setting Training Set Test Set

loss = ‘modified_hube’ 95.43% 95.23%
loss = ‘log’ 97.42% 95.37%

4.2.3. Number of Classifiers

It is found from the structure of gcForest that the type and number of classifiers used in the cascade
forest affect the results. The accuracy and generalization performance of the gcForest will improve
with the increase in the number of individual classifiers inside the model, but too many individual
classifiers will lead to a decrease in the diversity among classifiers, which will lead to a performance
decline and magnified calculation of the algorithm. In addition, the number of cascade forest classifiers
is small, so it produces fewer feature vectors, which leads these features to be overtaken by large
quantities of features generated at multi-grained scanning. Therefore, it is particularly important to
choose the number and types of classifiers appropriately.

The analysis in the previous two sections provides a reliable basis for us to make targeted
adjustments for the appropriate number and types of classifiers. XGBClassifier performs better in
gcForest, so its number is raised during the base classifier selection. The choices of the number of each
classifier are indicated in Table 14, their parameter selections are listed in Table 15, and the classification
accuracies of these different combinations are illustrated in Figure 16.

Table 14. Selection of the number and combination of different classifiers.

Classifier Type Classifier Number

5 6 8 9 10

ExtraTreesClassifier 1 1 1 1 1
RandomForestClassifier 1 1 1 1 1

XGBClassifier (max_depth = 10, n_estimators = 750) 1 1 1 2 2
XGBClassifier (max_depth = 5, n_estimators = 500) 0 1 1 1 2

LogisticRegression 1 1 2 2 2
SGDClassifier 1 1 2 2 2

Table 15. Optimized classifier selection and its parameter settings.

Classifier Type Parameter Setting

ExtraTreesClassifier Criterion = ‘gini’, max_features = sqrt(n_features), n_estimators = 500,
max_depth = 100

RandomForestClassifier Criterion = ‘gini’, max_features = sqrt(n_features), n_estimators = 600,
max_depth = 100

XGBClassifier base_score = 0.5, booster = ‘gbtree’, max_depth = 10, learning_rate = 0.1,
n_estimators = 750, objective = ‘multi: softprob’

XGBClassifier base_score = 0.5, booster = ‘gbtree’, max_depth = 5, learning_rate = 0.1,
n_estimators = 500, objective = ‘multi: softprob’

LogisticRegression Penalty = ‘l2’, tol = 0.0001
SGDClassifier Penalty = ‘l2’, loss = ‘log’

In order to reach the optimal outcome under the condition of any data size, gcForest will
automatically determine its number of training layers. Therefore, the overall training time of gcForest
cannot be determined in advance, which is not the focus of attention, so only the average training time
of each layer is recorded here.

The results prove that a suitable parameter selection can greatly improve classification accuracy.
Moreover, an appropriate increase in the number of XGBClassifier used in cascade forest improves the
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classification accuracy to a certain extent, but at the same time, this increase in number also leads to an
increase in the training time per layer.
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4.3. Results Contrast

The final parameters used in the gcForest model are listed in Table 16. Tables 4 and 17 show
the classification results and training time comparison before and after optimization. It can be seen
in Table 4 that after parameter optimization, the classification accuracy has been greatly improved.
Furthermore, the classification of augmented MSTAR datasets using optimized and improved gcForests
is also more accurate than the methods proposed in recent years.

Table 16. Optimized experimental parameter setting.

gcForest Models Parameter Setting

Multi-Grained
Scanning

Number of Classifiers 3
Size of Sliding Panes 72, 84, 90, 96

Types of Classifiers
ExtraTreesClassifier Criterion = ‘gini’, max_features = sqrt(n_features), n_estimators =

600, max_depth = 120

RandomForestClassifier Criterion = ‘gini’, max_features = sqrt(n_features), n_estimators =
500, max_depth = 100

LogisticRegression Penalty = ‘l2’, tol = 0.0001

Cascade

Number of Classifiers 6

Types of Classifiers

ExtraTreesClassifier Criterion = ‘gini’, max_features = sqrt(n_features), n_estimators =
500, max_depth = 100

RandomForestClassifier Criterion = ‘gini’, max_features = sqrt(n_features), n_estimators =
600, max_depth = 100

XGBClassifier base_score = 0.5, booster = ‘gbtree’, max_depth = 10, learning_rate
= 0.1, n_estimators = 750, objective = ‘multi: softprob’

XGBClassifier base_score = 0.5, booster = ‘gbtree’, max_depth = 5, learning_rate =
0.1, n_estimators = 500, objective = ‘multi: softprob’

LogisticRegression penalty = ‘l2’, tol = 0.0001
SGDClassifier penalty = ‘l2’, loss = ‘log’

Table 17. Time consumption of each stage and each layer.

Cost Time (s) Initial Optimized Distance Overlap

Multi-Grained
Scanning (Total) 567,868 67,169 67,169 67,169

Cascade (Total) 126,179 37,954 56,975 56,323
Cascade (Each layer) 9801 1796 1859 1922

gcForest (Total) 694,047 105,123 124,144 123,492
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The gcForest terminates its training automatically, which means that the layer number and training
time of the cascade forest are uncertain. On this account, although the total time consumption of cascade
forest needs to be paid attention to, it is more important to pay attention to the time consumption of
each layer. Since the optimized gcForest, distance gcForest, and overlap gcForest use the same features
generated by multi-grained scanning, they have the same training time at multi-grained scanning.
Although the time consumption of the two optimization algorithms is slightly increased, it brings an
improvement in classification accuracy, especially for the two categories of BMP2 and BTR60.

5. Conclusions

In this paper, a novel deep forest method implemented by the gcForest is used to explore the
field of SAR target classification. This is the first time that such an experiment applied this method
to SAR target classification and achieved satisfactory results. At present, most NN classification
methods need to expand the dataset by means of rotation, stretching, and arbitrary clipping to improve
their classification accuracy, but the experimental results in this paper use no artificially extended
dataset. The gcForest is not sensitive to hyper-parameters and can achieve a good classification
effect only by using the original parameters. Of course, as proved by the experiments presented in
this paper, a more suitable selection of parameters will improve the classification accuracy for the
specific classification task. Compared with NN methods, gcForest’s calculation scale is much smaller,
the training time is much shorter, and it is much easier to understand the working process of the
network. The gcForest model can automatically determine the optimal number of training layers
and terminate the classification process. In addition, this paper proposes two preliminary optimized
methods, distance gcForest and overlap gcForest, aiming at data features for further improvement,
and some results were achieved. Compared with several classification experiments without dataset
enlargement, the optimized gcForest and improved gcForests achieve the best accuracy. In future
studies, more targeted improvement schemes will be proposed for SAR target characteristics and
applied to a wider range of extension conditions.
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