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Abstract: Extracting spatial and spectral features through deep neural networks has become an
effective means of classification of hyperspectral images. However, most networks rarely consider
the extraction of multi-scale spatial features and cannot fully integrate spatial and spectral features.
In order to solve these problems, this paper proposes a multi-scale and multi-level spectral-spatial
feature fusion network (MSSN) for hyperspectral image classification. The network uses the original
3D cube as input data and does not need to use feature engineering. In the MSSN, using different scale
neighborhood blocks as the input of the network, the spectral-spatial features of different scales can be
effectively extracted. The proposed 3D–2D alternating residual block combines the spectral features
extracted by the three-dimensional convolutional neural network (3D-CNN) with the spatial features
extracted by the two-dimensional convolutional neural network (2D-CNN). It not only achieves the
fusion of spectral features and spatial features but also achieves the fusion of high-level features and
low-level features. Experimental results on four hyperspectral datasets show that this method is
superior to several state-of-the-art classification methods for hyperspectral images.

Keywords: hyperspectral image classification; convolution neural network; multi-scale; 3D–2D
alternating residual block

1. Introduction

Hyperspectral images (HSIs) have hundreds of continuous spectral bands, and there is a significant
correlation between these different bands. At the same time, different types of land-cover in HSIs
have different reflections in different spectral bands. Hence, the spectral features of the pixels can be
determined according to the spectral reflection values of the pixels at each band. Due to the above
characteristics, HSIs are widely used in agricultural planning [1], disaster prevention [2], resource
exploration [3], environmental monitoring [4], and other fields. For instance, in the field of resource
exploration, abundant geometric spatial information and the spectral information in HSIs can be used
to distinguish the characteristics of different substances, which ensures that the objects that cannot
be detected in wide band multispectral remote sensing images are able to be detected in HSIs [5].
Thus, improving the classification accuracy of HSIs can improve the accuracy of target detection, make
resource detection more accurate, and also make environmental monitoring more comprehensive,
which further improves the work efficiency and saves engineering costs. Although HSIs contain a
wealth of spatial and spectral information, it is often difficult to obtain enough training samples in
practice, leading to “the curse of dimensionality”. “The curse of dimensionality” means that the
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classification efficiency of HSIs with high dimensions will be reduced under limited training samples.
Hence, dimensionality reduction operations are often important in the classification and processing
of HSIs. Feature selection and feature extraction are two basic methods used for implementing
dimensionality reduction operations. Feature selection [6–8] aims to select a representative spectral
band from the original HSI. This method can greatly preserve the physical meaning of the data but
may lose a lot of important information. Traditional methods include cluster-based methods [9]
and ranking-based methods [10]. Feature extraction aims to extract useful features in HSIs through
mathematical transformation, but it will destroy the structural information of the data. Commonly
used methods include principal component analysis (PCA) [11,12], independent component analysis
(ICA) [13,14], and linear discriminant analysis (LDA) [15]. Whether it is feature selection or feature
extraction, it may affect the correlation between the structural information of the HSI and the spectral
band to some extent.

To address the above problems, many methods of machine learning have been proposed to
improve the classification accuracy on the basis of avoiding the destruction of the original structure
information. Traditional HSI classification methods, like support vector machine (SVM) [16,17] and
random forest [18], have focused on extracting spectral features of HSIs while ignoring spatial features.
As a typical deep learning model, the stacked autoencoder (SAE) [19,20] can extract both spatial and
spectral information and then fuse them for HSI classification. Deep belief networks (DBN) [21]
and restricted Boltzmann machines [22] have been proposed for combining spatial information and
spectral information of HSIs. However, all of the above methods use one-dimensional feature vectors
as the input and do not fully utilize the spatial features in HSIs. Considering the above problems,
the three-dimensional convolutional neural network (3D-CNN) method [23,24] has selected the
neighborhood block as the input of the network model and has simultaneously extracted the spectral
and spatial features from the original HSI to obtain better classification accuracy. In order to extract
deeper spatial-spectral features, residual learning [25] has been introduced into the convolutional
neural network, where the residual network [26–28] helped to train deeper network models and
solved the vanishing gradient problem [29,30]. Yang et al. [31] have proposed a two-branch deep
convolutional neural network in which one branch is used to extract spectral features and the other
branch is used to extract spatial features. A model based on transfer learning has been used to train
model parameters and improve the classification performance with limited training samples. However,
this method still uses one-dimensional feature vectors as the input when extracting spectral features
and does not consider the correlation between different bands. Zhong et al. [32] have proposed
a method for classifying HSIs using an end-to-end spectral-spatial residual network (SSRN). The
method takes the original 3D cube as input data and does not need to use feature engineering. In
the end-to-end spectral-space residual network, the spectral and spatial residual blocks continuously
learn recognition features from the rich spectral features and spatial backgrounds in the HSI. The
spectral feature obtained by the three-dimensional convolution neural network and the spatial feature
obtained by the two-dimensional convolution neural network are fused in a cascade manner. Finally,
the fused features are input into the classification layer for HSI classification. However, this method
only extracts a single-scale neighborhood block as an input. Single-scale features do not perform well
in overall classification accuracy. Song et al. [33] have proposed a deep feature fusion network (DFFN)
for HSI classification. The network introduces residual learning to optimize multiple convolution
layers as its own mapping. It can simplify the parameters of the network model and is conducive
to back propagation. Moreover, the network fuses different levels of output and further improves
the classification accuracy. However, this method only combines the output of three levels and
the selection of the output layer that needs to be fused was not discussed in detail by the authors.
Meng et al. [34] have proposed a new multipath residual network (MPRN) to deal with the problem
that deepening network layers result in slowly increasing classification accuracy. The network uses
a multipath residual function in parallel instead of stacking multiple residual blocks in the original
residual network, making the network wider rather than deeper. A multipath residual network greatly
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reduces the redundancy parameters of the network and makes full use of each residual block. However,
the network only uses a multipath two-dimensional residual network for feature extraction, which is
not sufficient for spectral feature extraction. In addition, most of the existing deep learning models
only consider the fusion of spectral and spatial features at the single scale without considering the rich
correlation of spectral and spatial features at the multi scale.

Hence, there are still many problems with the existing methods, including insufficient use of scale
features, insufficient fusion of spectral and spatial features, and a vanishing gradient problem. To
solve these problems and extract sufficient spatial-spectral features from the network, we propose a
multi-scale spatial-spectral feature and multi-level feature fusion network (MSSN) for HSI classification.
Neighborhood blocks of three different scales are used as the input of the network to extract features
of different scales in HSIs. Subsequently, the residual learning block can make full use of the strong
correlation of the multi-scale features to extract more discriminant features.

The main contributions of this paper are given below.
(1) Multi-scale feature fusion is carried out by taking three different scales of neighborhood blocks

as the input of the network.
(2) The 3D-CNN and the two-dimensional convolution neural network (2D-CNN) are connected

in a cascaded way, ensuring that the model can extract more discriminant features by fusing spectral
and spatial features. In addition, the proposed 3D–2D alternating residual block fully fuses low-level
features and high-level features.

(3) A global average pooling layer is used instead of a full connection layer to reduce model
parameters and prevent over-fitting.

The rest of this paper is arranged as follows. Section 2 describes the detailed architecture of our
approach. The third section introduces the experiments of MSSN and several state-of-the-art methods
on four data sets. Finally, the fourth section provides the conclusion to this paper.

2. Methodology

In this section the proposed multi-scale and multi-level spatial-spectral feature fusion network
(MSSN) for HSI classification is introduced in detail. All available data are divided into three
groups, namely, the training set, testing set, and validation set. Assume a hyperspectral data set
X = {x1, x2, . . . , xN} ∈ R1×1×b where N denotes the number of labeled pixels and b denotes the number
of spectral bands. Y =

{
y1, y2, . . . , yN

}
∈ R1×1×L is the corresponding one-hot label vector, where L

denotes the category of objects. The neighborhood blocks of different sizes are cut from the pixels
in X and a new data set Z = {z1, z2, . . . , zN} ∈ RH×H×L is established, where H ×H represents the size
of the neighborhood blocks. To fully extract the spectral and multi-scale features of HSIs, three 3D
cubes of different scale neighborhood blocks are taken as the input of the MSSN network, which
can be expressed as a training set, Z1 =

{
Z1

1, Z1
2, Z1

3

}
, validation set, Z2 =

{
Z2

1, Z2
2, Z2

3

}
, and testing set,

Z3 =
{
Z3

1, Z3
2, Z3

3

}
, respectively. Their corresponding one-hot label vector sets are Y1 =

{
Y1

1, Y1
2, Y1

3

}
,

Y2 =
{
Y2

1, Y2
2, Y2

3

}
, and Y3 =

{
Y3

1, Y3
2, Y3

3

}
, respectively. The MSSN network trains itself hundreds of

epochs through training set Z1 and its corresponding one-hot label vector set Y1. In each epoch, the
MSSN network updates network parameters using Z1 and Y1. Then, the temporary model generated
by the network is monitored by the validation set Z2 and its corresponding label vector set Y2. In other
words, the validation set is used to test the temporary model. If the classification accuracy (named
the validation rate here) is higher than before, the parameters of the new temporary model will be
recorded. The best model with the highest validation rate will be obtained after all the training epochs
are finished. Finally, the testing set Z3 is used to test and evaluate the best model. Figure 1 shows the
flow chart of the procedure by which MSSN deals with HSI classification.
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Figure 1. The flow chart of the multi-scale and multi-level spectral-spatial feature fusion network
(MSSN) dealing with hyperspectral image (HSI) classification.

2.1. Refining Spectral and Spatial Features via Continuous 3D–2D Alternating Residual Blocks

The CNN model has been widely used in HSI classification and has achieved good results.
However, with the increase in network layers, the classification accuracy does not increase but
decreases. There are two reasons for this phenomenon. Firstly, using a small number of samples to
train complex network models results in an over-fitting phenomenon which leads to the reduction of
classification accuracy. Secondly, when using the back-propagation method to calculate derivatives,
with the increase in the depth of the network, the amplitude value of the gradient of back propagation
(from the output layer to the initial layers of the network) is sharply reduced. As a result, the derivative
of the whole loss function with respect to the weights of the first several layers is very small. In this
way, when the gradient descent method is used, the weights of the initial layers change very slowly,
meaning they cannot learn features from the samples effectively. However, by adding an identity
shortcut connection between layers to construct residual blocks, the problem of precision reduction can
be reduced [35]. For this reason, we designed a 3D–2D alternating residual block to extract spectral
and spatial features from the original three-dimensional HSI cube continuously. The residual block
connection method not only solves the vanishing gradient problem but also fully fuses the spectral
features extracted by 3D-CNN with the spatial features extracted by 2D-CNN. As shown in Figure 2,
the 3D convolution layer and the 2D convolution layer are alternately connected in the form of a
residual. Such a structure can be conducive to the back propagation of the gradient in the network,
thus improving the classification accuracy while solving the vanishing gradient problem.
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In the 3D–2D alternating residual block shown in Figure 2 we take the first alternating residual
block as an example to introduce the proposed 3D–2D alternating residual block. In Figure 2, xh, xh+1,
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xh+2, and xh+3 represent the four characteristic tensors obtained by 3D-CNN, and xh+4 represents
the first characteristic tensor obtained by 2D-CNN. By a padding strategy, the space size of feature
tensors xh+1, xh+2, and xh+3 are kept the same and are unchanged. Then, the size of the first feature
tensor xh obtained by the 3D-CNN is converted to be the same as the size of the first feature tensor
xh+4 obtained by the 2D-CNN, which is conducive to self-mapping. The output Y

(
xh

)
of the 3D–2D

alternating residual block can be expressed as

Y
(
xh

)
= F

(
xh, W

)
+ xh, (1)

where W is the convolution kernel and F
(
xh, W

)
is a residual function constructed by three 3D

convolution layers and one 2D convolution layer, which can be expressed as

F
(
xh, W

)
= R

(
R
(
R
(
R
(
xh
∗W1 + b1

)
∗W2 + b2

)
∗W3 + b3

)
∗W4 + b4

)
, (2)

W1, W2, and W3 and b1, b2, and b3 are the weights and biases of the first three three-dimensional
convolution layers in the 3D–2D alternating residual block. W4 and b4 are the weights and biases of
the first two-dimensional convolution layer. R(·) is the activation function of the rectified linear unit
(ReLU).

In addition, we use a batch normalization (BN) operation on each convolution layer to standardize
the learning process of each convolution operation. This strategy can make the training process of the
network model more effective. The BN operations are defined as

BN(xn) =
xn
− E(xn)√

Var(xn) + ε
· γ+ β, (3)

xn denotes the input of layer n before the BN operation. BN(xn) denotes the output of layer n after
the BN operation. E(·) and Var(·) denote the expected function and variance function of the input
characteristic tensor, respectively. γ and β are learnable parameter vectors and ε is a parameter for
numerical stability.

2.2. Fusion of Multi-Scale Features and Optimization by Cross-Entropy Loss

In the proposed MSSN we use 7× 7, 11× 11, and 15× 15 neighborhood blocks of different scales
as the input, and extract spatial-spectral features using 3D–2D alternating residual blocks. The three
scales of the feature tensors are still 7× 7, 11× 11, and 15× 15. To facilitate the fusion of features we
use the transition layer to make the features of the three scales become the same size, i.e., 7× 7. The
transition layer consists of two 3 × 3 convolution layers and pooling layers and the same padding
operation is used to ensure the uniformity of size. Fusion operations can be represented as

M = C1(F1) ⊕C1(F2) ⊕C2(F3), (4)

where M denotes the fusion tensor of the multi-scale features; C1, C2, and C3 denote three different
convolution and pooling operations of the transition layer to ensure that the size of the three features
are consistent; ⊕ denotes the concatenate operation, which fuses the multi-scale spatial-spectral features
after processing; and F1, F2, and F3 represent the three scale features obtained by the proposed
3D–2D alternating residual block. The obtained multi-scale and multi-level spatial-spectral fusion
features are vectorized at the global average pooling layer and then transferred to the softmax layer for
final classification.

After constructing the deep learning model, the model trains hundreds of epochs through training
set Z1 and its corresponding one-hot label vector set Y1. In the training process, the parameters of
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MSSN are updated by back propagation and cross-entropy is set as the objective function, which is
defined as

Loss(ŷ, y) =
L∑

i=1

yi

log
L∑

j=1

eŷ j − ŷi

, (5)

where ŷ =
{
ŷ1, ŷ2, . . . , ŷL

}
is the predictive vector and y =

{
y1, y2, . . . , yL

}
is the ground-truth label

vector. The validation set Z2 is used to monitor the temporary model generated by the network to
judge the classification performance of the model and record the best model. Finally, the testing set Z3

is used to test the recorded best model and to evaluate the generalization ability of the MSSN model.

2.3. MSSN for HSI Classification

Considering the inadequate use of scale features by existing technologies, we propose to use
multi-scale inputs to train the MSSN model and obtain multi-scale features by fusion. HSIs are rich
in spectral and spatial features so we propose a deep learning framework which can extract spatial
features from HSIs successively and alternately, as shown in Figure 3. Compared with a simple
CNN, the MSSN fully fuses the spectral features extracted by 3D-CNN with the spatial features
extracted by 2D-CNN by introducing a continuous 3D–2D alternating residual block which improves
the classification accuracy. We take the Indian Pines hyperspectral data set as an example to describe
the proposed MSSN.

In our proposed MSSN model, 7 × 7 × 200, 11 × 11 × 200, and 15 × 15 × 200 hyperspectral
neighborhood blocks are used as inputs to extract multiple scale features from HSIs. Taking the
7× 7× 200 neighborhood block as an example, in the first convolutional layer, we use 24 3D convolution
kernels of size 1× 1× 20 to convolve the input neighborhood block under the (1, 1, 20) step and get 24
feature cubes of size 7× 7× 10. Because HSIs are rich in spectral features, we use 24 3D convolution
kernels of size 1× 1× 20, which allows the convolution kernel to focus more on spectral features and
quickly reduce dimensions. The resulting feature cube then passes through the 3D–2D alternating
residual block, which alternately and in an orderly fashion connects the spectral features extracted
by the 3D-CNN and the spatial features extracted by the 2D-CNN in the form of a residual. In the
3D-CNN part of the 3D–2D alternating residual block we use 24 3D convolution kernels of size 1× 1× 3
to ensure the extraction of rich spectral features. For the last convolutional layer of this part, we use 24
3D convolution kernels of size 1 × 1 × 10 to guarantee the input size of the 2D-CNN portion of the
3D–2D alternating residual block. In the 2D-CNN portion of the 3D–2D alternating residual block,
we firstly use 240 2D convolution kernels of size 3× 3× 24 to connect 3D-CNN and 2D-CNN. Then,
we use 240 2D convolution kernels of size 3× 3× 240 to extract spatial features in the hyperspectral,
which facilitate residual operations. Finally, we use 24 2D convolution kernels of size 3× 3× 240 to
reduce the dimensions of the feature map. The 3D–2D alternating residual block combines high-level
features and low-level features while merging spatial features and spectral features. For example, our
proposed 3D–2D alternating residual block combines the low-level spectral features extracted by the
first 3D convolutional layer with the high-level spatial features extracted by the first 2D convolutional
layer in the form of residuals. The fusion of the spatial-spectral features and the multi-level features is
realized at the same time.

Because the three kinds of neighborhood blocks still have different scales after the same 3D–2D
alternative residual operation, and in order to facilitate fusion, we transfer the feature tensor obtained
from the 3D–2D alternating residual block to a transition layer so that the output features of the three
scales are all 7× 7× 24. The transition layer consists of two convolution layers, each of which contains
24 2D convolution kernels of size 3 × 3 × 24 and two (3, 3) max pooling layers. In all the 3D–2D
alternating residual blocks and transition layers we use a padding operation to ensure the output size.
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Figure 3. MSSN with 7× 7× 200, 11× 11× 200, and 15× 15× 200 hyperspectral neighborhood blocks as
input; each scale branch of the network contains a 3D–2D alternating residual block and a transition
layer. The global average pooling layer and softmax layer transform 7× 7× 72 fusion features into a
1× 1×N output feature vector ŷ.

Through the above two parts the features of the three scales are fused. We use the global
average pooling layer instead of the full connection layer to transform multi-scale and multi-level
spatial-spectral fusion features of size 7× 7× 72 into feature vectors of size 1× 1× 72, which greatly
reduces the model parameters and prevents the occurrence of an over-fitting phenomenon. Then,
the softmax layer generates the prediction vector set Ŷ =

{
ŷ1, ŷ2, . . . , ŷN

}
∈ R1×1×L according to the

land-cover category of the HSI. In MSSN, the BN operation is used after each convolution layer to
enhance the classification performance of the model.
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3. Experimental Results

3.1. Experimental Data Sets

Four real hyperspectral datasets, including Indian Pines, Pavia University, Salinas scene, and
Kennedy Space Center (KSC) datasets, were used to demonstrate the effectiveness of our proposed
method. These datasets are publicly accessible online [36,37].

(1) Indian Pines data set: the Indian Pines data set is the result of the acquisition of a remote
sensing experimental area in the northwest of the Indian state by Airborne Visible Infrared Imaging
Spectrometer (AVIRIS). The dataset is a remote sensing image 145 pixels in width and height and with
a spatial resolution of 20 meters per pixel. It has 220 wavelengths ranging from 0.4 µm to 2.5 µm. After
20 noise bands are removed, the remaining 200 bands are used in the experiment. The Indian Pines
data set contains 16 types of land-cover and 10,249 samples. In Figure 4, (a) is a false-color image of the
Indian Pines data set and (b) is a ground-truth map of the Indian Pines data set.
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(2) Pavia University data set: the Pavia University data set is the data collected by Reflective Optics
System Imaging Spectrometer (ROSIS) from Pavia University in northeastern Italy. The dataset is 340
pixels wide and 610 pixels high, with a spatial resolution of 1.3 m per pixel. It has 115 wavelengths
ranging from 0.43 µm to 0.86 µm. After 12 noise bands were removed, the remaining 103 bands were
used in the experiment. The data set of Pavia University contains nine types of land-cover and 42,776
samples. In Figure 5, (a) is a False-color image of the Pavia University data set and (b) is a ground-truth
map of the Pavia University data set.

Remote Sens. 2020, 12, x FOR PEER REVIEW  8 of 23 

 

Indian Pines data set contains 16 types of land‐cover and 10,249 samples. In Figure 4, (a) is a false‐

color image of the Indian Pines data set and (b) is a ground‐truth map of the Indian Pines data set. 

   
(a)  (b) 

Figure 4. Indian Pines data set. (a) False‐color image of the Indian Pines data. (b) Ground‐truth map 

of the Indian Pines. 

(2) Pavia University data set:  the Pavia University data set  is  the data collected by Reflective 

Optics  System  Imaging  Spectrometer  (ROSIS)  from  Pavia University  in  northeastern  Italy.  The 

dataset is 340 pixels wide and 610 pixels high, with a spatial resolution of 1.3 m per pixel. It has 115 

wavelengths ranging from 0.43 μm to 0.86 μm. After 12 noise bands were removed, the remaining 

103 bands were used in the experiment. The data set of Pavia University contains nine types of land‐

cover and 42,776 samples. In Figure 5, (a) is a False‐color image of the Pavia University data set and 

(b) is a ground‐truth map of the Pavia University data set. 

   
(a)  (b) 

Figure 5. Pavia University data set. (a) False‐color image of Pavia University. (b) Ground‐truth map 

of Pavia University. 

(3) Salinas scene data set: the Salinas scene data set is collected by the AVIRIS sensor over Salinas 

Valley, California. The data set is a remote sensing image 217 pixels wide and 512 pixels high which 

has a spatial resolution of 3.7 meters per pixel and contains 224 bands. After 20 water absorption 

bands were removed, the remaining 204 bands were used in the experiment. The Salinas scene data 

set contains a total of 16 types of land‐cover and 54,129 samples. In Figure 6, (a) is a false‐color image 

of the Salinas scene data set and (b) is a ground‐truth map of the Salinas scene data set. 

Figure 5. Pavia University data set. (a) False-color image of Pavia University. (b) Ground-truth map of
Pavia University.



Remote Sens. 2020, 12, 125 9 of 23

(3) Salinas scene data set: the Salinas scene data set is collected by the AVIRIS sensor over Salinas
Valley, California. The data set is a remote sensing image 217 pixels wide and 512 pixels high which
has a spatial resolution of 3.7 meters per pixel and contains 224 bands. After 20 water absorption
bands were removed, the remaining 204 bands were used in the experiment. The Salinas scene data set
contains a total of 16 types of land-cover and 54,129 samples. In Figure 6, (a) is a false-color image of
the Salinas scene data set and (b) is a ground-truth map of the Salinas scene data set.Remote Sens. 2020, 12, x FOR PEER REVIEW  9 of 23 
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Figure 6. Salinas scene data set. (a) False-color image of the Salinas scene data. (b) Ground-truth map
of the Salinas scene.

(4) KSC data set: the KSC data set is collected by AVIRIS over the KSC, Florida. The data set is a
remote sensing image 614 pixels wide and 512 pixels high, with a spatial resolution of 18 meters per
pixel. After removing water absorption bands and bands with a low signal-noise ratio, the remaining
176 band data were used in the experiment. The KSC dataset contains a total of 13 types of land-cover
and 5211 samples. In Figure 7, (a) is a false-color image of the KSC data set and (b) is a ground-truth
map of the KSC data set.
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Table 1 introduces a summary of each class of land-cover in four data sets and the number of
samples each contains.

Table 1. Information regarding samples of each class in four data sets.

Indian Pines Salinas Scene

No. Color Class Samples Color Class Samples

1
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No. Color Class Samples Color Class Samples 

1  Asphalt 6631  Scrub 761 

2  Meadows 18,649  Willow Swamp 243 

3  Gravel 2099  CP Hammock 256 

4  Trees 3064  CP Oak 252 

5  Painted metal sheets 1345  Slash Pine 161 

6  Bare Soil 5029  Oak Broadleaf 229 

7  Bitumen 1330  Hardwood Swamp 105 

8  Self-blocking Bricks 3682  Graminoid Marsh 431 

9  Shadows 947  Spartina Marsh 520 

10     Cattail Marsh 404 

11     Salt marsh 419 

12     Mud Flats 503 

13     Water 927 

3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 

Trees 3064

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 25 

 

No. Color Class Samples Color Class Samples 

1  Asphalt 6631  Scrub 761 

2  Meadows 18,649  Willow Swamp 243 

3  Gravel 2099  CP Hammock 256 

4  Trees 3064  CP Oak 252 

5  Painted metal sheets 1345  Slash Pine 161 

6  Bare Soil 5029  Oak Broadleaf 229 

7  Bitumen 1330  Hardwood Swamp 105 

8  Self-blocking Bricks 3682  Graminoid Marsh 431 

9  Shadows 947  Spartina Marsh 520 

10     Cattail Marsh 404 

11     Salt marsh 419 

12     Mud Flats 503 

13     Water 927 

3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 

CP Oak 252

5

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 25 

 

No. Color Class Samples Color Class Samples 

1  Asphalt 6631  Scrub 761 

2  Meadows 18,649  Willow Swamp 243 

3  Gravel 2099  CP Hammock 256 

4  Trees 3064  CP Oak 252 

5  Painted metal sheets 1345  Slash Pine 161 

6  Bare Soil 5029  Oak Broadleaf 229 

7  Bitumen 1330  Hardwood Swamp 105 

8  Self-blocking Bricks 3682  Graminoid Marsh 431 

9  Shadows 947  Spartina Marsh 520 

10     Cattail Marsh 404 

11     Salt marsh 419 

12     Mud Flats 503 

13     Water 927 

3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 

Graminoid Marsh 431
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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10

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 25 

 

No. Color Class Samples Color Class Samples 

1  Asphalt 6631  Scrub 761 

2  Meadows 18,649  Willow Swamp 243 

3  Gravel 2099  CP Hammock 256 

4  Trees 3064  CP Oak 252 

5  Painted metal sheets 1345  Slash Pine 161 

6  Bare Soil 5029  Oak Broadleaf 229 

7  Bitumen 1330  Hardwood Swamp 105 

8  Self-blocking Bricks 3682  Graminoid Marsh 431 

9  Shadows 947  Spartina Marsh 520 

10     Cattail Marsh 404 

11     Salt marsh 419 

12     Mud Flats 503 

13     Water 927 

3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
these, for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of 
each type to form the training set, validation set, and testing set, respectively. For the Pavia University 
and Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form 
the training set, validation set, and testing set, respectively. 

In order to evaluate the classification performance of the proposed method we used the overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used 
the average of five experimental results as the final result. 
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3.2. Experimental Setup 

For each data set the samples were divided into a training set, validation set, and testing set. The 
training set was used to update network parameters. The validation set was used to monitor the 
temporary model generated by the network and retain the model with the highest validation rate. 
The testing set was used to evaluate the classification performance of the preserved model. Among 
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3.2. Experimental Setup

For each data set the samples were divided into a training set, validation set, and testing set. The
training set was used to update network parameters. The validation set was used to monitor the
temporary model generated by the network and retain the model with the highest validation rate. The
testing set was used to evaluate the classification performance of the preserved model. Among these,
for the Indian Pines and KSC datasets, we randomly selected 10%, 10%, and 80% samples of each
type to form the training set, validation set, and testing set, respectively. For the Pavia University and
Salinas scene datasets, we randomly selected 5%, 5%, and 90% samples from each class to form the
training set, validation set, and testing set, respectively.
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In order to evaluate the classification performance of the proposed method we used the overall
accuracy (OA), average accuracy (AA), and Kappa coefficient as the evaluation index [38]. We used
the average of five experimental results as the final result.

In our experiment, after appropriate experimental adjustment, the train epoch was set to 200
times, the batch size was set to 16, the learning rate was set to 0.0001, and the momentum of the BN
operation was set to 0.8. All experiments were carried out on an NVIDIA 1080ti graphics card using
Python language.

3.3. Influence of Parameters

3.3.1. The Effectiveness of Multi-Scale Inputs

In order to verify the validity of the multi-scale idea in this paper, we compared the experimental
results of single-scale and multi-scale inputs on the four data sets proposed. As shown in Table 2, the
experiment was carried out under the input scale conditions of 7× 7, 11× 11, 15× 15, and multi-scale
fusion proposed in this paper. The network structure of each single-scale input (7 × 7 or 11 × 11 or
15× 15) was the same as that of a single branch in MSSN. The data set selection was as described above,
and the effects of different scales on the OA, AA, and Kappa coefficient were able to be observed.

Table 2. The results of different scales on different data sets. Data are given as mean ± standard
deviation. Legend: OA, overall accuracy; AA, average accuracy.

Indian Pines (10%) 7× 7 11× 11 15× 15 7× 7, 11× 11, 15× 15

OA (%) 96.89 ± 0.42 98.16 ± 0.14 98.46 ± 0.13 99.12 ± 0.15
AA (%) 97.70 ± 0.25 96.84 ± 0.91 97.65 ± 0.65 99.23 ± 0.07

Kappa × 100 96.44 ± 0.35 97.90 ± 0.54 98.24 ± 0.18 98.99 ± 0.18

Pavia University (5%) 7× 7 11× 11 15× 15 7× 7, 11× 11, 15× 15

OA (%) 98.91 ± 0.17 99.61 ± 0.12 99.76 ± 0.11 99.94 ± 0.02
AA (%) 99.11 ± 0.24 99.53 ± 0.19 99.64 ± 0.14 99.93 ± 0.05

Kappa × 100 99.36 ± 0.14 99.49 ± 0.16 99.69 ± 0.15 99.92 ± 0.04

Salinas Scene (5%) 7× 7 11× 11 15× 15 7× 7, 11× 11, 15× 15

OA (%) 99.39 ± 0.21 99.46 ± 0.12 99.78 ± 0.08 99.84 ± 0.11
AA (%) 99.52 ± 0.18 99.50 ± 0.15 99.64 ± 0.09 99.88 ± 0.05

Kappa × 100 99.33 ± 0.25 99.49 ± 0.13 99.76 ± 0.19 99.82 ± 0.12

KSC (10%) 7× 7 11× 11 15× 15 7× 7, 11× 11, 15× 15

OA (%) 98.21 ± 0.13 99.22 ± 0.17 99.46 ± 0.09 99.69 ± 0.12
AA (%) 98.65 ± 0.24 99.09 ± 0.25 99.04 ± 0.21 99.54 ± 0.23

Kappa × 100 98.12 ± 0.32 99.17 ± 0.25 99.39 ± 0.18 99.65 ± 0.15

From the results we can see that, first of all, when selecting small-scale blocks such as the 7× 7
neighborhood blocks as the input, in most cases the AA of the experimental results is greater than the
OA. When a large-scale block such as the 15× 15 neighborhood block is selected as the input, the OA
of the experimental results is greater than the AA. For example, the experimental results regarding
the Indian Pines and KSC data sets reflect this well. This indicates that small-scale blocks have a
better classification effect on small and discrete sample categories and that large-scale blocks have a
better classification effect on all the data, but also that neighborhood blocks which are too large may
introduce noise when extracting features of categories that contain fewer samples. Secondly, from
Table 2, it can be seen that the results of multi-scale inputs are superior to those of the single-scale
inputs in three evaluation indexes, showing that multi-scale inputs can generate multi-scale features.
Compared with the single-scale features generated by the single scale inputs, these features have a
richer correlation between spatial structure information and texture information. The idea of scale
feature fusion is used to combine the advantages of the small scale and the large scale, which not
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only improves the overall classification performance of the network but also focuses on the feature
extraction of small samples. The experimental results of four different data sets verify the validity of
the multi-scale feature fusion idea.

3.3.2. The Selection of the Number of 3D–2D Residual Connections in the MSSN

In the 3D–2D alternating residual block proposed above, the 3D-CNN is used to extract spectral
features of HSIs, the 2D-CNN is used to extract spatial features of HSIs, and, finally, the spatial-spectral
features and multi-level features are fused by a 3D–2D alternating residual block. In this section the
number of 3D–2D alternate residual connections is determined by experiments. From Table 3, N
represents the number of 3D–2D alternate residual connections. Different classification accuracies
can be obtained by changing the number of 3D–2D alternating residual connections and the proper
number can be finally determined by classification accuracy. The results are as shown in Table 3.

Table 3. The overall accuracy (%) obtained by the MSSN with different numbers of 3D–2D residual
connections. Data are given as mean ± standard deviation.

N Indian Pines Pavia University Salinas Scene KSC

1 97.52 ± 0.56 98.22 ± 0.23 97.46 ± 0.45 96.69 ± 1.24
2 98.58 ± 0.24 99.15 ± 0.05 98.64 ± 0.25 98.67 ± 0.19
4 99.12 ± 0.15 99.94 ± 0.02 99.84 ± 0.11 99.69 ± 0.12
6 99.05 ± 0.12 99.77 ± 0.09 99.86 ± 0.08 99.42 ± 0.17

It can be seen from Table 3 that when the number of 3D–2D alternating residual connections is 4,
the overall classification accuracy on the four data sets is the best. When the number is 1 or 2, the
network cannot fully extract and fuse the spatial and spectral features of the HSIs. When we continue
to increase the number of 3D–2D alternant residual connections on the basis of 4, it greatly increases
the complexity of the model and causes an over-fitting phenomenon in the training, which reduces the
classification accuracy to a certain extent. In the Salinas scene data set, six 3D–2D alternating residual
connections were found to be slightly higher than four 3D–2D alternating residual connections. The
main reason for this is that Salinas scene data set contains a large number of samples, and each kind of
sample is relatively concentrated, which is conducive to learning and suppresses the occurrence of the
over-fitting phenomenon. According to the experimental results, we chose four 3D–2D alternating
residual connections to construct our proposed 3D–2D alternating residual block.

3.3.3. The Selection of the Learning Rate in the MSSN

As an important super parameter in deep learning, the learning rate determines whether and
when the objective function can converge to the local minimum. The appropriate learning rate can
make the objective function converge to the local minimum value in the appropriate time. In this
subsection, we chose learning rates of 0.01, 0.001, 0.0001, 0.00003, and 0.00001 to train the MSSN model
by using four hyperspectral datasets under the condition that other environments remain unchanged.
Figure 8 shows a line chart of the overall accuracy of the four hyperspectral datasets when selecting
different learning rates.
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Figure 8. Overall accuracy of the four hyperspectral datasets when selecting different learning rates in
the MSSN.

It can be observed from Figure 8 that, in most cases, the polyline corresponding to learning
rates ranging 0.01 to 0.0001 shows an increasing trend. When the learning rate is smaller than 0.0001,
the polyline tends to be flat or even decrease. This is because when the learning rate is too large,
the objective function may skip the local optimal solution in the process of convergence. When the
learning rate is too small, the convergence will be slow, which leads to the failure of the objective
function to converge to the local optimal solution. It can also cause the model to overfit, which leads to
the reduction of accuracy. Hence, we chose a learning rate of 0.0001 as the super parameter used in
our experiments.

3.4. Classification Results of Hyperspectral Datasets

We compared the proposed method with SVM [15] and several state-of-the-art methods:
3D-CNN [22], ResNet [24], SSRN [31], DFFN [32], and MPRN [33].

SVM is a traditional and classical machine learning method which can be used for classification.
3D-CNN extracts spectral and spatial features from HSIs simultaneously using three-dimensional
convolution kernels. ResNet uses the self-mapping idea to extract rich features from HSIs, which is
beneficial to back propagation. SSRN combines the spectral features obtained by three-dimensional
convolution and the spatial features obtained by two-dimensional convolution in a cascade manner,
which ensures that the model can continuously extract spectral features and spatial features. DFFN
combines the features extracted by ResNet in different levels for classification. MPRN proposes the
use of a wider residual network instead of a deeper one for feature extraction. In order to make a fair
comparison, we adjusted the model parameters of these comparison methods to their best state and
trained them in their same experimental environment.

(1) Classification of the Indian Pines data set: Table 4 gives the classification results of various
methods obtained from the Indian Pines data set in terms of three evaluation indicators, namely, OA,
AA, and Kappa. Figure 9 shows the ground-truth map of the Indian Pines dataset and the classification
map of the seven algorithms on the Indian Pines dataset. Figure 10 shows a line chart of the overall
accuracy of the seven algorithms when selecting different percentages of training samples.



Remote Sens. 2020, 12, 125 14 of 23

Table 4. Classification results obtained by different methods on the Indian Pines data set. Data are given
as mean ± standard deviation. Legend: SVM, support vector machine; 3D-CNN, three-dimensional
convolutional neural network; SSRN, spectral-spatial residual network; DFFN, deep feature fusion
network; MPRN, multipath residual network.

Class SVM 3D-CNN ResNet SSRN DFFN MPRN MSSN

1 83.33 59.52 94.44 97.37 100 100 97.14
2 72.78 91.60 96.03 99.35 98.88 99.39 99.41
3 65.19 87.01 98.22 97.62 99.41 97.93 99.45
4 63.08 85.98 95.36 79.98 100 98.97 97.93
5 90.57 88.51 95.04 98.98 98.43 95.30 100
6 95.59 98.93 99.65 98.66 99.99 99.47 99.14
7 69.23 84.62 100 90.48 100 100 100
8 93.51 100 100 100 100 100 100
9 72.22 94.44 66.67 94.44 80 93.33 88.24

10 71.09 84 98.45 97.64 99.51 99.74 97.51
11 86.11 91.04 95.64 98.66 98.18 97.82 99.2
12 72.28 76.03 98.59 98.32 98.15 98.36 98.91
13 96.76 99.46 96.43 100 100 100 100
14 97.89 97.54 99.71 98.33 100 100 100
15 47.71 77.87 85.64 100 99.98 97.71 99.67
16 80.95 97.62 95.83 98.65 95.83 97.22 91.02

OA (%) 81.18 ± 1.54 90.38 ± 0.89 96.92 ± 0.59 98.22 ± 0.25 99.06 ± 0.16 98.71 ± 0.21 99.12 ± 0.15
AA (%) 78.64 ± 1.49 88.39 ± 1.46 96.73 ± 0.85 98.08 ± 0.59 98.24 ± 0.50 98.34 ± 0.60 99.23 ± 0.07

Kappa × 100 78.36 ± 1.02 89.03 ± 0.96 96.49 ± 0.57 97.97 ± 0.85 98.93 ± 0.23 98.34 ± 0.45 99.02 ± 0.18
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Figure 10. Overall classification accuracies obtained by different methods when considering different
percentages of training samples on the Indian Pines data set.

From Table 4, it can be seen that the OA result of MSSN is higher than that of the classical methods
SVM, 3D-CNN, and ResNet by 17.94%, 8.74%, and 2.2%, respectively. MSSN also outperforms the most
advanced methods SSRN, DFFN, and MPRN by 0.9%, 0.06%, and 0.41% in terms of OA, respectively.
It can be observed from Figure 9 that the classification results of SVM and 3D-CNN have an obvious
“phenomenon of salt and pepper”. The classification results of both DFFN and our MSSN are most
similar to the ground truth.

(2) Classification of the Pavia University data set: Table 5 lists the classification results of various
methods on the three evaluation indicators OA, AA and Kappa. Figure 11 shows the ground-truth
map of the Pavia University data set and the classification map of the seven algorithms on the Pavia
University data set. Figure 12 shows a line chart of the overall accuracy of the seven algorithms when
selecting different percentages of training samples.

Table 5. Classification results obtained by different methods on the Pavia University data set. Data are
given as mean ± standard deviation.

Class SVM 3D-CNN ResNet SSRN DFFN MPRN MSSN

1 92.87 95.84 98.81 99.94 99.78 99.89 99.98
2 98.09 98.79 99.95 100 100 99.98 100
3 74.03 87.42 92.93 94.21 98.79 99.68 99.1
4 94.68 96.39 99.64 98.26 96.55 98.76 99.96
5 99.37 99.14 99.83 99.51 99.01 99.42 100
6 85.72 91.27 96.20 100 100 100 100
7 83.07 93.35 96.57 99.58 99.49 100 99.92
8 90.74 95.77 95.98 99.43 98.46 99.45 99.91
9 99.78 97 99.88 100 90.49 98.59 100

OA (%) 93.38 ± 0.68 96.26 ± 0.18 98.51 ± 0.28 99.51 ± 0.09 99.27 ± 0.16 98.71 ± 0.25 99.94 ± 0.02
AA (%) 90.93 ± 0.54 94.99 ± 0.80 98.19 ± 0.75 99.49 ± 0.17 98.63 ± 0.52 98.34 ± 0.33 99.93 ± 0.05

Kappa × 100 91.18 ± 0.82 95.03 ± 0.50 98.03 ± 0.31 97.97 ± 0.12 99.03 ± 0.19 98.34 ± 0.32 99.92 ± 0.04
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It can be seen from Table 5 that the OA result of MSSN is higher than that of the classical methods
SVM, 3D-CNN, and ResNet by 6.56%, 3.68%, and 1.43%, respectively. MSSN also outperforms the most
advanced methods SSRN, DFFN, and MPRN by 0.43%, 0.67%, and 1.23% in terms of OA, respectively.
It can also be found that MSSN obtains the best classification result for almost all classes compared
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with other methods. From Figure 11, it can be observed that the classification results of SVM and
3D-CNN also have an obvious “phenomenon of salt and pepper”. The classification results of SSRN,
DFFN, MPRN, and the proposed MSSN are very similar to the ground truth.

(3) Classification of the Salinas scene data set: Table 6 lists the classification results of various
methods on the three evaluation indicators OA, AA, and Kappa. Figure 13 shows the ground-truth
map of the Salinas scene data set and the classification map of the seven algorithms on the Salinas
scene data set. Figure 14 shows a line chart of the overall accuracy of the seven algorithms when
selecting different percentages of training samples.

Table 6. Classification results obtained by different methods on the Salinas scene data set. Data are
given as mean ± standard deviation.

Class SVM 3D-CNN ResNet SSRN DFFN MPRN MSSN

1 96.8 95.29 99.83 100 100 100 100
2 97.01 99.80 100 100 100 100 100
3 99.31 99.57 100 100 100 100 100
4 98.04 97.58 99.87 99.84 99.52 99.36 99.91
5 96.58 99.84 99.75 99.29 99.96 99.75 98.3
6 95.93 99.04 100 100 100 100 100
7 97.03 97.94 99.93 100 100 100 99.97
8 82.96 93.68 91.86 98.39 98.73 99.49 99.92
9 98.79 98.61 99.85 100 100 100 100

10 87.12 94.09 97.15 100 99.39 100 99.73
11 91.23 94.98 99.07 99.16 97.51 99.48 99.79
12 98.96 99.62 100 100 99.54 100 100
13 93.69 96.9 100 100 100 99.88 100
14 85.55 94.99 99.47 98.76 99.37 100 99.69
15 69.04 87.31 91.38 95.72 98.33 98.37 99.76
16 89.34 95.34 99.94 99.69 99.87 100 100

OA (%) 89.35 ± 0.43 95.56 ± 0.79 96.91 ± 0.25 99.01 ± 0.23 99.38 ± 0.08 99.63 ± 0.16 99.84 ± 0.11
AA (%) 92.34 ± 0.36 96.54 ± 0.64 98.31 ± 0.35 99.57 ± 0.15 99.51 ± 0.19 99.79 ± 0.09 99.88 ± 0.05

Kappa × 100 88.09 ± 0.71 95.06 ± 0.51 96.55 ± 0.48 98.89 ± 0.31 99.31 ± 0.11 99.59 ± 0.06 99.82 ± 0.12

Remote Sens. 2020, 12, x FOR PEER REVIEW  17 of 23 

 

SVM and 3D‐CNN also have an obvious “phenomenon of salt and pepper”. The classification results 

of SSRN, DFFN, MPRN, and the proposed MSSN are very similar to the ground truth.   

(3) Classification of the Salinas scene data set: Table 6 lists the classification results of various 

methods on the three evaluation indicators OA, AA, and Kappa. Figure 13 shows the ground‐truth 

map of the Salinas scene data set and the classification map of the seven algorithms on the Salinas 

scene data set. Figure 14 shows a  line chart of  the overall accuracy of  the seven algorithms when 

selecting different percentages of training samples. 

Table 6. Classification results obtained by different methods on the Salinas scene data set. Data are 

given as mean ± standard deviation. 

Class  SVM  3D‐CNN  ResNet  SSRN  DFFN  MPRN  MSSN 

1  96.8  95.29  99.83  100  100  100  100 

2  97.01  99.80  100  100  100  100  100 

3  99.31  99.57  100  100  100  100  100 

4  98.04  97.58  99.87  99.84  99.52  99.36  99.91 

5  96.58  99.84  99.75  99.29  99.96  99.75  98.3 

6  95.93  99.04  100  100  100  100  100 

7  97.03  97.94  99.93  100  100  100  99.97 

8  82.96  93.68  91.86  98.39  98.73  99.49  99.92 

9  98.79  98.61  99.85  100  100  100  100 

10  87.12  94.09  97.15  100  99.39  100  99.73 

11  91.23  94.98  99.07  99.16  97.51  99.48  99.79 

12  98.96  99.62  100  100  99.54  100  100 

13  93.69  96.9  100  100  100  99.88  100 

14  85.55  94.99  99.47  98.76  99.37  100  99.69 

15  69.04  87.31  91.38  95.72  98.33  98.37  99.76 

16  89.34  95.34  99.94  99.69  99.87  100  100 

OA (%) 
89.35 ± 

0.43 

95.56 ± 

0.79 

96.91 ± 

0.25 

99.01 ± 

0.23 

99.38 ± 

0.08 

99.63 ± 

0.16 

99.84 ± 

0.11 

AA (%) 
92.34 ± 

0.36 

96.54 ± 

0.64 

98.31 ± 

0.35 

99.57 ± 

0.15 

99.51 ± 

0.19 

99.79 ± 

0.09 

99.88 ± 

0.05 

Kappa × 

100 

88.09 ± 

0.71 

95.06 ± 

0.51 

96.55 ± 

0.48 

98.89 ± 

0.31 

99.31 ± 

0.11 

99.59 ± 

0.06 

99.82 ± 

0.12 

 

       
(a)  (b)  (c)  (d) 

Figure 13. Cont.



Remote Sens. 2020, 12, 125 18 of 23

Remote Sens. 2020, 12, x FOR PEER REVIEW  18 of 23 

 

       
(e)  (f)  (g)  (h) 

Figure 13. Classification maps for the Salinas scene data set. (a) Ground truth. (b) SVM. (c) 3D‐CNN. 

(d) ResNet. (e) SSRN. (f) DFFN. (g) MPRN. (h) MSSN. 

 

Figure 14. Overall classification accuracies obtained by different methods when considering different 

percentages of training samples on the Salinas scene data set. 

From Table 6,  it can be  seen  that  the OA  result of MSSN  is higher  than  that of  the classical 

methods  SVM,  3D‐CNN,  and  ResNet  by  10.49%,  4.28%,  and  2.93%,  respectively.  MSSN  also 

outperforms the most advanced methods SSRN, DFFN, and MPRN by 0.83%, 0.46%, and 0.21% in 

terms  of  OA,  respectively.  It  can  be  observed  that  class  8  (Grapes_untrained)  and  class  15 

(Vinyard_untrained) are difficult  to classify, while MSSN achieves  the best effect.  It can be  found 

from Figure 13 that the classification results generated by the proposed MSSN are most similar to the 

ground truth with the best regional consistence.   

(4) Classification of the KSC data set: Table 7 lists the classification results of various methods 

on the three evaluation indicators OA, AA, and Kappa. Figure 15 shows the ground‐truth map of the 

KSC data set and the classification map of the seven algorithms on the KSC data set. Figure 16 shows 

a line chart of the overall accuracy of the seven algorithms when selecting different percentages of 

training samples. 

Figure 13. Classification maps for the Salinas scene data set. (a) Ground truth. (b) SVM. (c) 3D-CNN.
(d) ResNet. (e) SSRN. (f) DFFN. (g) MPRN. (h) MSSN.

Remote Sens. 2020, 12, x FOR PEER REVIEW  18 of 23 

 

       
(e)  (f)  (g)  (h) 

Figure 13. Classification maps for the Salinas scene data set. (a) Ground truth. (b) SVM. (c) 3D‐CNN. 

(d) ResNet. (e) SSRN. (f) DFFN. (g) MPRN. (h) MSSN. 

 

Figure 14. Overall classification accuracies obtained by different methods when considering different 

percentages of training samples on the Salinas scene data set. 

From Table 6,  it can be  seen  that  the OA  result of MSSN  is higher  than  that of  the classical 

methods  SVM,  3D‐CNN,  and  ResNet  by  10.49%,  4.28%,  and  2.93%,  respectively.  MSSN  also 

outperforms the most advanced methods SSRN, DFFN, and MPRN by 0.83%, 0.46%, and 0.21% in 

terms  of  OA,  respectively.  It  can  be  observed  that  class  8  (Grapes_untrained)  and  class  15 

(Vinyard_untrained) are difficult  to classify, while MSSN achieves  the best effect.  It can be  found 

from Figure 13 that the classification results generated by the proposed MSSN are most similar to the 

ground truth with the best regional consistence.   

(4) Classification of the KSC data set: Table 7 lists the classification results of various methods 

on the three evaluation indicators OA, AA, and Kappa. Figure 15 shows the ground‐truth map of the 

KSC data set and the classification map of the seven algorithms on the KSC data set. Figure 16 shows 

a line chart of the overall accuracy of the seven algorithms when selecting different percentages of 

training samples. 

Figure 14. Overall classification accuracies obtained by different methods when considering different
percentages of training samples on the Salinas scene data set.

From Table 6, it can be seen that the OA result of MSSN is higher than that of the classical methods
SVM, 3D-CNN, and ResNet by 10.49%, 4.28%, and 2.93%, respectively. MSSN also outperforms
the most advanced methods SSRN, DFFN, and MPRN by 0.83%, 0.46%, and 0.21% in terms of OA,
respectively. It can be observed that class 8 (Grapes_untrained) and class 15 (Vinyard_untrained)
are difficult to classify, while MSSN achieves the best effect. It can be found from Figure 13 that the
classification results generated by the proposed MSSN are most similar to the ground truth with the
best regional consistence.

(4) Classification of the KSC data set: Table 7 lists the classification results of various methods on
the three evaluation indicators OA, AA, and Kappa. Figure 15 shows the ground-truth map of the
KSC data set and the classification map of the seven algorithms on the KSC data set. Figure 16 shows
a line chart of the overall accuracy of the seven algorithms when selecting different percentages of
training samples.
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Table 7. Classification results obtained by different methods on the KSC data set. Data are given as
mean ± standard deviation.

Class SVM 3D-CNN ResNet SSRN DFFN MPRN MSSN

1 95.18 97.81 97.26 99.84 98.19 100 100
2 86.31 87.21 94.57 100 100 100 100
3 83.55 95.24 97.38 94.76 100 100 99.01
4 73.57 63.87 75.74 95.05 96.91 93.81 100
5 59.31 80.69 82.81 87.5 100 99.24 91.41
6 69.57 87.92 85.64 97.34 100 100 100
7 92.63 92..63 91.76 100 100 72.62 100
8 93.81 97.68 97.37 100 99.71 100 100
9 98.08 96.79 100 100 100 100 100

10 91.21 94.23 100 100 100 100 100
11 95.77 98.41 100 100 100 100 100
12 91.83 95.36 99.01 98.76 100 99.49 100
13 99.28 96.29 100 100 100 100 100

OA (%) 91.18 ± 0.59 93.63 ± 0.47 96.39 ± 0.37 98.87 ± 0.22 99.56 ± 0.09 99.08 ± 0.19 99.68 ± 0.12
AA (%) 86.93 ± 0.86 91.09 ± 0.70 93.01 ± 0.20 98.14 ± 0.57 99.23 ± 0.25 98.46 ± 0.21 99.54 ± 0.23

Kappa × 100 90.17 ± 1.15 92.92 ± 0.62 95.98 ± 0.29 98.74 ± 0.26 99.52 ± 0.12 98.98 ± 0.37 99.65 ± 0.15
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From Table 7, it can be seen that the OA result of MSSN is higher than that of the classical methods
SVM, 3D-CNN, and ResNet by 8.5%, 6.05%, and 3.29%, respectively. MSSN also outperforms the most
advanced methods SSRN, DFFN, and MPRN by 0.81%, 0.12%, and 0.6% in terms of OA, respectively.
We can observe that the proposed MSSN obtains the best classification result for almost every class
compared with other methods.

Overall, MSSN achieved the best classification performance in most categories and the proposed
MSSN achieved the best classification results in terms of OA, AA, and Kappa. There are three main
reasons for this performance improvement: (1) 3D-CNN and 2D-CNN are connected in a cascade way,
which ensures that the model can continuously extract spectral and spatial features; (2) the multi-scale
idea effectively retains the correlation and complementarity between different scales, and integrates
the advantages of each scale; (3) in the special 3D–2D alternating residual block, low-level features
and high-level features are fused, which makes the model easier to train. Compared with SSRN,
which simply combines spatial and spectral information, MSSN introduces the idea of extracting
multi-scale features, which makes full use of the advantages of each scale and integrates the rich
correlation and complementarity between each scale. Compared with DFFN, MSSN does not use
any feature engineering to preprocess the original data, which greatly retains the original spatial
structure information. To some extent, feature engineering will make the processed data lose the
spatial information of the original image and further affect the classification effect.

In order to test the generalization ability and robustness of the proposed MSSN for different
training samples, we randomly selected 5%, 10%, 15%, and 20% of the labeled samples as the training
data of the Indian Pines and KSC data sets and selected 3%, 4%, 5%, and 6% of the labeled samples as
the training data of the Pavia University and Salinas scene data sets. It can be seen from Figures 10, 12,
14 and 16 that when the training data is limited, MSSN can still maintain a high classification accuracy
compared with other single traditional classical methods such as SVM and 3D-CNN, etc. Compared
with other more advanced complex networks such as DFFN and MPRN, the classification results of
MSSN are better than other state-of-the-art methods using different amounts of training data.

4. Conclusions

In this paper a new MSSN deep neural network model was proposed to extract more abundant
features from HSIs and classification. Compared with other existing network models, MSSN is
composed of special 3D–2D alternating residual blocks. A three-dimensional convolution layer and
a two-dimensional convolution layer are alternately connected in the form of a residual, which can
effectively extract and fuse the spatial and spectral information in HSIs. In addition, compared with the
single-scale network model, MSSN proposes the idea of multi-scale feature fusion, which makes full use
of the advantages of each scale and greatly retains the rich correlation and complementarity between
different scales. At the same time, the proposed MSSN model can achieve high classification accuracy
without any feature engineering, which greatly retains the spatial-spectral information of the original
image and makes our method more generalized. Finally, the proposed 3D–2D alternating residual
block can extract more high-level features for classification, and is conducive to back-propagation,
meaning the network model can still maintain a higher classification accuracy in deeper networks.
The experimental results show that the classification results of this method are better than other
state-of-the-art methods for the four datasets. Using fewer training samples, this method can still
maintain good classification performance, which further verifies that the proposed MSSN has good
robustness and generalization ability.

Compared with the classical methods, such as SVM, 3D-CNN, and ResNet, the proposed MSSN
shows overwhelming superiority. Compared with some recent methods, such as DFFN, MPRN,
and SSRN, our MSSN also shows significant advantages. MSSN solves the problem of insufficient
spectral-spatial feature fusion in DFFN. In addition, compared with MPRN and SSRN, the idea of the
multi scale is proposed in MSSN, fully integrating the scale features of HSIs and making MSSN solve
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classification more effectively. Finally, the proposed method solves the problem of gradient vanishing
by using a 3D–2D alternating residual block, which often happens in the deep neural network.

Although multi-scale input brings about a more accurate classification ability, the three-branch
network model also increases the complexity of calculation. In future work we will study a more
lightweight deep learning network model for feature extraction and fusion which can still obtain a
higher classification accuracy.
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