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Abstract: Spatialization of soil formation rate (SFR) is always a difficult problem in soil genesis. In
this study, the dissolution rate in karst areas of China during the period 1983–2015 was estimated
on the basis of geospatial analysis techniques and detection of variation via the law of chemical
thermodynamics in conjunction with long-term serial ecohydrology data. SFR at different lithological
backgrounds was calculated on the basis of the content of acid-insoluble substances. Results showed
that the spatial dissolution rate of carbonate rock ranges between 0 and 106 mm/ka, averaged at
22.51 mm/ka, and the SFR ranges between 10 and 134.93 t km−2 yr−1, averaged at 18.59 t km−2 yr−1.
The dissolution rate and SFR exhibit a slight increasing trend with 0.04 mm/ka and 0.003 t km−2 yr−1,
respectively. The risk for soil erosion was reevaluated on the basis of the SFR results, and the area
with erosion risk and the ecologically safe area were corrected. Results indicated that the area with
erosion risk is four times higher than the ecologically safe area. This study will hopefully instigate
and facilitate the application and popularization of geospatial analysis technology to the research
field of rock weathering and soil formation.
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1. Introduction

Approximately 25% of the world’s population currently depends on the karst ecosystem for
survival [1]. The environment of a karst landscape is fairly vulnerable [2–6], and in many karst areas,
soil erosion and degradation have been regarded as severe geological disasters [7–10]. However, soil
formation rate (SFR) is the key factor and important link restricting the formation and evolution of the
karst ecosystem. Therefore, an in-depth study of the weathering of karst rocks and the formation and
evolution of soil will promote the study and understanding of regional ecological risk assessment.
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In the past several decades, a large scientific literature has reported on this subject of SFR.
Morgan [11] believed that the mean SFR of source rock is ca. 100 t km−2 yr−1, varying from 10 t
km−2 yr−1 to 300 t km−2 yr−1 depending on climatic and other factors. Norman Hudson [12], a soil
conservation scientist, indicated that the mean SFR is approximately 1 cm/12a (equal to 11. 2 t km−2yr−1)
under an ideal soil management condition. Wei QF [13] calculated the SFR in karst areas of south China
and found that developing 1 cm of lime soil takes 13–32 thousand years, with a similar SFR to that in
Yugoslavia wherein developing the same thickness of lime soil takes 20 thousand years. Yuan DX [14]
determined that the time for carbonate rock to develop 1 cm of soil is approximately 2.5–8.5 thousand
years. Cai ZX [15] reported that the SFR in karst areas of Guangxi is approximately 68–143 t km−2

yr−1 (approximately 11.6–24.4 thousand years) based on the dissolution rate of carbonate rock, the
properties during soil formation, and the proportion of rocks. YL [16] found that the SFR in Guizhou
Province is 6.84–103.46 t km−2 yr−1.

At present, the SFR of carbonate rock in karst areas is calculated on the basis of the dissolution rate
of carbonate rock at the experimental scale of positioned observation and the content of acid-insoluble
substances [15–17]. Long-term positioned observation only solves problems at the point or section
scale. This approach requires considerable manpower, material resources, and financial resources;
it is not applicable to large-scale continuous monitoring nor feasible for solving problems at the
national or regional scale. Conventional approaches have constrained studies concerning the SFR
of carbonate rocks and related scientific problems. Therefore, SFR at the spatial scale remains to
be addressed. Remote sensing (RS) technology has played a huge role in the study of geoscientist
scale extension [18–23]. Long-term, dynamic, and continuous large-scale data are provided by RS
technology [24], e.g., precipitation (P), evapotranspiration (ET), and temperature (T) [25–27]. ZL [28]
summarized the basic climatic data of relevant areas, such as T, P, and ET, to calculate the intensity
of karstification.

In the present study, the main purposes are as follows: (1) Hydrochemical monitoring data
of 43 basins and long time series of ecological and hydrological grid data were used to define the
spatiotemporal difference of the dissolution rate of carbonate rocks via maximum potential dissolution
(MPD) method and Multiple Linear Regression (MLR). (2) The dissolution rate, content of acid-insoluble
substances, bulk weight, and content of carbonate rocks, as well as the SFR of noncarbonate rocks,
were utilized to determine the SFR in rock weathering and calculate the temporal variation and
spatial pattern of the SFR of carbonate rocks. (3) The effects of climate change on SFR under different
lithologies were examined.

2. Materials and Methods

2.1. Study Area

China is one of the largest countries covered by karst landscape, which explains 3.44 × 106 km2

and more than 1/3 of the total land area of China. The exposed area of carbonate rock is about
9.07 × 105 km2, accounting for 1/7 of the total land area of China. The karst landscape is mainly
distributed in eight provinces and regions in China, including Yunnan, Guizhou, Guangxi, Guangdong,
Hunan, Hubei, Chongqing, and Sichuan Province. [29]. In karst areas, the longitudinal and latitudinal
continuous distribution of heat and water is broken by the difference in geological structure and
lithology. The weathered layer and degree of soil erosion are both influenced strongly by chemical
reaction and hydropower, leading to a mosaic distribution of regional and non-regional soils. The
vertical mosaic distribution of different types and different thickness of soils lead to a three-dimension
highly spatiotemporal heterogeneity of karst landscape and weathering crust. Meanwhile, rocks
are exposed and soil distributes discretely at the horizontal direction. At the vertical direction, the
proportion of soil, rock and vegetation are different [30]. Classified by regions, karst areas can be
divided into south karst area, north karst area and plateau karst area. Classified by lithology, it can be
divided into homogenous carbonate rock (HC), carbonate rock intercalated with clastic rock (CI) and
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carbonate/clastic rock alternations (CA). The HC is further divided into homogenous limestone (HL),
homogenous dolomite (HD) and mixed dolomite/limestone (HDL) (Figure 1) [31].
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2.2. Data Source and Pretreatment

This research involved a large amount of not only measured data but also ecological hydrological
grid data, such as P, T, ET, soil moisture (SM), and NDVI. Table 1 described the data source, time span,
and spatial resolution. For data of P, T, ET and SM, we accumulated monthly data of P, T, ET and SM
into annual data of P, T, ET and SM, respectively. The NDVI dataset was a 15 days’ composite value,
First, we applied the maximum value composite (MVC) technique to synthesize monthly data [32],
Second, we calculated the mean value of NDVI at 12 months per year to get the average NDVI per year.
After that, all raster data were resampled to preserve the 0.083◦ spatial resolution of the NDVI data
using a nearest neighbor algorithm replicating the pixels without changing the original cell values [33].

2.2.1. P, T, and ET

P, T, and ET data (1983–2015) were obtained from the Global Land Data Assimilation System
(GLDAS) model at a resolution of 0.25◦ × 0.25◦ (https://ldas.gsfc.nasa.gov/gldas/). The goal of the NASA
GLDAS was to ingest satellite- and ground-based observational data products by using advanced land
surface modeling and data assimilation techniques for generating the optimal fields of land surface
states and fluxes [34,35].

https://ldas.gsfc.nasa.gov/gldas/
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Table 1. Materials sources information.

Parameters Time Span Temporal
Resolution Spatial Resolution Sources

Precipitation (P) 1983.1–2015.12 Monthly 0.25◦ × 0.25◦
Global Land Data
Assimilation
System

Temperature (T) 1983.1–2015.12 Monthly 0.25◦ × 0.25◦
Global Land Data
Assimilation
System

Evaporation (ET) 1983.1–2015.12 Monthly 0.25◦ × 0.25◦
Global Land Data
Assimilation
System

soil moisture (SM) 1983.1–2015.12 Monthly 0.125◦ × 0.125◦
European Centre
for Medium-Range
Weather Forecasts

NDVI 1983.1–2015.12 15 days 0.083◦ × 0.083◦
Global Inventory
Modeling and
Mapping Studies

Ca2+, Mg2+, Na+,
K+, CO3

2−, HCO3
−,

SO4
2− and Cl−

concentration

multi-year average /
GEMS-GLORI
world river
discharge database

Region boundaries Present / /
State Bureau of
China’s Survey and
Measurement.

Carbonate rock
outcrops Present / /

the Ministry of
China Geological
Survey

Soil erosion
modulus

1980s, 1990s, 2000,
2005, 2010, 2015 Year 1 km × 1 km

Institute of
Mountain Hazards
and Environment,
Chinese Academy
of Science.

2.2.2. SM

The monthly SM dataset (1983–2015) [36] (https://www.ecmwf.int/) was acquired from the
ERA-Interim reanalysis data of the European Centre for Medium-Range Weather Forecasts with a
spatial resolution of 0.125◦. The land Surface process used by the ERA-Interim is still TESSEL (Tiled
ECMWF Scheme for Surface Exchanges over land). The dataset provided four layers of SM with soil
depths of 7, 28, 100, and 289 cm, respectively. In this study, soil water data with a soil depth of 7 cm
were selected.

2.2.3. NDVI

The NDVI data of the Global Inventory Modeling and Mapping Studies represent a vegetation
product obtained by the AVHRR sensor mounted on a NOAA satellite [37,38]. The dataset had a
spatial resolution of 8 km × 8 km (0.083◦) and composite values of 15 days from 1982 to present [39].
The data were accessible online at https://ecocast.arc.nasa.gov/data/pub/gimms/. In this study, the time
span of 1983–2015 was adopted.

2.2.4. Hydrochemical Data

Concentration data of Ca2+, Mg2+, Na+, K+, CO3
2−, HCO3

−, SO4
2−, and Cl− were obtained from

the GEMS-GLORI world river discharge database [40], which recorded information of more than

https://www.ecmwf.int/
https://ecocast.arc.nasa.gov/data/pub/gimms/
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500 rivers. We selected hydrochemical data from 43 river basins in the database to calculate the ionic
activity coefficients of calcium and bicarbonate ions (Figure 2). The multiyear average data were from
1996 to 2012.
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Figure 2. Distribution of watershed monitoring stations.

2.2.5. Carbonate Rock Outcrops

The distribution and zoning of carbonate rocks were from the geological map (1:500,000) and the
map of soluble rock types in China (1:4,000,000) supplied by the Ministry of China Geological Survey.
After digitalization, carbonate rocks in the karst areas of China were divided into HC, CI, and CA.
Homogenous carbonate rocks were further divided into HL, HD, and HDL.

2.2.6. Soil Erosion Modulus

The soil erosion data (http://ir.imde.ac.cn/) were provided by the Institute of Mountain Hazards
and Environment, Chinese Academy of Science. We utilized soil erosion modulus data for the time
series of the 1980s and 1990s and 2000, 2005, 2010, and 2015 with a spatial resolution of 1 km [41].These
data were calculated using the improved USLE model based on geographical big data. Equation (1)
presented the basic form.

A = R×K × L× S×C× P×M (1)

where A (t·km−2 yr−1) refers to the amount of soil loss per unit area. R (MJ·mm·hm−2 yr−1) refers to
the rainfall erosivity factor. K [t·hm2

·h/(hm2
·MJ·mm)] refers to the soil erodibility factor. L refers to

the slope length factor (dimensionless, 0–1), and S refers to the slope factor (dimensionless, 0–1). C
refers to the coverage factor for vegetation. P refers to the conservation measure factor, which included
engineering and tillage measure factors. M was a correction factor (dimensionless).

2.3. Methods

The objective is to solve the spatialization problem of SFR. On the basis of the law of chemical
thermodynamics and through various platforms, such as ArcGIS, ENVI, R studio, and Python, we
must calculate the various parameters required for the dissolution rate. These parameters included

http://ir.imde.ac.cn/
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Ca2+ activity coefficient (γCa2+ ) and HCO3− activity coefficient (γHCO3−), limestone solubility product
constant (Ks), equilibrium constant of CO2 dissolved in water (K0), first-order ionization constant of
H2CO3 (K1), second-order ionization constant of H2CO3 (K2), and carbon dioxide partial pressure
(pCO2). (1) In order to simulate the spatial distribution of activity coefficients of Ca2+ and HCO3

−

ions, firstly, the Ca2+ and HCO3
− activity coefficients of 43 stations were calculated by using the

hydrochemical data of 43 river basins. Then the corresponding values of P, ET, T, NDVI and SM
were extracted from the geographical coordinates of 43 stations. The activity coefficients of Ca2+ and
HCO3

− ions were used as dependent variables, and the extracted P, ET, T, NDVI and SM values were
used as independent variables. Multiple linear regression (MLR) was carried out in SPSS, and the
relationship between the dependent variables and independent variables was quantified. Finally, the
spatial distribution of Ca2+, HCO3

− ion activity coefficients is retrieved by the regression relationship
and P, ET, T, NDVI and SM spatial data. (2) Ks, K0, K1, and K2 were calculated by T. (3) pCO2 was
measured by ET. We calculated the dissolution rate of limestone via the MPD method. Then, we
obtained the spatial distribution of five lithological dissolution rates in the karst areas of China on
the basis of the dissolution ratio of other lithologies and limestones. Finally, we measured the SFR by
combining the density of rocks and the content of acid-insoluble substances (Figure 3).Remote Sens. 2020, 12, 121 6 of 21 
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2.3.1. Maximal Potential Dissolution (MPD) Method

We used the MPD method to calculate the dissolution rate of limestone in China, which had been
applied in quantifying karstification at global and regional scales [42,43]. The intensity of karstification
can be obtained by the MPD method if the temperature, precipitation and evapotranspiration of a
given area are known. The formula is expressed as follows:

Based on the usual equations for the dissolution of calcite at equilibrium given in Equation (2),
Gombert created the MPD method of Equation (3) for carbonate zones with the assumption that
the chemical reactions were at equilibrium in local hydrological, meteorological and geochemical
conditions [42–45].

CaCO3 + CO2 + H2O
 Ca2+ + 2HCO3
− (2)

Dmax = 106(P− E)
[
Ca2+

]
eq
= 106(P− E)

(
KsK1K0/4K2γCa2+γ(HCO3−)

2
)1/3

(pCO2 )
1/3 (3)

where Dmax is the maximum potential dissolution rate (mol km−2yr−1), P and E are the total rainfall
and evapotranspiration, respectively. KS is the calcite solubility constant, K1 is the equilibrium constant
of CO2 hydration and dissociation as HCO3

−, K0 is the equilibrium constant of CO2 in water, K2 is the
equilibrium constant for CO3

2−. γCa2+ and γHCO3− are the activity coefficients of Ca2+ and HCO3
− ions

in water. pCO2 is the partial pressure of CO2 in soil or aquifer.
Table 2 and Equations (4)–(7) showed that Ks, K1, K0 and K2 were the functions of temperature Tk

(◦K) [46].
log(Ks) = A + BTk + C/Tk + Dlog(Tk) (4)

log(K1) = A + BTk + C/Tk + Dlog(Tk) + F/Tk
2 (5)

log(K0) = A + B/Tk + C× Tk (6)

log(K2) = A + BTk + C/Tk + Dlog(Tk) + F/Tk
2 (7)

Table 2. Factor coefficient of Ki.

A B C D F

Ks −171.9065 −0.07793 2839.3191 71.595log
K1 −356.3094 −0.06091964 21834.37 126.8339 −1684915
K0 −14.0184 2385.73 0.015264
K2 −107.8871 −0.03252849 5151.79 38.92561 −563713.9

The activities of Ca2+ and HCO3
− were calculated according to the formula below.

log(γi) = −AZi
2

√
I

1 + Bai
√

I
(8)

A and B are the coefficients related to temperature. The calculation formula was as follows:

A = 0.4883 + 8.074× 10−4T (9)

B = 0.3241 + 1.6× 10−4T (10)

I is the strength of solution ions. The formula was as follows:

I =
1
2

∑
i

Zi
2Ci (11)

where Ci is the ionic concentration (mol·L−1), Zi is the charge of the ionic.
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The partial pressure of CO2 in soil or water-bearing stratum was calculated in accordance with
Brook’s formula, as follows [47].

log(pCO2) = −3.47 + 2.09×
(
1− e−0.00172E

)
(12)

The above calculation is the maximum dissolution rate of limestone, and the difference of
dissolution rate of different lithology can be characterized by dissolution coefficient (DC). The
calculation formula of dissolution rate of carbonate rocks of various lithologies was as follows [48]:

v = DC×Dmax (13)

When estimating the dissolution rate of carbonate rock, the specific degree of different lithology
was considered as the coefficient of lithology (Table 3).

Table 3. Dissolution coefficient of various lithologic assemblages.

Lithology HL HD HDL CI CA

DC 0.965 0.505 0.8015 0.767 0.767

2.3.2. Method of Computing SFR

In previous studies, the average dissolution rate was often used to replace the regional dissolution
rate. However, the dissolution rate was closely related to temperature, precipitation, hydrological
and other environmental conditions, different regions had different dissolution rate. therefore, in
this paper, the dissolution rate of pixel scale had calculated by MPD method was substituted into
the Equation (14) to reflect the spatiotemporal heterogeneity of soil formation rate [16,31]. As per the
results of an in-house laboratory investigation, The density of limestone and dolomite is 2.75 and
2.86 t m−3. The soil formation rate of other rock types is 200 t km−2 yr−1. The content of acid-insoluble
components is shown in Table 4.

SFR = vQρC + R(1−C) (14)

where SFR is the soil formation rate (t km−2 yr−1), v is the dissolution velocity of carbonate rocks
(m3km−2 yr−1), Q is the content of acid-insoluble components (%), ρ is the carbonate density (t m−3), C
is the proportion of carbonate and R was the soil formation rate of other rock types. The acid-insoluble
components can be computed based on 5, 20 and 50% for HC, CI and CA. In addition, carbonate rock
can be computed based on 95, 80 and 50% for HC, CI and CA (Table 4).

Table 4. Characteristics of various lithologic assemblages.

Lithology C Q

HC
HL
HD >90% <10%

HDL

CI 70~90% 10~30%
CA 30~70% 30~70%

The acid-insoluble components can be computed based on 5, 20 and 50% for HC, CI and CA.
In addition, carbonate rock can be computed based on 95, 80 and 50% for HC, CI and CA.



Remote Sens. 2020, 12, 121 9 of 21

2.3.3. Multiple Linear Regression (MLR)

MLR was mainly used to study the correlation between a dependent variable and multiple
independent variables [49–51], and had a wide range of applications. The basic structure of multiple
linear regression model was as follows:

ya = b0 + b1x1a + b2x2a + . . .+ bkxka + εa (15)

where ya is dependent variable, x1a, x2a, . . ., xka are independent variables, b0, b1, . . . , bk are undetermined
parameter. εa is random variable. In this study, the dependent variable is the ion activity coefficient,
and the independent variables are P, T, ET, SM and NDVI.

2.3.4. Least Squares Trend Analysis

We perform the least squares linear regression analysis to quantify the trend of SFR. This method
has been extensively performed at regional to global scales as a means of understanding the evolution
trend of time-series data [52,53]. The formula is expressed as follows:

K =
n
∑n

i=1(i×MSFR,i) −
∑n

i=1 i×
∑n

i=1 MSFR,i

n×
∑n

i=1 i2 −
(∑n

i=1 i
)2 (16)

where the value of n is 33, i is the year number, MSFR is the average value of the SFR, and i is the
SFR of the i th year. K is the regression slope. When K > 0, the evolution trend of SFR increases in
the 33-year period; otherwise, this trend decreases. No uniform standard exists for the division of
K-value trends [54,55]. According to the overall distribution of the SFR in the study area and the
calculation of the changes in the K-value, the K-value conforms to a normal distribution [56]. Thus, SFR
is used in the equal-pitch division method. We divide the K-value into seven levels, namely, significant
decrease (K ≤ −0.05), slight decrease (−0.05 < K ≤ −0.01), constant (−0.001 < K ≤ 0.01), slight increase
(0.01 < K ≤ 0.05) and significant increase (K ≥ −0.05).

2.3.5. Pearson Correlation Analysis

For more than a decade, scholars had used SFR data from different regions, time series, and
resolutions to study the relationship among variables [57,58]. The determination of the relationship
between SFR and climatic factors is mainly accomplished by calculating and verifying the correlation
coefficients [59]. The formula is presented as follows:

Rxy =

∑n
i=1

[(
xi −X

)(
yi −Y

)]
√∑n

i=1

(
xi −X

)2 ∑n
i=1

(
yi −Y

)2
(17)

where n is the number of samples; X− and Y− are the means of variables x and y, respectively; and Rxy

is the correlation coefficient between variables x and y. If |R| ≤ 0.5, then the correlation between SFR
and climatic factors is insignificant; if |R| ≥ 0.5, then the correlation coefficients are taken as statistically
significant at p = 0.05.

3. Results

3.1. Spatialization of Activity Coefficients of Calcium Ions and Bicarbonate

We selected the hydrochemical data of 43 research areas and nearby monitoring stations from
the GEMS-GLORI world river discharge database [40] and calculated the γCa2+ and γHCO3− of
43 monitoring stations. Then, the corresponding values of P, ET, T, NDVI, and SM grids were
obtained through the geographical coordinates of the 43 monitoring stations. Subsequently, the two
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ion activity coefficients were regressed by MLR with P, ET, T, NDVI, and SM. The results showed that
the MLR equations were effective, with R2 reaching 0.79 (p <0.01) (Equation (18)). Table 5 lists the
regression coefficients.

γi = γ(P, T, ET, SM, NDVI) + ε
= (b0 + b1P + b2T + b3ET + b4SM + b5NDVI)
+ε(R2 = 0.7909, R2 = 0.7914)

(18)

Table 5. The coefficient of γCa2+ and γHCO3
− fitted with MLR.

b0 b1 b2 b3 b4 b5 ε

γCa2+ 0.8296 5.8 × 10−7 0.0003 1.2713 × 10−6
−3.7831 × 10−5 0.0068 0.0002

γHCO3
− 0.9413 2.15 × 10−7

−1.20 × 10−4 4.72 × 10−7
−1.40 × 10−5 −0.0025 −0.0001

In Figure 4, the spatial distribution of γCa2+ and γHCO3− was high in northwest and low in
southeast; the value ranges were 0.818–0.833 and 0.936–0.942, with averages of 0.823 and 0.939,
respectively. The spatial distribution pattern of the two ion activity coefficients is similar because Ca2+

and HCO3
− have high correlation.Remote Sens. 2020, 12, 121 10 of 21 
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3.2. Diversity of Dissolution Rate and Its Evolutionary Rule

3.2.1. Spatial Pattern of Dissolution Rate

Influenced by landform, topography, and meteorological factors, the dissolution rate is high in
the southeast and low in the northwest. It also showed a significant regional difference. On the basis
of the spatial distribution during the period 1983–2015 (Figure 5a), the dissolution rate of the study
area ranged between 0 mm/ka and 106 mm/ka, averaged at 22.51 mm. Spatially, the dissolution rate
is high in southeast and low in northwest. The mean values of different grades of dissolution rate
were analyzed statistically. The results showed that 19.40% of the study area had a dissolution rate
of <10 mm/ka, distributed mainly in the northwest part. Moreover, 29.50% of the study area had a
dissolution rate of 10–30 mm/ka, distributed mainly in the west and east parts, and 37.71% had a
dissolution rate of 30–50 mm/ka, distributed mainly in the central south part. Furthermore, 5.72% of
the study area had a dissolution rate of 50–60 mm/ka, distributed mainly in the southeast part, and
7.67% had a dissolution rate of >60mm/ka, distributed mainly in the southeast coastal area.

As displayed in Figure 5b, the dissolution rate decreases with the increase of latitude. The
dissolution rate at different latitudes fluctuated considerably during 1983–2015, with four high-value
areas. In particular, the area with the highest fluctuation was located at 13.66◦ N with a maximal
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dissolution rate of 94 mm/ka. The area with the second highest value was located at 21.50◦ N–22.50◦ N,
which is the most active area of karstification in China, with a maximal dissolution rate of 64 mm/ka.
The area with the third highest value was located in central south China (27.44◦ N–28.50◦ N), with a
maximal dissolution rate of 33.70 mm/ka. The fourth area with high dissolution rate was located at
42.04◦ N–43.79◦ N, with a maximal dissolution rate of 19.34 mm/ka. As the south area was more easily
affected by monsoon than the north area, considerable rainfall and numerous thermal resources were
observed. Therefore, the dissolution rate in the south area fluctuated greater than that in the north area.Remote Sens. 2020, 12, 121 11 of 21 
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3.2.2. Evolutionary Process of Dissolution Rate

As shown in Figure 6b, the change of the dissolution rate from 1983 to 2007 was relatively
stable, while the change of the dissolution rate from 2008 to 2015 was relatively drastic. In general,
the dissolution rate showed a slight upward trend, with an acceleration rate of 0.04 mm/ka during
1983–2015. In particular, the lowest dissolution rate (21.96 mm/ka) in the study area occurred in 2009,
and the highest (33.92 mm/ka) occurred in 2015.
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To understand the spatiotemporal evolutionary pattern of the dissolution rate fully, the
evolutionary trend during 1983–2015 was analyzed at the pixel scale (Figure 6a). The results showed
that the dissolution rate in the southwest area tended to decrease, whereas that in the south area tended
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to increase. The proportions of significant reduction, slight reduction, no change, slight increase, and
significant increase were 6.96%, 32.46%, 35.73%, 16.02%, and 8.83%, respectively. As illustrated in
Figure 6a, significant reduction was sporadically distributed in the south area, and slight reduction
was mainly distributed in the southwest area. The area with slight increase was mainly situated at
27◦ N–30◦ N, and the significant increase was mainly distributed in the west and southeast areas. The
area with no change was only sporadically distributed.

3.3. Diversity of SFR and Its Evolutionary Process

3.3.1. Spatial Pattern of SFR

Influenced by lithology, landform, topography, and meteorological factors, SFR in the study
area showed a significant regional difference. On the basis of the multiyear average SFR during
1983–2015, the SFR in the study area ranged between 10 t km−2 yr−1 and 134.93 t km−2 yr−1, averaged
at 18.59 t km−2 yr−1 (Figure 7a). Spatially, the SFR was high in southeast and low in northwest. The
different grades of SFR were analyzed statistically. The results showed that 86.44% of the study area
had an SFR of <15 t km−2 yr−1, distributed anywhere in the study area. Furthermore, 9.06% of the
study area had an SFR ranging between 15 t km−2 yr−1 and 55 t km−2 yr−1, distributed sporadically,
and 4.50% had an SFR ranging between 55 t km−2 yr−1 and 134.93 t km−2 yr−1, distributed dispersively.
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As presented in Figure 7b, the SFR at different latitudes fluctuated considerably during 1983–2015,
with three high-value areas. In particular, the highest SFR occurred at 36.54◦ N, with a maximal
dissolution rate of 56.92 t km−2 yr−1. The second highest SFR occurred at 27◦ N–28◦ N, which is
the most active area of karstification in China, i.e., south karst area, with a maximal dissolution rate
of 36 t km−2 yr−1. The one-to-one correspondence between the SFR and dissolution rate was not
observed, and this phenomenon was closely related to that of the lithology.

3.3.2. Dynamic Variation of SFR

As shown in Figure 8b, the SFR in the study area fluctuated upward at an accelerating rate of
0.003 mm/ka during 1983–2015. In particular, three low-value and three high-value periods were
observed. The periods with low values were years 1987, 2003, and 2009, with SFRs of 18.35, 18.39, and
18.40 t km−2 yr−1, respectively. The periods with high values were years 1984, 1994, and 2015, with
SFRs of 18.78, 18.80, and 18.77 t km−2 yr−1, respectively.
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The evolutionary trend of SFR was analyzed at the pixel scale (Figure 8a). Generally, a slight
increase in SFR occurred locally, whereas in most areas, it remained stable. On the basis of
the area proportion of different SFRs (Figure 8a), the proportions of significant reduction, slight
reduction, no change, slight increase, and significant increase were 4.54%, 0.06%, 75.03%, 19.14%, and
1.23%, respectively.Remote Sens. 2020, 12, 121 13 of 21 
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3.3.3. Statistical Characteristics of SFR under Different Lithologies

As shown in Table 6, the statistical results of multiyear SFR under different lithologies presented
a trend of SFRCA > SFRC I > SFRHC, and the SFRs of CA, CI, and HC were 111.13, 47.98, and
12.01 t·km−2 yr−1, respectively. In terms of HC, the trend was SFRHL > SFRHD L > SFRHD, and the
SFRs of HL, HDL, and HD were 12.25, 12.17, and 10.85 t·km−2 yr−1, respectively.

SFR has multiple values and diverse characteristics. The value of SFR is related to the content
of acid-insoluble substances in rocks. When carbonate rock occurs in HC, CA, and CI, its SFR may
differ considerably because the key factors affecting SFR are related to the contents of acid-insoluble
substances in rocks, in addition to the contents of clastic rock in the stratum of a region.

Table 6. Statistic SFR of each lithology at pixel scale during 1983~2015.

Lithology Mean Min Max Std dev.

HC

12.01 10 20.71 1.45
HL 12.25 10 20.71 1.49
HD 10.85 10 12.92 0.78

HDL 12.17 10.01 18.90 1.12

CI 47.98 41.04 61.40 2.81
CA 111.13 100 134.93 6.29

3.4. Correlation between Ecohydrological Factors and SFR under Different Lithological Backgrounds

Figure 9b–f display the correlations between SFRHL, SFRHD, SFRHDL, SFRCI, and SFRCA and the
ecological hydrological factors, respectively. SFRHL, SFRHD, and SFRHDL had strong correlations with
P, SM, and T, and all correlation coefficients exceeded 0.65. They had the strongest correlation with P,
with correlation coefficients of 0.91, 0.94, and 0.92, respectively. The correlation coefficient of SFRHD

and SM reached 0.92, whereas the correlation coefficients of SFRHL and SFRHDL and SM were only 0.71
and 0.65, respectively. The reason may be the better soil continuity of HD than that of HL and HDL,
which increases the correlativity of SFRHD and SM.

Figure 9e,f clearly illustrate that the correlations between SFRCI and SFRCA and P were good,
with correlation coefficients of 0.89 and 0.75, respectively, but the correlations between the two and SM,
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T, and ET were poor. The main factor is that they contain a high proportion of acid-insoluble matter,
which is the main source of weathered soil. Furthermore, the content of rock acid-insoluble matter is
mainly affected by the diagenesis process and less effected by the outside world, leading SFRCI and
SFRCA and all factors, except P, to respond poorly.

In conclusion, P is the most important climatic factor that affects the carbonate formation rate.Remote Sens. 2020, 12, 121 14 of 21 
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4. Discussion

4.1. Comparison with Similar Studies

4.1.1. Dissolution Rate

We compared our results with the relevant studies on the watershed scale [48,60–62], the spatial
distribution map of the dissolution rate calculated in this study was clipped and compared with the
vector boundary of relevant studies, and found that the results of this study were similar to those of
many studies, although they are different from the existing research results, they could explicable.
For example, Wang LC calculated the average dissolution rate of Muzhu cave watershed in Guizhou
Province as 41.5 mm/ka by calcium ion concentration [60], which is 2.9 mm/ka higher than the result
in this study (38.6 mm/ka). The reason is that the method of calculating dissolution rate by ion
concentration does not exclude the influence of exogenous acid on dissolution. Han GL [61] and
Zeng C [62] estimated the dissolution rate of Wujiang River and Banzhai watershed as 33 mm/ka and
24.91 mm/ka by hydro-chemical runoff method, which slightly deviated from the results of this study
by 2.05 mm/ka and 2.31 mm/ka, respectively, this is because the method of solute load relies on manual
monitoring and sampling test, and different sampling seasons and locations will affect the calculation
results. Cao JH monitored the dissolution rate of limestone in the Pearl River watershed through the
dissolution test piece method, and obtained that the dissolution rate of the Pearl River watershed is
21.4 mm–115.1 mm [63], the result of dissolution rate of the Pearl River watershed clipped in this paper
is 16–101.32 mm, the test piece buried in the soil is susceptible to the influence of bio-organic acids
or other exogenous acids in the soil, making the dissolution rate higher than the results in this study
(Table 7).

Table 7. Compare with other results of dissolution rate.

Source Study Area Lithology Dissolution
Rate (mm/ka) This Study Ratio, This to

Other

Wang LC (2010) [60] Muzhu cave watershed HL 41.5 38.6 2.9
Cao JH (2011) [48] Pearl River watershed HL, HD, HDL, CI, CA 21.4~115.1 16~101.32 5.4~13.78
Zeng C (2017) [62] Banzhai watershed in Province HL 24.91 27.22 −2.31
Han GL (2005) [61] Wujiang HL 33 30.95 2.05
This study (2019) Carbonate area of China HL, HD, HDL, CI, CA 0~106

4.1.2. Soil Formation Rate

We compared the calculation results with related [16,31,63] studies and found that the results in
this paper were similar to those of existing studies, but slightly higher than those of existing studies.
For example, the soil formation rate calculated by Li YB 16] in Guizhou Province was between 6.75 to
103.46 t km−2 yr−1. The range of this article was from 10.78 to 117.68 t km−2 yr−1; the soil formation
rate calculated by Cao JH [63] in southwest China was from 4 to 120 t km−2 yr−1, while the range
calculated in this paper was from 10 to 122.77 t km−2 yr−1; the soil formation rate calculated by Li Y [31]
in southern China was to serve the allowable soil loss, so only one estimate was proposed, and the
estimation result was 20 < SFR ≤ 100. The reason for the higher results in this paper was that the
maximum potential dissolution method was used in calculating the dissolution rate. In an open karst
system, karstification may not reach the dissolution equilibrium, so the dissolution rate calculated in
this study was the maximum. However, in previous studies, spatial heterogeneity was not considered
in calculating soil formation rate, and the value of dissolution rate was one lithology and one value.
Therefore, the soil formation rate calculated by previous studies will be lower than this study.

4.2. Application of Soil Formation Rate in the Risk Reassessment of Soil Erosion

In China, allowable amount of soil erosion is an indicator for the risk assessment of water and soil
erosion. The Standards for Classification and Gradation of Soil Erosion indicated that the allowable
amount of soil erosion in karst area is 500 t km−2 yr−1, and any areas with lower amount of soil erosion
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are safe for soil erosion. The calculation of the present study shows that the average SFR in the karst
areas in China is 18.59 t km−2 yr−1, which is equal to 3.7% of the allowable amount of soil erosion of
500 t. Therefore, the existing Standards for Classification and Gradation of Soil Erosion are far from
stringent, thereby leading to a negligence of soil erosion risks in karst areas. This condition is probably
also a reason for the occurrence and development of soil degradation and solidification in the karst
areas. Therefore, considerable attention should be paid to soil conservation in the karst areas. In other
words, low modulus of soil erosion does not necessarily mean low risks of soil erosion. Many field
observations have shown that erosion in karst areas is low, but the risk of erosion is very high because
of the slow soil formation rate, thin soil layers, and in some places even no soil can to lose [64,65].
Therefore, the risk of soil erosion should be determined by the relation of actual amount of soil erosion
and SFR and not by the actual amount of erosion or the erosion modulus.

SFR is theoretically the upper limit of allowable amount of soil erosion in karst areas and can
be the threshold minimum of soil erosion risk. If the theoretical amount of erosion is higher than the
SFR, then the area will be in danger of soil erosion. If the theoretical amount of erosion is lower than
the SFR, then the area will be safe for soil erosion. If the theoretical amount of erosion is equal to the
SFR, then the area will be a critical area for soil erosion. Using the theoretical erosion rate supplied by
the database of Mountain Hazards and Environment of China, we conclude that the safe area for soil
erosion explains 20%, and the risky area explains 80% of the carbonate rock areas. The risky area is four
times the safe areas (Figure 10). Therefore, considerable attention should be paid to soil conservation
in this area.
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4.3. Applicability of the Method

The method used in this study is divided into two parts. The first part is the MPD method to
calculate the dissolution rate, and the second part is the method to calculate SFR.

The MPD method is applicable to all limestone areas [42,43,45]. In this study, we calculate the
dissolution rate of carbonate rock on the basis of the specific corrodibility of other rocks in the carbonate
rock and limestone. The parameters used in the method can be calculated from data such as T, P,
and ET. These data comprise RS or reanalysis data products. The link in the model that requires the
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measured data is a simulation of Ca2+ and HCO3
− ion activity coefficients. When performing ion

concentration simulation, Ca2+ and HCO3
− ion activity coefficients are calculated, and an estimation

model is established with local environment meteorological data. The meteorological and hydrological
spatial data are inversely transformed into space to achieve the spatialization of the ion activity
coefficient. The MPD method can also be extended to other soluble rock areas. This method can be
generalized only through replacing the chemical equation, deriving a new formula on the basis of the
principle of chemical thermodynamics, and changing the solubility product constant (Ks) of the rock
in water.

In addition, the SFR model is mainly calculated on the basis of the carbonate rock dissolution
velocity, rock density, acid insoluble matter, and the proportion of carbonate rock. Therefore, the model
is only applicable to karst carbonate areas instead of all karst areas. In recent years, this model has been
widely used in permissible amount of carbonate soil loss and its erosion characteristics in southwestern
China [16,31].

In summary, although the method used in this study is only applicable to carbonate rock areas,
the global carbonate rock area is as high as 22 million km2 [66]. Approximately 25% of population
depends on carbonate rock areas to survive [1]. Thus, this method should be promoted globally.

4.4. Analysis of Limitation, Deficiency, and Uncertainty

Considerable basic data, including RS and measured data, are used in this study to calculate SFR.
RS and reanalysis data with different spatial resolutions are also utilized. The data obtained through the
method of adjacent data resampling are 8 km × 8 km (0.083◦). The nearest neighbor method is simple
and has small computational complexity but has poor visual effect. After sampling, discontinuing the
image is outstanding, and the gray formation of the original image has high precision. We refer to the
1:400,000 soluble rock-type map and combine it with the 1:500,000 geological map when drawing the
lithological boundary of China. The combination of strata with different scales may lead to errors.

In deeply negative assumptions, runoff in the study area does not present karstification. However,
in pixels, the actual runoff depth of areas, such as Yuan, is difficult to determine through computations.
Therefore, the method in [42,43] is adopted. The difference between precipitation and evaporation to
replace the actual runoff depth may have a certain deviation between the two processes. Therefore,
this method has certain limitations.

In the current study, the MPD method is used to calculate the dissolution rate. karst action in an
open karst system may not reach the solution equilibrium. Therefore, the calculation result will deviate
from the actual dissolution rate. In analyzing the correlation between SFR of different lithology and
ecohydrological factors, the characteristics of seasonal changes may be ignored. Therefore, this work
must be performed in a future study.

5. Conclusions

In this study, based on multi-source data and geospatial technology, we have used the MPD method
and SFR calculation model to estimate the dissolution rate and SFR in karst areas of China during the
period of 1983–2015, analyzed their spatial diversity and temporal variation, and reevaluated the risk
of soil erosion. The following main conclusions were drawn: (1) Geospatial technology, combined
with chemical thermodynamics theory, created the key link of geographical science and experimental
chemistry, which can play an important role in the spatial calculation of rock weathering and soil
formation rate. The calculated results were basically consistent with the actual monitoring of long-term
positioning, which proved the practicability and extensibility of the method. (2) The dissolution rate of
carbonate rock ranges between 0 and 106 mm/ka and has an average of 22.51 mm/ka. The SFR ranges
between 10 and 134.93 t km−2 yr−1 and has an average of 18.59 t km−2 yr−1. A total of 86.44% of the
study area has an SFR below 15 t km−2 yr−1, and most of the areas were distributed at HC. The risk
of soil erosion in karst areas of China was reassessed, and the high erosion risk areas and ecological
safety areas were corrected; we found that the former was nearly three times higher than the latter.
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In conclusion, the contribution of this study is to solve the problem that traditional positioning
monitoring is difficult to realize SFR spatialization, to promote the application of geospatial data and
technology in new fields such as rock weathering and soil formation, and to provide an example and a
new perspective for international counterparts to carry out relevant research.
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