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Abstract: The advent of multiple satellite systems capable of resolving smallholder agricultural plots
raises possibilities for significant advances in measuring and understanding agricultural productivity
in smallholder systems. However, since only imperfect yield data are typically available for model
training and validation, assessing the accuracy of satellite-based estimates remains a central challenge.
Leveraging a survey experiment in Mali, this study uses plot-level sorghum yield estimates, based
on farmer reporting and crop cutting, to construct and evaluate estimates from three satellite-based
sensors. Consistent with prior work, the analysis indicates low correlation between the ground-based
yield measures (r = 0.33). Satellite greenness, as measured by the growing season peak value of the
green chlorophyll vegetation index from Sentinel-2, correlates much more strongly with crop cut
(r = 0.48) than with self-reported (r = 0.22) yields. Given the inevitable limitations of ground-based
measures, the paper reports the results from the regressions of self-reported, crop cut, and (crop
cut-calibrated) satellite sorghum yields. The regression covariates explain more than twice as much
variation in calibrated satellite yields (R2 = 0.25) compared to self-reported or crop cut yields,
suggesting that a satellite-based approach anchored in crop cuts can be used to track sorghum
yields as well or perhaps better than traditional measures. Finally, the paper gauges the sensitivity
of yield predictions to the use of Sentinel-2 versus higher-resolution imagery from Planetscope
and DigitalGlobe. All three sensors exhibit similar performance, suggesting little gains from finer
resolutions in this system.
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1. Introduction

Agriculture remains a key contributor to national employment and economic output in many
countries throughout the world. Improving agricultural productivity is thus a key engine for both
increasing local food security as well as spurring overall economic growth [1]. Finding policy solutions
that can improve performance depends on understanding the drivers of agricultural productivity,
which in turn depends on the ability to accurately measure productivity.

A widely used measure of cropland productivity is crop yield, defined as the weight of edible
product (e.g., kilogram of grain) produced per unit area (e.g., hectare). Although yield alone cannot
capture all aspects of household income or well-being, it is a key determinant of the profitability of
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farm management as well as household food security [2,3], and is among the most commonly used
indicators to gauge the status or rate of progress of agricultural systems [4].

Despite its simplicity relative to other measures of productivity, accurately measuring crop yields
presents a challenge in smallholder agricultural systems, where plots are typically less than 2 ha in size.
Past research has primarily relied on either farmer self-reports or objective crop cuts to measure yields.
In the former, survey enumerators ask farmers a series of questions related to total grain harvest and
cultivated area, and compute yields as the ratio of reported production to reported area. Among the
many sources of errors in these estimates are the frequent use of non-standard measurement units by
farmers (which then require conversion to a common unit), the various moisture levels at which grain
is harvested, partial harvest before crop maturity for home consumption (e.g., green maize), a tendency
to round off numbers, and unobserved incentives to farmers to make their land seem more or less
productive [5,6]. Self-reported yields are particularly problematic in subsistence systems where most
food is grown for home consumption and where accurate record keeping by farmers is not the norm.
Recent research has also demonstrated systematic measurement errors in self-reported yields, with a
direct bearing on the conclusions of economic research [6–8]. Nonetheless, most national surveys, such
as those supported by the World Bank’s Living Standards Measurement Study-Integrated Surveys on
Agriculture (LSMS-ISA), still permit the computation of self-reported yields.

The second common way to study productivity, typically referred to as a crop cut, is to measure
the grain weight harvested from a randomly selected portion of a farmers’ plot [9]. Assuming that the
crop cut locations are truly random and avoid preferential selection of the middle or edges of the plot,
they have been shown to provide an unbiased estimate of the true yield based on full-plot harvests [6].
A large number of crop cuts conducted in a region can therefore give a reliable measure of average
yields. However, errors for individual plots can still be large, since yields can exhibit considerable
spatial heterogeneity within plots and even relatively large crop cut areas, such as two 50–75 m2 plots
per plot suggested in [10], will represent only a small fraction of the total plot area. More commonly,
much smaller crop cut areas are used, such as three 2 m2 sub-plots in Jain et al. [11] or three 4 m2

quadrants in Lambert et al. [12].
Satellite remote sensing offers a potential alternative approach to measuring crop yields, especially

as satellite sensors with the fine spatial resolution needed to distinguish individual smallholder
plots become more prevalent. Several decades of research has focused on developing and testing
algorithms to estimate yields from satellite, initially in large commercial plots [13,14] and increasingly
in smallholder systems [11,12,15,16]. These studies have primarily focused on the primary staple crops
within a region, such as maize, wheat, and rice, although some recent work has extended beyond, such
as to cotton, millet, and sorghum [12].

In the current study, we assess the accuracy of satellite-based estimates of sorghum yields in
the main sorghum growing region of Mali. Similar to many sub-Saharan African countries, Mali’s
agricultural sector comprises a major portion of the GDP and employment, with respective shares of
39% (as measured by the percent value added GDP for agriculture, forestry, and fishing) and 65% in
2018 (retrieved from data.worldbank.org). In terms of cultivated area by smallholder farmers, cereal
production is 77% of the total crop production, of which 26% is sorghum, making it an important staple
crop for Mali’s 17 million people (authors’ calculation based on the 2017 Mali LSMS-ISA data).

This work contributes to the literature on remote sensing of yields in three primary ways. First,
we focus on sorghum, one of the primary staples in sub-Saharan Africa but less commonly studied
compared to other staples such as maize and rice. Sorghum is a relatively difficult crop for remote
yield estimation given the high variability within and between plots in the cultivars grown by farmers,
and the relatively high variation in the harvest index (ratio of grain to total crop biomass) compared to
other crops [12].

Second, we systematically compare satellite measures to both self-reports and crop cuts, and
across a much larger geographic domain and number of plots than is typically done. For example, the
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Lambert et al. [12] study in Mali measured yields on 27 total sorghum plots, whereas the current study
covers 575 plots.

Third, we compare estimates from publicly available Sentinel-2 imagery (10 m spatial resolution)
with estimates from very high resolution (VHR) Planetscope (~3 m resolution) and DigitalGlobe
multispectral imagery (~1–2 m resolution) to assess the added value of VHR for this application. Given
the significantly higher costs of acquisition of VHR imagery, it is informative for budget-constrained
researchers and development organizations to assess the relationship, if any, between image cost and
accuracy of agricultural productivity measures.

The following section describes the data used in this study. Section 3 then describes the methods
used to evaluate the quality of both the ground-based and satellite-based yield estimates. Section 4
then discusses the results, while Section 5 summarizes the study’s conclusions.

2. Data

2.1. Survey and Crop Cut Data

Our study region was the Dioïla Cercle, an administrative subdivision in the southeastern part of
the Koulikoro region of Mali (Figure 1A). This area is within the primary sorghum-producing area
in Mali and has been the locus of many activities by the International Crops Research Institute for
the Semi-Arid Tropics (ICRISAT). Key to our research is a farm survey that was implemented during
the 2017 agricultural season. The survey fieldwork was conducted from August 2017 to February
2018 by ICRISAT-Mali, under the supervision of and technical assistance from the World Bank Living
Standards Measurement Study (LSMS) team. Within Dioïla, four 10 × 10 km blocks were identified to
ensure heterogeneity of topographic relief (Figure 1B). In each block, the complete list of villages was
constructed based on the shapefiles from the 2009 Population and Housing Census. Overall, there were
17 villages across all blocks. In each village, a complete listing of households was carried out, as part of
which the sorghum-producing households with at least one purestand plot were identified. Given the
low incidence of intercropped sorghum plots in Dioïla (estimated at 6% according to the 2017 LSMS-ISA
survey), we elected to exclusively sample purestand plots. Subsequently, we randomly selected 150 of
these households in each block. The across-village allocation of the sampled households in each block
was proportional to the village-level total count of households with purestand sorghum plots.

Each sampled household was in turn visited three times. The first visit’s fieldwork spanned the
period of mid-September–October 2017. During the first visit, the post-planting questionnaire collected
detailed information on household composition and demographics, housing conditions, ownership of
consumer durables and agricultural implements, receipt of agricultural extension services, and farm
organization. The questionnaire modules regarding the latter collected farmer-reported information
for (i) all parcels owned and/or cultivated by the household and (ii) all plots cultivated with sorghum
within these parcels, on a variety of topics, including parcel and plot areas, parcel ownership and
tenure, plot management and farming practices, plot-level labor inputs for land preparation and
planting, and plot-level sorghum cultivation and varietal attributes.

One purestand sorghum plot was in turn selected at random in each household. The area and
boundaries for the selected sorghum plot were captured via a handheld Garmin eTrex 30 GPS unit
with the Wide Area Augmentation System enabled for higher accuracy. An 8 × 8 m crop cut sub-plot
was then established on each plot for the actual processing and weighing the crop harvest at the end
of the season. The latitude and longitude of the edges of each sub-plot were recorded by Android
tablets, and each sub-plot was sub-divided into four 4 × 4 m quadrants, for which the crop harvest was
processed and weighed separately. The approach of a random placement of the crop cut sub-plots,
supervision of the crop cut sub-plots throughout the season, and harvesting, processing, and tracking
of sorghum cultivated in each quadrant were all identical to the approach in an earlier methodological
study focused on maize in Eastern Uganda [6] (please see [6] and their Appendix D for more details).
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(C) Example of a DigitalGlobe image collected on 19 September 2017, with plot boundaries for a subset 
of plot locations shown in orange and the centroid of the crop cut sub-plot shown in blue. (D–E) Same 

Figure 1. (A) Map of Mali with the study region outlined in black. (B) Study region in Koulikoro
showing the four distinct survey sites. The location of captured DigitalGlobe images is shown in red.
(C) Example of a DigitalGlobe image collected on 19 September 2017, with plot boundaries for a subset
of plot locations shown in orange and the centroid of the crop cut sub-plot shown in blue. (D–E) Same
as (C) but background image is a (D) Planetscope image from 11 September 2017 and a (E) Sentinel-2
image from 13 September 2017.

The second visit’s fieldwork was conducted during the harvest season, over the period of
November–December 2017. During the second visit, the harvest from each crop cut quadrant was
barcoded and processed for drying, which was done at a centralized location in each village, under
the supervision of the resident enumerator. Finally, the third visit fieldwork spanned the period of
late-January–February 2018. During the third visit, the dried harvest associated with each crop cut
quadrant was weighed, and the households were administered a post-harvest questionnaire that elicited
farmer-reported information for all plots cultivated with sorghum regarding (i) sorghum production
(allowing for the use of non-standard measurement units for the quantification of production), (ii) use
of non-labor inputs, including organic and inorganic fertilizers, as well as pesticides, and (iii) household
and hired labor inputs for weeding, input application, and crop harvest.

The final dataset consisted of household- and plot-level information augmented with self-reported
and GPS-based plot areas, self-reported and crop cut sorghum harvest weights, and plot boundary
polygons. GPS plot boundaries were processed to remove any self-intersections and to erase any areas
of overlap between neighboring plot polygons. Crop cut yields were calculated by dividing the total
grain weight of sorghum by the 64 m2 designated crop cut area. Grain moisture was deemed to be
uniformly low, given the arid climate of the region, and was not measured or adjusted for in the crop
cut yield estimates. A total of 25 fields were omitted from subsequent analysis, either because of
missing crop cut yields or self-intersecting GPS boundaries, leaving a final sample size of 575 plots.

Self-report yields were calculated by first converting each survey answer to kilograms (kg), since
responses were provided in varying non-standard measurement units such as a “sheaf”. To obtain
kg-equivalent production measures, village-level median conversion factors were computed based on
the conversion factors that were provided by the respondents for each non-standard unit during the
third interview that solicited self-reported information on agricultural production. (We compared our
conversion factors to those that were obtained from a pilot study that was conducted by the Ministry
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of Agriculture (MoA), with support from the World Bank LSMS-ISA. The conversion factors matched
across the two studies, even though “bunches” exhibited a large variance. The scaled-up version of the
MoA conversion factor survey is slotted for implementation starting in December 2019.) Further, if the
reported harvest condition was unshelled, a shelling factor was applied. We computed the conversion
factors at the village level in part to reduce potential biases in farmer-reported conversions, while
recognizing the possibility of spatial variation in conversion factors based on prior work [17]. In the
current study, only 4% of observed variability in self-report yields were explained by the conversion
factors used.

The total harvest weights in kg were then divided by the self-reported plot area to obtain
self-reported yields. In sensitivity tests, self-reported yields were also calculated using the polygon
area, with any notable differences discussed below. The preference for calculating self-reported yields
using self-reported area is based on Abay et al. [7], who show that if measurement errors in self-reported
production and area are correlated, correcting one (area) can lead to bigger errors in analyzing yields
than correcting neither.

2.2. Satellite Data

We used Sentinel-2 as the primary source of remote sensing imagery for this study. The Sentinel-2
Multispectral Instrument (MSI) measures 13 spectral bands that collectively span the visible/near
infrared and short wave infrared spectral range, from roughly 440–2200 nm. For the current study we
used the Sentinel-2 Level 1-C product, which represents top-of-atmosphere reflectance. From these
raw bands we calculated several common vegetation indices that have been found to be useful for
agricultural monitoring in similar settings [12,15,16].

Specifically, we computed the Green Chlorophyll Vegetation Index (GCVI) [18] at 10 m resolution,
the Normalised Difference Vegetation Index (NDVI) [19] at 10 m resolution, and the MERIS Terrestrial
Chlorophyll Index (MTCI) [20] at 20 m resolution:

GCVI = (R842/R560) − 1 = (B8/B3) − 1, (1)

NDVI = (R842 − R665)/(R842 + R665) = (B8 − B4)/(B8 + B4), (2)

MTCI = (R842 − R705)/(R842 − R665) = (B8 − B5)/(B8 − B4), (3)

where Rλ refers to reflectance centered at wavelength λ and B refers to the corresponding Sentinel-2
band. Sentinel-2 has a revisit period of 5 days in this study region. Based on the reported sowing
and harvest dates from the household survey, we used the time series from 5 May 2017 through to
31 December 2017, for a total of 87 unique image dates for each plot.

For higher-resolution imagery, we considered two alternatives. First, DigitalGlobe (DG) images
were acquired by their GeoEye-1 (1.84 m multispectral resolution), WorldView-2 (1.84 m), and
WorldView-3 (1.24 m) sensors on a monthly basis from July through December 2017 for the four
10 × 10 km (red) blocks shown in Figure 1. Given the limited swath of DG images, only a fraction of
plots (typically less than one-quarter) were covered by any individual image. Removing images with
excessive cloud cover resulted in successful acquisition of 18 images, with the dates for each image
shown in Table 1.
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Table 1. Summary of images acquired by DigitalGlobe (DG) sensors in the study region. Region
refers to the quadrant shown in Figure 1. Sensor source is shown in parentheses G = GeoEye-1,
W2 = WorldView-2, and W3 = WorldView-3.

Region Digital Globe Imagery Dates

1 8/17/17 (G), 9/19/17 (G), 10/1/17 (W2), 10/18/17 (W3), 11/7/17 (G)

2 9/5/17 (G), 10/16/17 (G), 11/4/17 (G)

3 9/5/17 (W3), 10/5/17 (G), 10/16/17 (G), 11/8/17 (W2)

4 8/1/17 (G), 8/29/17 (W3), 9/19/17 (G), 10/6/17 (W2), 10/16/17 (G), 11/6/17 (W3)

Second, approximately 3 m resolution Planetscope images were collected at roughly daily frequency
by sensors on the Planet company’s “dove” of Planetscope cubesats. The Planet’s constellation consists
of >100 small cubesats in low-Earth orbit. In contrast to the large size of traditional VHR sensors
(e.g., WorldView-3 weighs 2800 kg), Planet doves weigh approximately 5 kg and thus have dramatically
lower launch costs. Although the image quality is lower in terms of both sensor signal-to-noise
ratio and spatial resolution, the large number of doves allows frequent observations at any point on
the Earth’s surface. For the current study, access to Planetscope images was provided via Planet’s
ambassador program. We downloaded all images in the study region with fewer than 5% of clouds,
with an average of 52 observations per plot throughout the growing season. All images were converted
to top-of-atmosphere reflectance using coefficients provided in the image metadata.

3. Methods

3.1. Satellite Data Processing

For each of the 575 plots, Sentinel-2-based vegetation index values were computed for both the
entire plot and for the 8 × 8 m crop cut sub-plot on each plot. A common challenge with optical
satellite imagery is the prevalence of clouds that obscure or completely block the satellite sensor’s
view of the land surface. Sentinel-2 has a predefined cloud mask band, but preliminary analysis
revealed this mask was unreliable in the region—with many false positives and false negatives.
Rather than explicitly flagging cloudy observations, we adopted a recursive curve fitting procedure
similar to that implemented in the Timesat software package [21], which is robust to the inclusion of
cloudy observations.

Specifically, a discrete Fourier transform, also known as a “harmonic regression,” was fit to all 87
observations in a pixel between 5 May and 31 December:

f (t) = c +
N∑

k=1

(ak cos 2kωπt + bk sin 2kωπt), (4)

where f (t) is the value of the reflectance band or vegetation index of interest, t is the date of observation,
N is the number of harmonic terms included, and ak, bk, and, c are cosine, sine, and intercept coefficients
estimated by the regression, respectively. Past research has shown that harmonic regressions can
adequately characterize vegetation phenology, including in agricultural settings [21–23]. Here we used
the second-order harmonic (N = 2) following [22].

When fit to the raw data, Equation (4) is heavily influenced by cloudy observations, as illustrated
in Figure 2 for the time series of GCVI at a representative plot. The raw values shown in black dots
display frequent drops in value to near zero, indicating cloud cover on those days. Therefore, an
iterative procedure was used whereby the predicted values from Equation (4) were compared with the
input value at each date. If the input value was lower, it was replaced with the predicted value, and the
resulting time series was then used to refit Equation (4). This process can be repeated until the influence
of cloudy observations is minimized. In this case, we found that the 10th iteration approximated the
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upper limits of the curve more closely, as shown in Figure 2. Thus, for all plots we used the fitted
values from the 10th iteration in further analysis.
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3.2. Calibration of Satellite-Based Yield Model

To convert satellite vegetation indices to yield, we performed a simple regression between the peak
value of the harmonic curve (VIpeak) on each plot i, and the associated ground-based yield measure (Y):

Yi = α+ β1VIpeak,i + εi . (5)

When crop cut yields were used for Equation (5), the VI was taken from the Sentinel-2 pixel that
contained the centroid of the 8 × 8 crop cut sub-plot. Taking an average of pixels around this point was
also tried but had little effect on the results. When self-reported yields were used, the VI for each plot
was computed as an average of values from all non-tree pixels with at least half of their area falling
within the plot boundary. Following [12], we masked out pixels with trees since plots often contain
enough trees to appreciably influence the apparent greenness of the plot. In our case, pixels with trees
were identified as those with a GCVI harmonic fit that exceeded a value of 1.0 at any point between
1 June and 15 July, which is the beginning of the crop growing season when crop pixels were typically
well below this value (Figure 2). Overall, 34% of the pixels within plots were removed in this manner.

We alternatively tested GCVI, NDVI, and MTCI as potential predictors of yield, with GCVI
generally performing best. Models with additional terms, such as the date on which the peak occurred
or the fitted value of the harmonic at earlier times in the season, were also tested but did not significantly
improve the model and therefore are not presented for the sake of brevity.

3.3. Comparison of Survey and Satellite Data

A major difficulty in assessing the quality of satellite yield estimates is the fact that the traditional
ground-based measures (i.e., self-reported and crop cut yields) are themselves prone to errors as
discussed in the introduction. The most common approach has simply been to treat ground data
as “ground truth,” and attribute any differences between satellite and ground-estimates to errors in
the satellite data. In this case, the calibration R2 of Equation (5) is a common metric of how well the
satellite-based yield model performs. An alternative to directly comparing the two measures is to use
a vector of variables (X) that are expected to influence yields (Y), and test whether the regression

Yi = α+ βXi + εi (6)
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results in weaker, stronger, or equivalent β coefficients (with expected signs) when using satellite-based
yields. This approach avoids dependence on the assumption that the ground-based measures are
free of error, and was used to evaluate estimates of maize yields in recent studies in Kenya [15] and
Uganda [16]. Similar to the prior work, the following (self-reported) variables are included in our
vector X: Household size; head of household age, and education level; plot size; plot distance to
(i) household, (ii) road, and (iii) market; use of crop rotation and fallowing; frequency of ploughing;
quantity of labor, seed, fertilizer, and pesticides used; and rainfall totals for the entire growing season
and for the month of August, which is especially important for determining drought stress during
flowering. Rainfall was obtained for each 5-day period in the growing season from the CHIRPS
dataset [24]. The coefficients and overall explanatory power of the regressions were then compared for
models that alternatively used self-reported, crop cut, or satellite-based yields.

4. Results and Discussion

Summary statistics for survey responses and crop cut yields are presented in Table 2. Overall,
farmers reported an average plot size of 1.88 hectares (ha), which is 23% larger than the 1.53 ha average
size of the plot polygons measured with GPS. This tendency to overestimate plot area was particularly
noteworthy on plots below 2 ha, consistent with the findings in other LSMS-ISA studies where plot
sizes were overestimated by farmers on plots below 2 ha in Malawi, Uganda, Tanzania, and Niger [25].

Table 2. Summary statistics on selected variables, which are either farmer-reported or measured by
field staff. Three fields lacked self-reported yields, and six lacked reported harvest dates.

Continuous Variables Source n Min Median Max Mean

Longitude Measured 575 −6.80 −6.35 −6.03 −6.44

Latitude Measured 575 12.13 −12.30 12.65 12.35

Elevation Measured 575 234.2 300.8 370.5 302.6

Yield—crop cut (kg/ha) Measured 575 0 421.7 2472.5 497.5

Yield—survey (kg/ha) Reported 572 0 319.6 6189.4 475.6

GPS plot area (ha) Measured 575 0.05 1.18 11.93 1.53

Farmer plot area (ha) Reported 575 0.10 1.50 12.00 1.88

Sowing date (half-month) Reported 575 April
2nd half

June
2nd half

August
2nd half -

Harvest date Measured 569 28 October 2017 12 November 2017 8 December 2017 -

Distance to household (km) Reported 575 0 2 20 2.29

Distance to road (km) Reported 575 0 1 21 2.16

Distance to market (km) Reported 575 0 7 30 7.52

Labor for sowing (h/ha) Reported 575 2.4 31.0 2521.5 81.8

Labor for harvest (h/ha) Reported 575 0.7 30.0 1011.3 44.8

Inorganic fertilizer (kg/ha) Reported 575 0 0 300 19.7

Seed used (kg/ha) Reported 575 3.6 5.0 20.0 5.8

Binary Variables Source n Yes No Mean

Fallowed in the past 10 years? Reported 575 34 541 0.059

Practices crop rotation? Reported 575 482 93 0.84

Field has erosion problems? Reported 575 115 460 0.2

Categorical Variables Source n Top Counts

Head of HH—Ethnicity Reported 575 Bambara/Malinké: 338, Peulh/Foulfoulbé: 188

Soil type Reported 575 Clay: 322, Silt-Sand: 97, Sand-Silt: 93

Soil fertility Reported 575 Low: 106, Average: 301, Good: 168

Terrain type Reported 575 Plain: 426, Gentle Slope: 95, Steep Slope: 41

Tree coverage Reported 575 None: 29, Few: 376, Many: 170
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Only 31% of farmers reported using any inorganic fertilizer, with a mean reported rate of just below
20 kg/ha. The majority of farmers reported having clay soils and a plain (flat) terrain. Although fewer
than 10% of farmers reported having a steeply sloping plot, 20% reported having had erosion problems.

Both self-reported and crop cut yields exhibited similar mean values of just below 500 kg/ha.
However, the median yield was roughly 25% lower for self-reports, consistent with the overestimation
of areas by a similar amount. At the same time, self-reports had a much higher upper bound of yields
stretching to values above 6000 kg/ha, whereas crop cuts never exceeded 2500 kg/ha. This is striking
given that the crop cuts cover a much smaller area (64 m2 is 0.4% of the mean plot size of 15,303 m2),
and because of sub-plot heterogeneity they would be expected to exhibit more extreme values than
self-reports that correspond to the plot-level mean yield.

A scatter plot between the self-report and crop cut yields on each plot reveals a striking lack of
agreement between the two ground-based measures (Figure 3). The overall correlation between the
two measures was just 0.33, indicating that one ground-based measure can explain only approximately
11% of variation in the other. The correlation slightly improves to 0.40 when omitting plots with
self-report values above 2500 kg/ha (Figure 3B). The low agreement between ground-based measures
is similar to that reported for maize plots in Eastern Uganda, where self-report and crop cut yields had
a correlation below 0.30 even after excluding very small plots where self-reports were deemed least
reliable [16].
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Figure 3. Comparison of crop cut vs. self-reported yields for (A) all fields, (B) removing SR yields
above 2500 kg/ha. Best-fit regression line is shown in solid red, 1:1 line shown in dashed red. In general,
the two yield measures show low agreement (R2 < 0.2) even when removing apparent outliers in
self-reported yields.

Moving to the comparison with satellite measures, Figure 4 shows the correlation between the
two ground-based yield measures and GCVI for each date of Sentinel-2 imagery, both for the raw
GCVI values and the harmonic fit at those dates. We find the highest correlations between GCVI
and ground-based yields were observed in mid- to late-September for both self-report and crop cut
yields, which is generally the same time that the GCVI curve reaches its maximum (Figure 2). The
GCVI correlations with crop cut yields were consistently higher than those with self-report yields,
with a peak value of 0.48 for crop cut compared to 0.23 for self-reports (Figure 4). The self-report
correlation improved slightly to 0.27 when removing fields with self-report yields above 2500 kg/ha,
but still remained well below the corresponding correlation for crop cuts. This finding suggests that
the self-report yields are the less reliable of the two ground measures.

The decision to use VIpeak in Equation (5) is supported by the observation that the GCVI-yield
correlation peaks in late September (Figure 4). Results were similar when using NDVI, with r = 0.48
for GCVI as compared to r = 0.50 for NDVI. MTCI was found to be less suitable to the harmonic fitting
because clouds did not systematically reduce MTCI values; nonetheless MTCI performed similarly



Remote Sens. 2020, 12, 100 10 of 16

to GCVI and NDVI for clear images in this setting, with a peak correlation of 0.40 compared to 0.45
for GCVI.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 16 
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captured in all cases. The models’ explanatory power was likely limited by a lack of objective soil 
measures in the current study, especially given overall low levels of input use in the region (Table 2). 
Consistent with a high importance of soil, all models showed a statistically significant (p < 0.01) 
negative association between yields and whether the plot had been fallowed in the past decade (a 
likely indication of poor soil quality). 

Figure 4. Correlation of yield and GCVI by date. Weekly max values are the maximum correlation in
that week against the raw due to instances of multiple images; harmonic fits are the predicted value
from the 10th recursive iteration. Crop cut time series show higher correlations and both peak in late
September, around a month before harvest.

Predictions from Equation (5) using GCVI were significantly correlated with both ground-based
measures (Figure 5, p < 0.01 for slopes in both panels), with better agreement with crop cut than
self-report yields. Although GCVI successfully captured some of the variation in ground-based yield
measures, well over half of the variation was not captured. At least in part, these discrepancies arise
because of noise in the ground-based measures, namely reporting errors in the case of self-reports or
the effects of spatial heterogeneity in the case of crop cuts.
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Figure 5. Comparison of satellite-based yield estimates to the ground-data used to calibrate the model.
(A) crop cut yields and (B) self-reported yields. Best-fit regression line is shown in solid red, 1:1 line
shown in dashed red. Both satellite-based models used peak GCVI from the 10th harmonic regression,
as illustrated in Figure 2. In general, GCVI was more strongly correlated with crop cut than with
self-reported yields.
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As a separate assessment, we performed the regression in Equation (6) using three alternative
measures of yield: Self-report, crop cut, and satellite-based estimates using the model calibrated to crop
cuts. For predicting field-scale yields with GCVI, we use the mean value of GCVI for the entire plot
(again excluding pixels with trees), rather than for the crop cut sub-plot used in the calibration step.
Table 3 summarizes the coefficients and explanatory power of each model. All models were statistically
significant, although less than one-quarter of total variation in measured yields was captured in all
cases. The models’ explanatory power was likely limited by a lack of objective soil measures in the
current study, especially given overall low levels of input use in the region (Table 2). Consistent with a
high importance of soil, all models showed a statistically significant (p < 0.01) negative association
between yields and whether the plot had been fallowed in the past decade (a likely indication of poor
soil quality).

Table 3. Regression results using three alternative measures of sorghum yield: (i) Self-reported, (ii) crop
cut, and (iii) crop cut-calibrated Sentinel-2 satellite yields. In first column, carrots (ˆ) indicate inputs
that were input as a binary variable (0,1) and asterisk (*) indicate variables that were calculated on a
per ha basis using self-report area. Values in parentheses show the standard error of the estimate, and
significance of the coefficient is indicated as (* p < 0.1, ** p < 0.05, *** p < 0.01).

Log Self-Report Yield * Log Crop-Cut Yield Log Satellite Yield

Constant −7.22 (14.09) −2.08 (6.66) 6.77 ** (3.26)
Log Plot Area (ha) * −0.15 ** (0.07) 0.08 (0.07) −0.02 (0.02)

Household Size (persons) 0.01 ** (0.0) 0.0 (0.0) 0.0 (0.0)
HoH Age (yrs) 0.0 (0.0) −0.0 (0.0) 0.0 (0.0)

HoH Education (yrs) −0.03 * (0.02) −0.03 * (0.02) −0.02 *** (0.01)
Distance to Household (km) −0.02 (0.02) 0.01 (0.02) 0.02 ** (0.01)

Distance to Road (km) 0.01 (0.02) 0.01 (0.01) −0.0 (0.01)
Distance to Market (km) 0.01 (0.01) 0.01 (0.01) 0.0 (0.0)
Practices Crop Rotation ˆ 0.16 (0.11) 0.28 *** (0.1) 0.05 (0.04)

Fallowed < 10 Years Ago ˆ −0.27 *** (0.09) −0.6 *** (0.17) −0.24 *** (0.08)
Erosion Problems ˆ −0.08 (0.09) −0.04 (0.1) −0.04 (0.03)

Ploughs (times) 0.02 (0.04) 0.03 (0.04) 0.05 (0.03)
Sowing Labour * (hrs/ha) 0.0 (0.0) 0.0 * (0.0) 0 * (0)
Harvest Labour * (hrs/ha) 0.0 ** (0.0) −0.0 (0.0) −0.0 (0.0)

Log Seed Quantity * (kg/ha) 0.15 (0.18) −0.12 (0.12) 0.02 (0.05)
Inorganic Fertiliser * (kg/ha) 0.0 * (0.0) 0.0 (0.0) 0.0 (0.0)

Pesticide * (kg/ha) 0.0 (0.0) 0.0 (0.0) −0.0 (0.0)
Log Total Precipitation (mm) −1.25 (1.88) −0.8 (0.65) −2.49 *** (0.39)
Log Aug Precipitation (mm) 3.71 *** (1.25) 2.36 (1.5) 2.84 *** (0.46)

F-statistic −7.0 × 1013 (df = 18;519) 1.78 × 1010 *** (df = 18;519) 6.32 × 1011 *** (df = 18;519)
Observations 538 538 538

R_squared 0.14 0.08 0.26
R_squared_adj 0.11 0.05 0.24

The model using crop cut yields exhibited the lowest explanatory power (adjusted R2 = 0.05),
likely reflecting the fact that the crop cut sub-plot areas represent on average less than 1% of the
total plot area that pertains to the survey responses on management and soil conditions. The model
using self-report yields had higher explanatory power (adjusted R2 = 0.11). Several factors likely
contribute to this increase, including that (i) self-report yields (unlike crop cut yields) correspond to
the same spatial scale as other self-reported plot characteristics; (ii) measurement errors for different
survey questions are likely correlated and could inflate the overall model performance, for instance if a
farmer who overestimates production tends to also overestimate seed or fertilizer inputs; (iii) farmer
perceptions of yield are influenced by the weather during the growing season, as suggested by the fact
that the association with August rainfall is larger for self-report yields than the other measures; and (iv)
self-reported yields tend to be higher on smaller plots, as indicated by a significant negative coefficient
for plot size. Although this last factor increases the explanatory power of the model, we interpret it as
an artefact of self-report bias on small fields rather than a true inverse relationship between plot size
and productivity, as discussed in [6].
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The model using crop cut-calibrated satellite yields exhibited the highest explanatory power
among the three models (adjusted R2 = 0.24), more than twice as much as for crop cut or self-reported
yields. One interpretation of this could be that errors in the satellite model are correlated with the some
of the factors in X. For example, GCVI is known to correlate strongly with overall canopy biomass
and nitrogen content [26,27], but the relationship between biomass and yield is variable in rainfed
sorghum systems [12]. Therefore, it is possible that inputs such as fertilizer are more predictive of
biomass than yield, while at the same time our satellite-based estimates are more sensitive to biomass
than yield. Unfortunately, without explicit measures of biomass we cannot assess the extent to which
this explanation holds. Another potential explanation, in our view a more likely one, is that the higher
explanatory power indicates a greater ability of satellite data to detect plot-level variations in yield
compared to either self-reports or crop cut estimates.

The results discussed above all pertain to satellite estimates obtained when using ground data
from all 575 fields to calibrate Equation (5). A practical question is whether similar results could be
achieved at lower cost by using significantly fewer plot samples. To test this, we varied the number
of ground samples used in calibration from 5 to 500, each time randomly selecting the calibration
samples and reserving the remaining fields as a validation set. Figure 6 shows the average root mean
square error (RMSE) for the validation set, averaged over all validation points and for 200 different
iterations with different randomly selected calibration samples. The out-of-sample performance
improves most rapidly up to roughly 30 ground samples, after which RMSE exhibits a more gradual
decrease. Also shown in Figure 6 is the RMSE when the model is calibrated to self-reported yields,
which consistently do worse than crop cuts regardless of how many ground samples are obtained.
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processed in the same manner as Sentinel-2, with recursive harmonics fit to the GCVI observations, 
and the peak of the harmonic fit used to predict yield. We also considered whether combining 
Sentinel-2 and Planetscope observations, which results in a denser time series of VI observations, led 
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Figure 6. The average root mean squared error (RMSE) between crop cut yields and satellite-based
yield estimates for fields not used in calibration (i.e., out-of-sample), plotted for different size of training
datasets used in calibration and for different sources of yield data for calibration (crop cut or farmer
self-report). Values shown are the mean across 200 different random subset of calibration points for
each calibration size. Performance improves rapidly with each additional sample until ~30 training
points, after which improvement is more gradual.

A final consideration for this study was whether the spatial resolution of the satellite data is a
major factor determining the performance of satellite-based models. The Planetscope imagery was
processed in the same manner as Sentinel-2, with recursive harmonics fit to the GCVI observations, and
the peak of the harmonic fit used to predict yield. We also considered whether combining Sentinel-2
and Planetscope observations, which results in a denser time series of VI observations, led to any
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improvements. Overall, the two sensors performed similarly (Figure 7), suggesting that the benefits
of a finer resolution (for Planetscope) or better sensor spectral resolution and signal-to-noise (for
Sentinel-2) were not substantial in this particular system.
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Figure 7. Correlation between ground-based yields and satellite peak GCVI for Sentinel-2 (S2),
Planetscope (PS), and the combination of the two. Peak GCVI values were determined from a harmonic
fit (Equation (5)) to the individual observations of GCVI throughout the season. Performance was
similar for the different satellite sensors.

The DG imagery could not be processed in a similar way given the sporadic coverage of
fields throughout the season. That is, the differing frequency of DG images would complicate the
interpretation of the resulting harmonic coefficients relative to those from Sentinel-2. Therefore, to
compare with Sentinel-2 we calculated the Sentinel-2 GCVI from the harmonic regression for the date
of the DG image and computed the correlation between GCVI for each sensor and crop cut yields for
the sub-set of fields that were located within the image. A comparison of the correlations for the two
sensors with crop cut yields revealed little systematic difference between the two sensors (Figure 8).
Sentinel-2 outperformed DG in slightly more than half of the image pairs, but differences were typically
only a few percentage points.
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5. Conclusions

The rapidly growing availability of satellite data offers great promise for monitoring smallholder
agricultural plots. The results of this study indicate that the perceived performance of satellite-based
measures can depend to a large extent on how the performance is measured. In our setting, when
compared to ground measures of yield, satellite data agreed much more strongly with crop cuts from
8 × 8 m sub-plot than with farmer self-reported yields for the entire plot. Studies that rely solely on
comparisons with self-reported yields may therefore understate the ability of satellites to measure yield
variation, particularly in subsistence systems where farmers do not typically measure production.

Moreover, even comparisons with crop cuts may not give a complete view of the performance of
(crop cut) calibrated satellite yields, given high yield heterogeneity in many fields and the fact that
satellite pixels will inevitably contain some signal from outside the crop cut sub-plot. Therefore, we
recommend (i) following a regression-based approach to estimate the relationships between yields
and factors that are likely to influence yields, including inputs, soil conditions, and management
practices, and (ii) investigating the sensitivity of these estimates across different yield measures, as an
additional form of evaluation of calibrated satellite-based estimates. In the current study, these factors
explained more than twice as much variation in satellite-based yield estimates as for either crop cuts or
self-report yields. This finding provides an additional line of evidence that satellite-based yields are
no worse, and possibly better, than traditional ground-based measures for assessing yield variation.
Of course, obtaining accurate ground-based data on agricultural systems remains important, both for
the calibration and evaluation of satellite estimates, as well as for the many other aspects of interest
that cannot be measured remotely (e.g., off-farm income). However, measuring production is often one
of the most time-intensive and therefore expensive parts of field surveys, and satellite-based estimates
can help to reduce the number of fields for which ground-based measures are needed. Our estimates
suggest that, at least in this setting, only a few dozen high-quality ground observations would be
needed to train an accurate model.

As the use of satellite data becomes more mainstream for monitoring and studying agricultural
systems, the relative benefits and costs of different sensors is of increasing relevance. Here we
considered three sources of satellite imagery, the public and freely available 10 m data from Sentinel-2
as well as finer resolution imagery from two private sector providers (Planet and DigitalGlobe).
For the study setting, where plot sizes averaged 1.5 ha and there were frequent cloud-free Sentinel-2
observations during the growing season, there appeared little benefit to using the finer resolution data.
In regions with more cloud cover or smaller fields, the benefits of these other sensors would likely be
larger, and more comparisons are needed to understand the conditions under which these sensors
provide the most value.
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