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Abstract: Forests are one of the most important terrestrial ecosystems for the protection of 
biodiversity, but at the same time they are under heavy production pressures. In many cases, 
management optimized for timber production leads to a simplification of forest structures, which is 
associated with species loss. In recent decades, the concept of retention forestry has been 
implemented in many parts of the world to mitigate this loss, by increasing structure in managed 
stands. Although this concept is widely adapted, our understanding what forest structure is and 
how to reliably measure and quantify it is still lacking. Thus, more insights into the assessment of 
biodiversity-relevant structures are needed, when aiming to implement retention practices in forest 
management to reach ambitious conservation goals. In this study we compare expert ratings on 
forest structural richness with a modern light detection and ranging (LiDAR) -based index, based 
on 52 research sites, where terrestrial laser scanning (TLS) data and 360° photos have been taken. 
Using an online survey (n = 444) with interactive 360° panoramic image viewers, we sought to 
investigate expert opinions on forest structure and learn to what degree measures of structure from 
terrestrial laser scans mirror experts’ estimates. We found that the experts’ ratings have large 
standard deviance and therefore little agreement. Nevertheless, when averaging the large number 
of participants, they distinguish stands according to their structural richness significantly. The stand 
structural complexity index (SSCI) was computed for each site from the LiDAR scan data, and this 
was shown to reflect some of the variation of expert ratings (p = 0.02). Together with covariates 
describing participants’ personal background, image properties and terrain variables, we reached a 
conditional R² of 0.44 using a linear mixed effect model. The education of the participants had no 
influence on their ratings, but practical experience showed a clear effect. Because the SSCI and 
expert opinion align to a significant degree, we conclude that the SSCI is a valuable tool to support 
forest managers in the selection of retention patches. 

Keywords: Terrestrial laser scanning; stand structural complexity index; forest structures; retention 
forestry; guideline implementation; photo-based expert survey; mixed methods; 

 

1. Introduction 

1.1. Relevance of Forest Structure 

Forests hold the majority of the global biodiversity [1] and, at the same time, are under heavy 
use for timber production in several regions, which leads to a strong simplification of their structures 
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[2]. In conventionally managed forests optimized for timber production, structures typical of late 
successional stages and old growth forests are especially lacking. This loss of structural diversity 
leads to strong negative impacts on various ecosystem services like biodiversity and resilience [3]. 
Changes in forest structure due to wood production are different than changes in structure due to 
natural disturbance, both in frequency and extent [4]. To minimize this difference, the retention of 
diverse forest structures has become a common goal in forestry conservation guidelines [5,6]. 
Retention practices include setting aside single or small groups of “habitat trees” to grow old, the 
enrichment of standing and lying dead wood within stands, as well as a variety of other measures 
depending on the ecosystem and local conditions. 

1.2. Descriptors of Forest Structure 

Various authors stress the point that forest structure is the main driver of habitat provision and 
therefore for forest biodiversity [7–9], but the quantification of forest structures is still a matter of 
current research, since the direct measurement of biodiversity is costly with current methods. Forest 
structure has multiple aspects and a broad variety of indicators exist to describe these for retention 
purposes. While forest managers mostly have to rely on their subjective visual impression when they 
decide which trees or group of trees will be retained [10], different criteria have been evaluated to 
make these decisions more objective. First attempts to describe quantitative structural complexity 
used diversities of tree diameters at breast height (DBH), tree size differences, or spatial patterns of 
tree locations [11–15]. To our knowledge, none of these have been proven relevant indicators for 
biodiversity. Newer approaches focus on old growth attributes from manual assessments. These tree-
related microhabitats (TreMs), such as cavities or dead branches have proven to be significant habitat 
descriptors for the diversity of various taxa [5], but suffer from a relatively strong observer bias [16]. 

Latest indices based on terrestrial laser scanning (TLS) use the detailed geometric description 
these devices offer to derive indices based on the distribution of material in 3D-space directly. While 
a lot of research has been conducted to receive classical forest parameters like DBH or crown base 
height from TLS, indices describing the complexity of the forest directly from the data are very rare. 
One index based on a single scan which can be acquired in some minutes with minimal expertise and 
minimal bias from the inventorying person is the Stand Structural Complexity Index (SSCI, [17], see 
method section for details).  

Since those technical measurements of forest structure have yet to be implemented, management 
guidelines and retention programs try to deliver clear criteria for the selection of retention patches or 
habitat trees [6,8]. However, several other criteria such as timber yields, aesthetics or accessibility 
may influence decisions on which trees to mark as habitat trees. The emphasis on economic targets 
especially limits the amount of discretion that foresters perceive when implementing nature 
conservation programs [18]. Against the backdrop of a multitude of potentially conflicting goals, 
choices of retention elements may in many cases be suboptimal for the protection of biodiversity and 
other ecosystem services [19]. The choice of a retention patch is a complex multidimensional decision, 
which must consider, among other factors, the rarity of the habitat in its surrounding landscape, the 
occurrence of rare species, and TreMs into account, factors which are more easily observed by an 
expert than in a technical index like the SSCI, which is purely focused on the stand. To our knowledge 
there are no scientific studies, which compare how consistently forest experts rate a forest habitat 
according to its structural richness and value in terms of biodiversity conservation, and how these 
ratings mirror or complement technical indices such as the SSCI.  

1.3. Photography-Based Expert Evaluations 

Photo-based studies are commonly used in urban and landscape planning to evaluate the visual 
perception or beauty of landscapes. In our study, this aspect is of minor importance, since we ask 
experts to rate forest structural richness with regard to biodiversity conservation, which is not 
directly linked to aesthetical aspects [20–22]. Even if the complex visual perception biases the expert 
rating, this is not the focus of our research. Based on an eye-tracking study with 28 participants 
assessing images of partial retention in recently logged forests, Pihel et al. [23] researched if experts 



Remote Sens. 2019, 11, 1137 3 of 17 

 

and lay people rate forest biodiversity differently. Their results indicated that lay people judge forest 
biodiversity similar to experts, but with less confidence. Furthermore, the eye-tracking information 
showed significantly different results, indicating that experts have a different way of assessing the 
forest.  

The best impression of a forest stand can be perceived by walking through it. Ideally all senses 
would be used to experience a forest, but sight is arguably the most important for structural 
evaluation. Photographs can give us a visual representation of the forest but limit us in our ability to 
take different viewpoints, perspectives or in focusing on small elements due to resolution constraints. 
On the other hand, photograph-based surveys have some major advantages against on-site visits. 
Online photography assessments can reach a large number of participants, which would require large 
logistical efforts if conducted as on-site visits. Numerous on-site visits may also change or damage 
the site during the study and site effects like rain, wind, temperature, vegetation change, mosquitos, 
cloudiness and shades are not easily excludable [24].  

While the change of viewpoints by free movement cannot be easily simulated using 
photographs, 360° panoramic images offer the possibility to choose one's own viewing angle using 
interactive photo viewers, where the image is projected inside a virtual sphere. The participant can 
freely look up in the canopy or down to the forest floor, and even zoom on smaller details, which is 
of major importance in our case, since relevant structures can be found in all parts of the forest. To 
our knowledge, this is the first 360° image-based online survey conducted in forest research, but the 
methodology is similar to classical photo surveys [20,21].  

In the present study we combined photo-based expert ratings with the new possibilities of TLS-
based forest structure quantification. This approach can provide insights on the validity of the 
structural index, following a similar approach as Ashcroft et al. [25], and help us to discuss the 
uncertainties in expert ratings in this field. Our main research questions therefore are: (1) Do experts’ 
rate the structural richness of a forest patch consistently? (2) Do technical indices reflect expert 
opinions? We therefore approached forest experts in a quantitative online survey with 360°-image 
spheres showing forest research plots where we have taken scans, to derive technical indices and 
compare the results (see method description for further details). As far as we know such a comparison 
of technical remote-sensing techniques and expert opinions has not been conducted yet. We 
hypothesize, that the educational and personal background of the participants, the properties of the 
forest sites (terrain height and slope, forest type) as well as of the images (brightness, greenness) have 
an influence on the expert ratings. We further verify if the structural richness is correlated to the 
habitat quality of a forest according to the expert ratings.  

2. Methods 

The interdisciplinary design of the study integrates various methods and data sources. We 
applied TLS and a photo based expert survey for data collection. These two datasets were combined 
with additional information from forest inventory data and a terrain model. Figure 1 gives an 
overview of the applied processing procedure from prior fieldwork to the final model. The detailed 
workflow and indices used are described below. 
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Figure 1. Detailed workflow of the whole study. Details about the processing steps can be found in 
chapters 2.2–2.6. Green boxes indicate data acquisition, orange boxes data preparation and blue boxes 
data analysis steps. DTM stands for digital terrain model, TGI for triangular greenness index and 
brightness standard deviation (SD) for the area weighted standard deviance of the image brightness. 

2.1. Research Site 

The study area is located in southwest Germany in the southern Black Forest mountain range in 
the state of Baden-Württemberg (Figure 2). The Black Forest rises from the Rhine valley up to ca. 1500 
m a.s.l. The research project “Conservation of Forest Biodiversity in Multiple-Use Landscapes of 
Central Europe” (ConFoBi) established a network of one-hectare plots in state-owned forests. 
Spanning 3700 km², all plots have a minimum distance of 750 m from each other. Forests in this area 
are dominated by Norway spruce (Picea abies L.), European beech (Fagus sylvatica L.) and silver fir 
(Abies alba Mill.). To implement the goals of the state level nature conservation strategy [26] in forest 
management, the so-called old- and deadwood program [27] sets specific targets for minimum 
amounts of deadwood and habitat trees to be retained in state forests. Management of these forests 
follows a “close-to-nature” paradigm characterized by single tree and group selection harvests, 
natural regeneration, promotion of mixed and uneven-aged stands, and retention of habitat trees [28]. 
The plots were selected so that water bodies, roads, power lines etc. were excluded but smaller man-
made objects like raised hides for hunting, skid tracks, hiking paths etc. could be included. Data for 
our study were collected from 52 plots (Figure 2), which cover a range of altitudes between 502 m 
and 1295 m a.s.l. and the average plot slope varies between 2° and 34°. 
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Figure 2. Map of the research area within Germany (green in top-left corner), and the location of plots 
where photos and scans have been taken (green squares). 

2.2. Terrestrial Laser Scanning and 360° Photographs 

All scans and photos were taken in April and May 2018. For every plot, the center point has been 
marked with a metal pin using a real-time kinematic global navigation satellite system. Above these 
center points we placed a tripod of approximately 1.3 m height and leveled its top using a bubble 
level. We first took a terrestrial laser scan of the scene using a Faro Focus 3D 120 TLS (Faro 
Technologies Inc., Lake Mary, USA, see Figure 3B). The scanner was set to an angular resolution of 
0.044°, covering all 360° horizontally and 300° vertically, leaving out a 60° cone at the bottom where 
the tripod stands. This led to a maximum of 29 million distance measurements translated into a 3D 
point cloud (Figure 3C). The scanner automatically corrects for small tilts and its rotation using 
internal sensors. Instrument heights, date and time, GPS-location and qualitative weather 
information were recorded as metadata for every scan. 

We choose a 360° Garmin VIRB 360 action cam (Garmin Europe Ltd., Southampton, Great 
Britain, see Figure 3A), which consists of two RGB-sensors with fisheye lenses pointing horizontally 
in opposite directions. The images are automatically stitched together to a full 360 × 360° photosphere 
by the camera (5640 × 2820 Pixels; 15.90 Megapixels). After we removed the scanner, we placed the 
camera on the same tripod, to have the best possible consistency in perspective between the images 
and the scan (see Figure 3D for an overlay of the distance image from the scanner and the 360° photo). 
After moving out of sight, the field researchers released the camera remotely using a field tablet and 
collected metadata analogous to the scan. 
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Figure 3. (A): Garmin VIRB 360 digital camera; (B) Faro Focus 120 terrestrial laser scanner; (C): 
Visualization of a point cloud; 2D: overlay of the 360°-image from the camera with the distance image 
from the scanner - blue colors indicate closer red colors more distant points. 

2.3. Processing of the Images and Point Clouds 

All raw data from the scanner was imported into Faro Scene (v 6.2.4.30) and noise was removed 
by applying the standard outlier removal with default parameters. All further processing was done 
in R (version 3.5.0, R Core Team, 2017) after normalizing the point clouds using a one-meter 
resolution LiDAR-based terrain model provided by a state agency [29].  

We computed the SSCI as described by Ehbrecht et al. [17]. The index describes the complexity 
of the open space between the material in a forest by connecting the points of one vertical planar 
scanline to a polygon and calculating the area (A) to perimeter (P) ratio called the fractional 
dimension (FRAC, see Equation (1), Figure 4). Afterward it averages this shape complexity ratio over 
all scanlines. The resulting mean FRAC is a dimensionless ratio without an absolute scale, which is a 
drawback in forest where we expect an older and therefore mostly taller forest to be more complex. 
It is therefore scaled by a layering complexity index (effective number of layers, ENL) based on the 
ratio of occupied voxels (p) in one-meter thick layers (i) (see Equation (2) [17,30]).  

𝑆𝑆𝐶𝐼 ൌ 𝑚𝑒𝑎𝑛 ൬2 ∗ 𝑙𝑛 ሺ0.25 ∗ 𝑃ሻ𝑙𝑛 ሺ𝐴ሻ ൰௟௡ሺாே௅ሻ
 (1)

𝐸𝑁𝐿 ൌ 1 ෍ 𝑝௜ଶ௜ ௧௢௣
௜ୀଵ൘  (2)
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Figure 4. Examples of different vertical scanlines from a terrestrial laser scanning (TLS) data for stand 
structural complexity index (SSCI) calculation. Colored points indicate the returns to the scanner; gray 
area shows the constructed polygon. The upper figure is an example for low, the central figure for 
medium and the lower figure for high fractional dimension (FRAC) values. 

We chose the SSCI because it is, unlike indices relying on classical forest parameters (such as 
stem positions or DBH), always computable. The possibility to derive those other indices might be 
limited by the complexity of the understory and by more complicated shapes of trees. Additionally 
it is to our knowledge the only index available describing the complexity of distribution of material 
in the forest besides the ENL, which is already included in the SSCI. All other indices based on LiDAR 
data require spatially homogenous dense point clouds. As the density of points diminishes with 
increasing distance to the scanner, those indices are not applicable to our dataset.   

To save computation time we thinned the scans by every second row and column. Additionally, 
we calculated the 95% quantile of the point heights as an indicator for the tree heights. The actual tree 
height is only roughly determinable because of occlusion effects and probable outliers. The 95% 
quantile therefore is a relatively robust indicator for the stand height.  

For the image spheres, we removed the lower 60° cone where mostly the tripod was visible and 
replaced it with a white area. Since there were still some plot marks visible, we overlaid these with 
white circles to make sure no one could determine the actual location of the plot, and to avoid 
distraction from the task. Next, the images were grouped into three equally sized groups (high, 
medium, low structure) according to their SSCI rank order derived from the scans (see Figure 5 for 
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examples). This grouping was done solely to ensure variability in the images an expert was presented 
in the survey (see next section for details). 

 
Figure 5. 360°-images of the calibration phase of the questionnaire, which have been projected to the 
spherical image viewer. Here depicted in planar Mercator projection for better visibility. The high, 
medium and low structural richness has been derived according to the SSCI rank order. 

2.4. Forest Expert Survey 

To investigate experts’ ratings of structural richness we developed a quantitative survey 
targeting both researchers and practitioners engaged in the field of forestry or forest conservation 
(collectively referred to as ‘forest experts’ within this study). More precisely, this includes foresters, 
scientists of forestry and ecology, private forest owners, forest auditors, forest and nature 
conservation administrators and members of environmental organizations. An extensive internet 
search provided us with ~1250 email addresses, to which we sent survey invitations. We used self-
selection sampling and sent an email to all German institutions, associations and administrations that 
fit our target group, inviting their members to participate in our online survey. Additionally, we 
distributed advertising postcards at forest related conferences and asked colleagues to distribute our 
invitation via various channels, to reach a wide variety of participants and gain a maximum number 
of responses. 

The online survey was conducted in German; however, the questions cited in this paper have 
been translated to English. The survey started with an introduction about our research topic and area, 
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and an instruction about how to use the survey tool, including the image viewer. In order to 
reconstruct the experts’ rating in their daily working practice best possibly, no rating criteria were 
specified. The introduction solely pointed to the importance of structural richness for forest 
biodiversity and referred to the corresponding guidelines. 

The questionnaire (see Supplementary material) was divided into two sections: in the first 
section we showed the participants nine different images and asked them the same two questions for 
each photo: (1) ‘How high would you rate the structural richness of this forest?’ and (2) ‘How do you 
rate the ecological value of the recognizable structures with regard to biodiversity conservation?’. 
Both questions were rated on a five-point Likert scale, ranging from very low to very high structural 
richness/ecological value, with an additional option ‘I cannot rate this’.  

The first three images (Figure 5) were identical for all participants, showing the forest site with 
the second lowest, the second highest and the median SSCI-value to give an impression of the range 
of the forests’ structural richness. We choose the second highest and lowest SSCI, because we wanted 
to avoid very special outliers. We used these three images in the ‘calibration phase’, which was 
excluded from the statistical analysis. The following six images were randomly selected by the survey 
system (uniform random choice) with the precondition that two images were shown from each of the 
predefined categories (high, medium, low structure according to SSCI). This design was chosen to 
ensure that participants are provided a sufficient range of structural richness. Neither the three 
groups nor the calibration phase were identifiable to the participants, to avoid any bias. The photos 
were presented in a scroll- and zoomable photosphere viewer to enable participants to choose their 
own perspectives and zoom in at details. 

In the second part of the questionnaire, we asked if the participants know any 
guidelines/concepts addressing these structures and if they are experienced in selecting habitat trees. 
The questionnaire ended by asking about professional education (in forestry and/or conservation), 
private forest ownership and an open comment field. 

The questionnaire was pretested at various stages of development. To make questions as 
understandable and precise as possible, six colleagues with varying levels of forestry and 
conservation education backgrounds were asked to answer the questionnaire. Afterwards they were 
interviewed about their understanding and interpretation of the questions. Based on these insights, 
the questionnaire was revised and implemented online. Another twelve pretesters, including 
foresters as well as forest and ecological scientists, completed the online version and gave feedback 
both on the questions’ comprehensibility and the functionality and usability of the online survey tool. 
We adapted the survey accordingly and allowed functionality in the questionnaire to return to 
previous questions, since various pretesters demanded a possibility to revise previous ratings. The 
survey was accessible between late September 2018 and early January 2019. 

2.5. Covariates and Statistical Analysis  

We used linear modeling to verify the influence of the SSCI on the expert ratings. According to 
our hypothesis that an expert’s professional background would have an influence on their ratings of 
structural richness, we included in the model answers to questions regarding the participant's 
education in forestry or nature conservation, if s/he is a forest owner, familiar with retention forestry 
concepts, and if the person has practical experience in the assignment of habitat trees. We 
hypothesized that the plots with relatively high and/or steep terrain, which are not equally common 
in Germany and therefore not equally familiar to all experts, may lead to varying ratings. Therefore, 
we included terrain information such as terrain altitude and slope of the plot. 

Additionally, we included the 95% quantile of point heights and the main forest type from a full 
forest inventory of trees above 7 cm DBH in the classes broadleaved, mixed or coniferous. A plot was 
classified as pure broadleaved or coniferous if 90% of the total basal area of the 1ha-plot correspond 
to the class, following the definition of the German national forest inventory [31].  

It was not possible to acquire the images under controlled lighting conditions with fixed camera 
settings, therefore we could not standardize image exposure as an influencing factor. We calculated 
the average brightness, the standard deviance of brightness and the triangular greenness index (TGI) 
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for the images, which is the area of the triangle defined by the reflectance signals of the visual bands. 
The index is regarded as an indicator for the chlorophyll content of leaves [32]. As the images for the 
online survey were projected into a virtual sphere, we calculated the mean values and standard 
deviations weighted according to the area proportions a pixel occupies on the virtual sphere, and this 
too was included in the model. 

2.6. Modeling 

We used the lme4 package [33] in R v. 3.5.0 [34]. The three images in the calibration phase were 
excluded from analysis. All answers which were rated with ‘I cannot rate this’ were excluded and 
treated as no reply given. First, we tested if the rating of the images showed significantly different 
results using a two-sided t-test on all combinations of two images to verify that the ratings 
differentiate the plots. Additionally, we calculated mean values and standard deviations of the 
ratings on a plot level. In a second step, we tested if the rating of structural richness directly correlated 
to the rating of the ecological value of the respective structures. 

All covariates were tested for collinearity using the corrplot package [35]. No combination of 
covariates exceeded a correlation factor of 0.5 and we did not exclude any. The cross over nested 
design of the experiment with covariates for the single participants as for the plots and images as 
well, made a linear mixed effect model with two random variables necessary; therefore, we used the 
lmer function from the lme4 package in R [33]. We formulated the main model to include the 
participant ID and the plot ID as random effects, the participants’ rating of the structural richness as 
response, and all other mentioned variables as predictors. We repeated the model as a generalized 
additive model to check for nonlinear effects. The quality of the model improved only slightly, so we 
continued with the simpler linear version. After visually confirming the normal distribution of the 
residuals and the random effects using quantile-quantile plots, we computed analysis of variance 
(ANOVA) on the model. To discuss the explanatory power of the SSCI itself we repeated the model 
once excluding the SSCI. 

3. Results 

The online survey was begun by 555 of the participants who gave at least one answer. During 
the calibration phase, 48 of them dropped out. From the remaining 492 participants, 444 completed 
the survey (reached the last page). We only considered completed questionnaires in our analysis. As 
not all participants filled all response fields, the n-value is less than 444 in some of the results below. 
Table 1 describes several characteristics of the participating experts. A clear majority of them have a 
forestry education background (88%), knowledge of retention forestry guidelines (95%) and practical 
experience in the selection of habitat trees (84%). 

Table 1. Characteristics of respondents. 

Attributes of Respondents   n 

Forest ownership 
yes 
no 

131 
305 

436 

Knowledge of retention forestry guidelines 
yes 
no 

413 
23 436 

Practical experience in the selection of habitat trees yes 
no 

369 
71 

440 

Formal education in forestry 
yes 
no 

392 
44 436 

Formal education in ecology or nature conservation 
yes 
no 

166 
258 424 

Age of participants 
Min 
Max 

Mean 

19 
85 
49 

425 
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The images showed a sufficient range of structural richness in forests to enable the experts to 

differentiate the single plots. When testing the 1176 possible combinations of two plots using the t-
test, 88% of them are rated significantly different by the participants. The rating of structural richness 
and ecological value of the respective structures were highly significantly correlated (p < 0.01, R² = 
0.53). We proceeded considering only the ratings on structural richness, since this is more closely 
related to what the SSCI describes. The mean values on plot level varied between 1.7 (‘rather low’) in 
a monolayered regrowth stand with coniferous trees and 4.2 (‘rather high’) in a steep multilayered 
mixed forest with larger gaps and clearly visible lying and standing dead wood (see Appendix A for 
the images). The standard deviations of all ratings on one plot varied between 0.6 and 1.0, which is 
sufficient for some stands to fill nearly the complete five-point Likert scale with its 95% confidence 
intervals.  

The results of the main model can be found in Table 2 and in Figure 6. Experts’ practical 
experience in the selection of habitat trees showed a significant effect in the main model (p = 0.02). 
Contrary to that, the other predictors describing the participants’ background showed no significant 
influence. Neither the forestry education, the knowledge of guidelines nor the education in nature 
conservation or forest ownership influenced the rating significantly (Table 2). According to the plot 
terrain and vegetation properties, only the vegetation height indicated by the 95% height quantile 
from the TLS data (p = 0.02), and the SSCI (p = 0.02) influenced the rating significantly. The image 
brightness showed surprisingly very little influence, but the greenness indicated by the TGI was 
highly significant (p < 0.01, Figure 6).  

Table 2. Model parameter estimates, standard deviations (SD) and p-values. 

Variable Estimate SD p-Value 
Intercept −1.55 2.37 0.51 

Forest ownership [Yes/No] −0.05/−0.11 0.28/0.28 0.41 
Knowledge of guidelines [Yes/No] 0.13/0.07 0.23/0.25 0.74 

Practical experience [Yes/No] −0.26/−0.08 0.43/0.44 0.02 
Educ. in forestry 0.06/−0.06 0.27/0.28 0.37 

Educ. in ecology or nature conservation [Yes/No] 0.02/0.07 0.13/0.12 0.59 
SSCI 0.93 0.37 0.02 
TGI 0.05 0.01 <0.01 

Brightness <0.01 0.01 0.59 
Brightness SD 0.03 0.02 0.17 

Forest type mixed 0.18 0.17 0.30 
95% height quantile [m] 0.04 0.02 0.03 

Slope [deg.] 4 × 10−3 8 × 10−3 0.60 
Altitude [km] −0.33 0.34 0.33 
Observations  2637 

N participants  444 
N plots  49 

Marginal R²   0.12 
Conditional R²  0.44 

For mixed-effects models, R² can be categorized into two types. Marginal R² represents the 
variance explained by fixed factors, while conditional R² is interpreted as variance explained by both 
fixed and random factors (i.e., the entire model) [36]. With a conditional R² of 0.44 the variables show 
an acceptable explanatory power for the expert rating, but the marginal R² is low (0.12). That means 
that the random effects (participant ID and plot ID) largely contribute to the explanatory power of 
the model. Excluding the SSCI from the model lowers the marginal R² by 0.02. 
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Figure 6. Effect plots of the statistically significant predictors. Grey areas and whiskers indicate 95% 
confidence intervals. The scale from the expert rating goes from 1 very low up to 5 very high structural 
richness. Upper left: effect of practical experience in the assignment of habitat trees, top right: effect 
of the 95% height quantile from the TLS data, lower left: effect of the stand structural complexity index 
(SSCI), lower right: effect of the triangular greenness index (TGI). 

4. Discussion 

4.1. Innovations 

The SSCI corresponded to the ratings of experts. This shows on the one hand that the expert 
ratings were nonrandom and on the other hand, that the SSCI can explain at least some of the 
structural attributes perceived as relevant by forest experts, who, after all, are the ones who 
implement biodiversity conservation objectives in forest management. Ashcroft et al. [26] have also 
chosen an expert approach to verify a TLS-based index on vertical vegetation density profiles, but in 
a qualitative manner with only three observers. They found a general agreement of the TLS data with 
the observers, even if the comparison was weak in some respects because the observers estimated the 
heights poorly. Our results clearly indicate that expert surveys can be a valid method to verify forest 
structural indices, if other methods are not available or not applicable due to their destructive 
manner. The large variation in expert ratings suggests that quantitative approaches are preferable for 
such a task.  

The evaluation of forest structures is a multidimensional challenge combining numerous aspects 
that are not easy to represent technically, which makes automation difficult. On the contrary, 



Remote Sens. 2019, 11, 1137 13 of 17 

 

evaluations by humans are always subjective and reflect the subject’s specific perspectives. Recent 
studies indicate that several factors, like education, or familiar management techniques and economic 
goals are inconsistently influencing tree selection practices, which may also largely depend on 
individual preferences [19,37,38]. Our finding that greener forests are perceived as richer in structure 
underlines the hypothesis that even forest experts unconsciously include a variety of factors in their 
rating of forest structures that may have no major relevance to it. Greenness may indicate biomass 
productivity, which is however not necessarily linked to structural richness. It may also be linked to 
the forest type, since broadleaved trees may appear greener, but these predictors were only slightly 
correlated (r = −0.26). Lastly, the greenness may indicate more light on the forest floor, which would 
result in a more vital (greener) understory. Future research is required to clarify why experts rate 
structural richness of greener forests higher and if the TGI relates to other indicators assessing 
structural richness. The large standard deviations in the expert ratings show that there is no 
consistent expert agreement on the quantification of forest structure. A study of Cosyns et al. [19] on 
full inventoried tree-marking training sites has shown that forestry trainers made decisions on habitat 
tree selection that are more consistent than foresters’ or students’ choices, which supports the impact 
of participants’ expertise on tree-selection. Nevertheless the overall agreement on which trees to 
select was low for all groups, which demonstrates the downside that this effect of expertise is limited. 
The finding that forest trainers’ decisions are more consistent is underlined by our result that practical 
experience in the marking of habitat trees had a significant effect on the rating and that the standard 
deviations of ratings of participants with practical experience where slightly lower (yes: 0.434 , no: 
0.439). The low overall agreement on selected trees found by Cosyns et al. is supported by our results 
that being formally educated in forestry or nature conservation had no significant effect.  

The positive influence of the vegetation height on the structural richness rating in our study is 
not surprising, since larger trees are related to a higher number of old growth structures [39]. Yet, to 
us, the fact that the image brightness had no significant influence on the rating was remarkable. We 
hypothesized that the more bright and ‘friendly’ images would be rated higher in terms of structural 
richness, as it was the case for the greener ones.  

Another unexpected finding of the study was the terrain variables did not show any significant 
influence, although we expected the rarer steep habitats to be rated higher in terms of structural 
richness by the experts. 

4.2. Reasonability of the Methods and Study Limitations 

A photo-based study of walks through different habitats by lay people and experts also revealed 
no clear aesthetic preference of the participants to more biodiverse landscapes [22]. Our findings are 
consistent with that study, which may explain why the aesthetic aspect of these images did not 
influence our experts’ rating that was focused on biodiversity-relevant forest structures. The standard 
deviation of image brightness could have been an indicator for a more heterogeneous light regime 
on the forest floor, which has been named as a structural attribute by various authors [40–42]. While 
canopy gaps are regarded as structural elements [41], the SSCI does not cover this aspect well, since 
gaps do not deliver any TLS points and thus do not increase the complexity aspect of the index. We 
expected the standard deviation of brightness to cover this factor, as it describes image heterogeneity, 
which may be related to the forest structural heterogeneity at the same time, but it was not statistically 
significant. 

A weakness of our study is the insufficient resolution of the images that makes it difficult to see 
smaller details even on more distant trees or in the canopy, as well as the limitation to a single 
perspective on every stand, which cannot replace a real walk through a forest, which offers multiple 
perspectives. The photosphere viewer offered more viewing angles than a planar photo, which is an 
improvement on the limitations of most photo-based questionnaires. In contrast to guided or camera 
forest walks, the advantage of our approach is, besides reaching a large number of participants from 
all over Germany, that all of them faced the same conditions according to the weather and vegetation 
period. Another crucial advantage to this method is that photos can cover a wide range of different 
forest types, which is rarely accomplishable in a single walk.  
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Our research area covers only a single mountain range in southwest Germany, which is neither 
representative nor does it cover the full spectrum of German forests. We tried to address this 
limitation in the survey introduction text by specifying our specific research area. In the 
questionnaire, we included calibrating images and gave participants the chance to adapt their rating 
according to images shown later. Since several experts addressed this shortcoming in the open 
comment field, we assume that they were aware of this limitation and considered it in their rating. 
Despite this, the experts distinguished the different stands significantly, which shows that we at least 
cover some range of forest type found in Germany. We have tried to ensure the variability of images 
shown to one participant using a grouping based on the SSCI, which is also one of our main 
predictors. As the participants were not aware about this procedure and thus had no incentive to 
conform to our pre-selection, we do not expect any bias by this design. The very coarse grouping of 
just three equally sized groups anyways did not reflect the SSCI values very well, but was able to 
avoid that participants only got confronted with very similar forest stands by purely random 
selecting images. This could have led to participants adjusting the range of their rating according to 
the limited number of images presented. Confronting all participants with all images would have led 
to a very long survey and respectively high dropout rates or bored random choices. 

4.3. Data Aquisition and Availability 

Terrestrial laser scanners are becoming cheaper, easy to use, and therefore more available for 
the application in forest management. An increasing amount of software becomes available to 
analyze TLS datasets, which enables practitioners to use the data of such sensors. We used an 
additional fine scale digital terrain model (DTM), which is nowadays available for most countries. 
However, the low explanatory power of the terrain variables showed that such a model is not even 
necessary especially since the local DTM could also be derived by the laser scans. To our knowledge, 
there is no common agreement on the setup of the scanning design [30], but at least some 
specifications (minimum distance to the next tree, height above ground, vegetation phase) may be 
beneficial to gain comparable results. Further research needs to be done to directly detect and 
quantify additional structural features like canopy gaps [43], or TreMs [44], that are not ideally 
represented by the SSCI. 

5. Conclusion 

We found significant relationships between a very technical approach and the complex human 
perception of forest structures. In combination with standardized guidelines of expert assessment, 
terrestrial laser scanning can be a valuable objective tool for the quantification of small-scale forest 
structures. Its abilities as a fast and easy-to-use tool make it a perfect choice for productive and cost-
efficient assessments. The high-resolution scans make changes in structural richness quantifiable 
without relying on the same person to be available for inventories in the following years, which is a 
striking advantage for monitoring purposes. The disadvantage is that remote sensing is not able to 
detect small-scale structures reliably on whole trees yet, which would be an important feature to 
consider within an index. TLS-based indices have not yet shown their ability to quantify habitat 
quality for a wide range of taxa, which is an important missing step to be addressed in future 
research. An inventorying person may not only take the richness of structures into account, but also 
the habitat value those structures provide, which TLS-based indices cannot do. Yet, stands perceived 
as structurally rich were also rated as highly valuable for biodiversity conservation, and vice versa, 
which has still not been proven in scientific research. Taking all the considerations into account, and 
because these two variables were strongly correlated in the experts’ rating, we do not consider the 
lack of habitat quality assessment as a major drawback for TLS in our study. 

If one takes a closer look at the difficulty of assessing forest habitat sites with their numerous 
interacting and influencing factors, it becomes clear that a purely technical assessment can hardly 
account for all relevant factors. Laser scanning must, therefore, be regarded as a supporting tool 
which cannot replace human evaluation, but it may complement, support and improve it. Since it is 
still in question if indices are indeed sensitive to structures supporting biodiversity in general or just 
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for certain taxa, we should attempt to use the best and most general index available, as long as full 
biodiversity inventories are highly cost intensive. 

Supplementary Materials: The full questionnaire translated into English is available online at 
www.mdpi.com/xxx/s1. A live preview of the image sphere viewer including images from the survey is online 
available under: http://omnibus.uni-freiburg.de/~jf1050  
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