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Abstract: Climate, soil type, and management practices have been reported as primary limiting 
factors of gross primary production (GPP). However, the extent to which these factors predict GPP 
response varies according to scales and land cover classes. Nitrogen (N) deposition has been 
highlighted as an important driver of primary production in N-limited ecosystems that also have 
an impact on biodiversity in alpine grasslands. However, the effect of N deposition on GPP 
response in alpine grasslands hasn’t been studied much at a large scale. These remote areas are 
characterized by complex topography and extensive management practices with high species 
richness. Remotely sensed GPP products, weather datasets, and available N deposition maps bring 
along the opportunity of analyzing how those factors predict GPP in alpine grasslands and 
compare these results with those obtained in other land cover classes with intensive and mixed 
management practices. This study aims at (i) analyzing the impact of N deposition and climatic 
variables (precipitation, sunshine, and temperature) on carbon (C) fixation response in alpine 
grasslands and (ii) comparing the results obtained in alpine grasslands with those from other land 
cover classes with different management practices. We stratified the analysis using three land cover 
classes: Grasslands, croplands, and croplands/natural vegetation mosaic and built multiple linear 
regression models. In addition, we analyzed the soil characteristics, such as aptitude for croplands, 
stone content, and water and nutrient storage capacity for each class to interpret the results. In 
alpine grasslands, explanatory variables explained up to 80% of the GPP response. However, the 
explanatory performance of the covariates decreased to maximums of 47% in croplands and 19% in 
croplands/natural vegetation mosaic. Further information will improve our understanding of how 
N deposition affects GPP response in ecosystems with high and mixed intensity of use 
management practices, and high species richness. Nevertheless, this study helps to characterize 
large patterns of GPP response in regions affected by local climatic conditions and different land 
management patterns. Finally, we highlight the importance of including N deposition in C budget 
models, while accounting for N dynamics. 

Keywords: gross primary production; land cover; precipitation; temperature; sunshine; nitrogen 
deposition; carbon fixation; models; multiple linear regressions 
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1. Introduction 

Organic carbon (C), which is fixed through photosynthesis, provides agricultural soils with the 
quality required to obtain high yields [1]. The most substantial fluxes of C fixed per unit of ground 
and time (gross primary production (GPP)) [2] occur in the tropics, subtropics, and humid temperate 
regions, e.g., Eastern North America and Western and Central Europe [3]. In particular, Western 
Europe has one of the highest cultivated net primary productions in the world (>1 Kg C/m2) [4]. 
Climatic variables have been widely used to monitor C fixation [5–7]. In particular, temperature 
analyses have traditionally dominated C budget studies [8]. Current approaches include other 
factors, such as CO2 fertilization, O3, Nitrogen (N) deposition, and land cover change [9–12]. 
However, controlling factors, scale, and the ecosystem’s complexity vary among studies and, 
consequently, the extent to which limiting factors influence C fixation response. 

In croplands and grasslands, climate, soil type, and land management have been highlighted as 
important controlling factors of C response [13–15]. At a global scale, precipitation has been reported 
as the climatic component with the highest impact on the primary production of croplands and 
temperate grassland biomes (up to 50 and 70% of the total area, respectively) but the influence varies 
depending on the characteristics of the studied region [6]. Nitrogen (N) deposition has been 
highlighted as an important driver of primary production in N-limited ecosystems that also have an 
impact on biodiversity in alpine grasslands. Stevens, et al. 9 have pointed out that N deposition 
drives local grassland primary production better than the mean annual climatic variables and soil 
conditions on a global scale. Similar results have been reported in a meta-analysis using 32 studies of 
grasslands located in temperate regions and six in tropical areas [16]. Global model projections 
revealed N deposition as the third driver with the most significant impact on biodiversity in alpine 
areas, which also influence primary productivity [17,18]. Therefore, monitoring N deposition and 
climatic variables in alpine grasslands could contribute to explaining how these variables drive GPP 
in areas with complex topography and high species richness. 

In Switzerland, alpine meadows and pastures cover 12% of the total territory (5139 km2 out of 
42,285 km2) and grasslands occupy ca. 71% of the remaining utilized agricultural area [19,20]. The 
results of experimental studies in (sub-) alpine areas (1500–3000 m a.sl.) highlight N deposition, 
temperature, grazing, presence of rocks and stones, and shallow soils as the most limiting factors of 
biomass production and C storage [21–23]. However, in these remote areas, studies on large-scale 
interactions among N deposition, climatic factors, and GPP are lacking. On one hand, coarse spatial 
resolution datasets are widely used for calibration and validation of Earth system models. On the 
other hand, the role of N deposition in C uptake is still considered unclear, underestimated, or 
underexplored [24–27]. Therefore, analyzing whether observed local interactions between climatic 
factors, N deposition, and GPP remain true at a large scale is relevant to fostering the use of N 
deposition datasets in modelling approaches. 

Available N deposition maps for Switzerland brought along the opportunity to study its impact 
on GPP response at a national scale for the first time. Remotely sensed GPP datasets are also 
available to study C dynamics of land cover at global and regional scales [28]. While previous 
versions of MODIS GPP products have shown underestimated and overestimated trends at high and 
low production sites, respectively [29,30], different validation efforts and following improvements in 
the algorithms have enhanced the reliability of remotely sensed GPP products for multiple 
applications [31–33]. As a result, these products are suitable to study the production of land 
vegetated areas [34]. The objectives of this study are (i) to analyze the impact of N deposition and 
climatic variables (precipitation, sunshine, and temperature) on C fixation response in alpine 
grasslands, and (ii) to compare the results obtained in alpine grasslands with those from other land 
cover classes with different management practices. We stratified the analysis according to the 
MODIS land cover product (MCD12Q1) i.e., grasslands, croplands, and croplands/natural 
vegetation mosaic [35] and used multiple linear regressions, which have been often selected to 
analyze the relationship between GPP and covariates [36–38]. In addition, we analyzed the soil 
characteristics, such as aptitude for croplands, stone content, and water and nutrient storage 
capacity for each class to interpret the results. 
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2. Materials and Methods 

2.1. Study Area 

Switzerland is divided into biogeographic regions according to flora and fauna patterns [39], 
(Figure 1). The Midlands are intensively managed with agricultural land use, covering ca. 50% of the 
area [40]. This is a heterogeneous floristic region with an altitudinal range between 256 m and 960 m 
a.s.l. [41]. The land cover class croplands mainly cover the Midlands (Figure 1). The altitudinal 
gradient impacts climatic patterns and management practices. High intensity of use occurs at 
altitudes lower than 1000 m a.s.l., and extensive management practices are frequent above this 
elevation [42,43]. In the Alps, pastures co-exist with extensively managed meadows with low yields 
and high plant species diversity [44,45]. The land cover class grasslands are mostly located in this 
area (Figure 1). Silvopastoral systems (mosaic of open grasslands, closed forest, and woody 
pastures) are characteristic of the Jura mountains, with diverse management practices adapted to 
local conditions, such as cattle stocking and logging [46–48]. The land cover class croplands/natural 
vegetation mosaic mostly covers this region (Figure 1). 

The Alps divide the country producing cooler temperatures in the North than in the South, 
which is influenced by the Mediterranean Sea. The Atlantic Ocean also influences the Swiss climate, 
producing an average precipitation of ca. 2000 mm/year in the Alps and 1000–1500 mm/year in the 
lowlands. Altitude influences temperature, which ranges from 1°C in winter to 17°C in summer at 
low altitudes (<1000 m a.s.l.); from −5°C in winter to 11°C in summer at 1500 m a.s.l.; and annual 
means of −7.5°C at altitudes above 3000 m a.s.l. [49]. The Midlands receive more relative sunshine 
than the Alps and the Jura [50].  

 
Figure 1. Study area. Land cover classes distributed across (aggregated, e.g., Alps) biogeographic 
regions. Coordinate system: WGS84. 
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2.2. Data 

2.2.1. MODIS Datasets 

MODIS GPP datasets were available from the year 2000 to present (data: 
http://files.ntsg.umt.edu/data/NTSG_Products/). Total annual values per pixel of 8-day GPP 
composite products (MOD17A2 version 5.5) for the years 2000, 2007, and 2010 were used in this 
study [51]. These years were selected to allow a comparison with the available N deposition datasets 
at the time of the study. Flagged data were filtered out. 

The MOD17A2 algorithm estimates GPP based on a radiation conversion efficiency approach 
with attenuation scalars for low temperature and water stress across biomes, using the MODIS land 
cover product (MOD12) (1). These parameters are specific for each biome and are available through 
a biome-property-look-up-table [52]. Scalars are estimated from coarse spatial resolution climate 
datasets. While the use of daily climate data at higher spatial resolutions can improve the 
quantification of GPP [53], MODIS products are still useful for characterizing how climate influences 
annual GPP response at regional scales [54,55]. We considered MODIS GPP as a good compromise 
between observational data available at a spatial resolution of 1km and data quality: 

𝐺𝑃𝑃 =  𝜀௠௔௫ ∗ 𝑇𝑀𝐼𝑁௦௖௔௟௔௥ ∗ 𝑉𝑃𝐷௦௖௔௟௔௥ ∗ 𝑆𝑊𝑅𝑎𝑑 ∗ 0.45 ∗ 𝐹𝑃𝐴𝑅 (1) 

where 𝜀௠௔௫ is the maximum light use efficiency (kg C MJ−1), 𝑇𝑀𝐼𝑁௦௖௔௟௔௥ and 𝑉𝑃𝐷௦௖௔௟௔௥  are scalars 
between 0 and 1 that attenuate light use efficiency values based on daily minimum temperature, the 
vapour pressure deficit, SWrad * 0.45, corresponds to the amount of incident shortwave radiation for 
photosynthesis, and 𝐹𝑃𝐴𝑅 is the fraction of absorbed photosynthetic active radiation (PAR). 

The land cover classes used in this study were obtained from the MODIS product MCD12Q1 
[35], which is also used as an input to the algorithm that retrieves GPP. Therefore, we stratified the 
analysis, according to MODIS land cover classes, for consistency. We selected: Grasslands, 
croplands, and croplands/natural vegetation mosaic. The land cover classes croplands and 
croplands/natural vegetation mosaic are mostly found in the Midlands (or Swiss Plateau) and the 
Jura mountains, and the class grasslands is mainly located in the Alps. According to the Digital 
Height Model [56], the land cover classes selected can be found from a minimum altitude of ca. 200 
m to a maximum altitude of 2634 m a.s.l. in croplands, 3033 m a.s.l. in croplands/natural vegetation 
mosaic, and 3570 m a.s.l. in grasslands. 

The GPP algorithm is based on the UMD classification scheme proposed by the University of 
Maryland (UMD). However, we used the International Geosphere and Biosphere Programme 
(IGBP) legend, in which the UMD class croplands is divided in two classes: Croplands and 
croplands/natural vegetation mosaic. Friedl, et al. 35 reported an overall accuracy of 74.8% for the 
MCD12Q1 product using the IGBP legend with 16 classes. The classes 10, 12, and 14 were selected 
i.e., grasslands, croplands, and croplands/natural vegetation mosaic, respectively. All datasets were 
used at a spatial resolution of 1 km. 

2.2.2. N Deposition Datasets 

N deposition raster data for the years 2000, 2007, and 2010 [57] were produced with a spatial 
resolution of 1 km (Appendix Figure A1). The N deposition model assimilates land use information 
from the Swiss Land-Use Statistics point grid, which provides information based on the visual 
interpretation of aerial photographs at 0.1 km spatial resolution [58]. In order to provide the reader 
with some background about the Swiss Land-Use Statistics, we include here some details about how 
the selected MODIS classes relate to this dataset. The Swiss Land-Use Statistics classes considered in 
the model are arable land (class 221, nomenclature NOLU04), semi-natural grasslands (class 222), 
alpine meadows (class 241), and alpine pastures (class 242). The class arable land overlapped the 
MODIS classes croplands by 40.6%, the croplands/natural vegetation mosaic by 35.4%, and the 
grasslands by 1.35%. The class semi-natural grasslands overlapped the MODIS classes 
croplands/natural vegetation mosaic by 43.3%, the croplands by 11.7%, and the grasslands by 8.8%. 
The class alpine meadows overlapped the MODIS classes grasslands by 27.2%, the croplands/natural 
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vegetation mosaic by 12.5%, and the croplands by 9.84%. Finally, the class alpine pastures 
overlapped the MODIS classes grasslands by 39.9%, the croplands/natural vegetation mosaic by 
9.7%, and the croplands by 5.1%. Therefore, arable land and semi-natural grasslands are mostly 
covered by the MCD12Q1 classes croplands and croplands/natural vegetation mosaic, respectively, 
and alpine meadows and pastures are mainly covered by the MCD12Q1 class grasslands. In order to 
avoid possible mismatches between dry deposition and MODIS land cover classes, specific N 
deposition maps, including only low vegetation (excluding forests), were produced. 

N deposition maps have been retrieved following a modelling approach based on wet and dry 
deposition of nitrate and ammonium, as well as gaseous deposition of NH3, nitrogen dioxide (NO2), 
and nitric acid. Atmospheric N deposition was mapped using a pragmatic approach that combines 
emission inventories, statistical dispersion models, monitoring data, spatial interpolation methods, 
and inferential deposition models [59]. Concentrations of the primary gaseous pollutants (NH3 and 
NO2) are estimated by means of emission maps and statistical dispersion models with a resolution of 
100 × 100 m². As a result, the high spatial variability of these pollutants near emission sources can be 
reflected in the models. The concentrations of secondary pollutants (aerosols, HNO3), as well as the 
concentrations of N in precipitation, are derived from field monitoring data by applying 
geo-statistical interpolation methods. Combustion processes and agricultural activities are the main 
sources of these atmospheric components. In particular, agricultural management practices account 
for 92% of ammonia (NH3) emissions, livestock being the main contributing source. Application and 
storage of manure (38% and 13.8%, respectively), housing (28.4%), and grazing (2.2%) add up to 
82.4% [59]. Therefore, fertilization practices influence NH3 concentrations directly. Modelled 
ammonia concentrations were validated with measured concentrations from 48 monitoring sites, R2 

= 0.526 (Root Mean Square Error, RMSE = 43%) [59]. Furthermore, the authors of a recent study 
concluded that N deposition maps provide reliable estimates for large areas [60]. 
(Data: 
https://www.bafu.admin.ch/bafu/en/home/topics/air/state/data/historical-data/maps-of-annual-valu
es/map-of-nitrogen-deposition.html). 

2.2.3. Weather Datasets 

We used gridded datasets of mean annual values of temperature, yearly-accumulated 
precipitation, and yearly relative sunshine duration (the ratio between the effective sunshine 
duration and the maximal possible sunshine duration) for the years 2000, 2007, and 2010 (further 
information regarding the spatial variability of these datasets can be found in the Appendix: Figure 
A2, Figure A3, and Figure A4) with a spatial resolution of 2.3 km [61]. 

Weather datasets were resampled to 1 km, allowing comparison with the other datasets. Mean 
annual temperature reveals standard errors of 0.5° for the Swiss Plateau/Jura and 0.7° for the Alps 
[62]. Cross-validation of annual precipitation datasets reports +/–20% for the Jura and the Swiss 
Plateau and +/−25–30% for the Alps [63]. Sunshine datasets reached median absolute values of less 
than 5% for the autumn/winter months and 3% for the summer months [64]. (Data: 
http://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/monthly-and-annual-maps.
html?query=Grid-Data+products). 

2.3. GPP Response to Limiting Factors Per Land Cover Class: Statistical Analysis 

Multiple linear regression models were built for the years 2000, 2007, and 2010, according to the 
spatial extension of grasslands, croplands, and croplands/natural vegetation mosaic. A sample with 
unique values was selected in order to avoid potential oversampling caused by downscaling 
weather datasets to 1 km spatial resolution (see Section 2.2.3). The number of samples per land cover 
class was between 2066 and 3370 (Table 1). Cook’s distance [65] (4/n, n: Number of samples) helped 
exclude outliers and values producing leverage. GPP was the dependent variable and precipitation; 
temperature, sunshine, and N deposition were the independent variables for all the years. Linearity 
between dependent and independent variables was checked for each land cover class and year using 
descriptive statistics (e.g., correlation matrices Figure A5 and Figure A7) and scatterplots of the 
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standardized residuals and standardized predicted values (Figure A6 and Figure A8). Natural 
logarithms were applied to the independent variable in case of non-linearity with the dependent 
variable (e.g., N deposition with GPP). Including a transformed version of the predictor allows 
incorporate non-linear associations into the linear model [66]. 

Table 1. Number of samples (n) of all the variables (gross primary production (GPP), Nitrogen (N) 
deposition, temperature, precipitation, and sunshine). Class 10: Grasslands, Class 12: Croplands, and 
Class 14: Croplands/natural vegetation mosaic. 

Year 2000 2007 2010 
Class 10 12 14 10 12 14 10 12 14 

n 2988 2066 3327 2978 2074 3370 2965 2074 3346 

The final set of explanatory variables selected by the model differed per land cover class and 
year, according to the following procedure: The model (forward stepwise) selected the order of entry 
of each variable, according to the correlation between the independent variable and the dependent 
variable. The independent variable with the highest correlation with the dependent variable was 
entered into the model first. The rest of the explanatory variables were then entered into the model 
automatically, according to their correlation with GPP and as long as the default tolerance threshold 
(0.0001) of collinearity between the explanatory variable was already in the model and the new 
entered one was not exceeded. Collinearity statistics were estimated to check the suitability of the 
final set of variables selected by the model. Collinearity represents a serious issue when tolerance (T 
= 1 – R2) drops below 0.1 or variance inflation factor (VIF = 1/T) is above 10 [67,68]. The probability of 
the model to select an explanatory variable was also defined by entry criteria with a threshold of p < 
0.05 and removal criteria with a threshold of p > 0.1.  

Independence of residuals was analyzed with the Durbin–Watson (D–W) test. The D–W ranges 
from 0 to 4, with values equaling 2, indicating no correlation. Normal distribution of the 
standardized residuals was checked with P-P (probability-probability) plots and histograms (data 
not shown). Homoscedasticity was analyzed with two tests, namely Breuch–Pagan (B–P) and 
Koenker (K). The latter was used in case of non-normal distribution of standardized residuals. In 
case the assumption of homoscedasticity was violated (e.g., see Figure A8 with an inverse butterfly 
heteroscedasticity), heteroscedasticity-consistent (HC) standard errors were estimated [65]. The HC4 
estimator was used for all the cases because of high performance in case of high leverage or 
non-normal distributed errors [69]. Finally, we estimated the shrunken (SR) R2 with a leave-one-out 
cross-validation approach for statistical inference from our regression models to the population data 
of the studied land cover classes in Switzerland [65]. These analyses were carried out using a macro 
developed for SPSS® [65,69]. 

2.4. Soil Characterstics Per Land Cover Class 

The digital soil suitability map for Switzerland was generated in the 1970s at a scale of 
1:200’000, using spatial information regarding geology, elevation, terrain attributes, and climatic 
zones. This map helped interpret our results and characterize the selected land cover classes in terms 
of soil aptitude for croplands, stone content, and water and nutrient storage capacity (Table 2) [70]. 
The soil suitability map was converted to a raster layer with a spatial resolution of 1 km. This raster 
layer was used to estimate the zonal statistics (minority and majority values). The value of the 
polygon that overlapped the center of the raster cell was used to assign the value to the cell. These 
analyses were carried out in ArcGIS 10.4.1®. 
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Table 2. Classes selected of the soil suitability map divided in levels. 

Class 
Aptitude for 
Croplands 

Stone 
Content 

Water Storage 
Capacity 

Nutrient Storage 
Capacity 

1 Very good Not stony Extremely low Extremely low 
2 Good Slightly stony Very low Very low 
3 Medium Stony Low Low 
4 Limited Very stony Medium Medium 

5 Inappropriate 
Extremely 

stony 
Good Good 

6  Unknown Very good Very good 
7   Unknown Unknown 

3. Results 

3.1. GPP Response to Limiting Factors Per Land Cover Class: Statistical Analysis 

The highest correlations were found between GPP and N deposition and between GPP and 
temperature. The lowest correlations were found between GPP and precipitation. In particular, very 
low correlation or no correlation between both variables were found in 2007 and 2010 for grasslands 
(≈0.06 and ≈–0.04, respectively, p < 0.01) and croplands/natural vegetation mosaic (≈0.07 p < 0.01 
and –0.04 p < 0.05) (Figure 2 and Appendix Table A 1–3). 

 
Figure 2. Correlation matrix between the dependent and independent variables per year and land 
cover class (p < 0.01 mostly, see Appendix Table A 1–3). G: GPP, N: N deposition, ln N: natural 
logarithm of N deposition, P: Precipitation, S: Sunshine, and T: Temperature. 

In grasslands, the two variables that mostly explained the GPP variance were N deposition and 
precipitation (Table 3). In croplands, N deposition was the independent variable that influenced the 
most GPP response. Precipitation followed N deposition in relevance for the years 2000 and 2010. In 
2007, temperature was, however, the variable that followed N deposition in importance and the 
remaining variables were excluded from the model (Table 3). In croplands/natural vegetation 
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mosaics, N deposition largely explained the GPP response followed by precipitation in the years 
2000 and 2007 and sunshine in 2010 (Table 3).  

Table 3. Coefficient of determination (R2) change per variable (alphabetically ordered) that the 
stepwise regression model selected for grasslands, croplands, and croplands/natural vegetation 
mosaics. Excl: Excluded. Natural logarithms of N deposition used for grasslands in all the years and 
for croplands in 2000. 

 Grasslands Croplands Croplands/Natural Vegetation Mosaics 
 2000 2007 2010 2000 2007 2010 2000 2007 2010 

N deposition 67.7 % 63.7 % 66.0 % 44.1% 37.9 % 34.6 % 16.9 % 14.1 % 14.2% 
Precipitation 8.1 % 9.5 % 13.6 % 2.7 % Excl. 5.0 % 2.1 % 1.4 % 1.0 % 

Sunshine 0.5 % 0.1 % 0.3 % 0.2 % Excl. 0.7 % Excl. 0.3 % 2.9 % 
Temperature 0.2 % 1.4 % 0.2 % Excl. 2.4 % 0.6 % Excl. 0.5 % Excl. 

In grasslands, Pearson’s correlations [65] showed that N deposition and temperature were the 
variables with the highest correlation with GPP (Figure 2 and Appendix Table A1). The model with 
the lowest RMSE (including all explanatory variables) reached collinearity values of 0.23 for T and 
4.5 for VIF. The addition of variables to the ones already in the model (e.g., model 1: N deposition, 
model 2: N deposition and precipitation) increased the coefficient of determination (R2) up to 0.77 in 
2000, 0.75 in 2007, and 0.8 in 2010 (Table 4). In croplands, N deposition and temperature were the 
most correlated independent variables with GPP in all the years (Figure 2 and Appendix Table A2). 
However, correlation between these variables resulted either in exclusion of the one less correlated 
with GPP or a later addition into the model. The final model achieved collinearity statistics between 
0.49 and 0.88 for T and between 1.14 and 2.06 for VIF. The explanatory variables reached adjusted R2 
values ca. 0.4 (Table 5). In croplands/natural vegetation mosaics, the explanatory variables that 
reached high correlation with GPP were N deposition followed by positive correlations with 
temperature and negative correlations with sunshine (Figure 2 and Appendix Table A3). The model 
with the lowest RMSE achieved values between 0.61 and 0.99 for T and 1 and 1.6 for VIF. Adjusted 
R2 values reached ca. 0.18 in 2000 and 2010, and 0.16 in 2007 (Table 6). 

Table 4. Order of variables entered into the model and adjusted R2 for grasslands, according to the 
addition of a new variable to the model: Ln N dep: Natural logarithm of N deposition, Temp: 
Temperature, Precip: Precipitation, and Sunsh: Sunshine. ***Statistically significant p < 0.001. 

2000 2007 2010 

Order 
Adjusted 

R2 
RMSE Order 

Adjusted 
R2 

RMSE Order 
Adjusted 

R2 
RMSE 

Ln N dep 0.677*** 0.225 Ln N dep 0.637*** 0.246 Ln N dep 0.660*** 0.220 
Precip 0.759*** 0.194 Precip 0.731*** 0.212 Precip 0.796*** 0.171 
Sunsh 0.764*** 0.192 Temp 0.746*** 0.206 Temp 0.798*** 0.170 
Temp 0.766*** 0.191 Sunsh 0.747*** 0.206 Sunsh 0.800*** 0.169 
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Table 5. Order of variables entered into the model and adjusted R2 for croplands, according to the 
addition of a new variable to the model: N dep: N deposition, Ln N dep: Natural logarithm of N 
deposition, Temp: Temperature, Precip: Precipitation, and Sunsh: Sunshine. Excl: Variable excluded 
from the model. **Statistically significant p < 0.01. ***Statistically significant p < 0.001. 

2000 2007 2010 

Order Adjusted R2 RMSE Order 
Adjusted 

R2 RMSE Order 
Adjusted 

R2 RMSE 

Ln N dep 0.441*** 0.194 N dep 0.378*** 0.212 N dep 0.346*** 0.211 
Precip 0.468*** 0.190 Temp 0.402*** 0.207 Precip 0.395*** 0.203 
Sunsh 0.470** 0.189 Precip Excl  Sunsh 0.402*** 0.202 
Temp Excl  Sunsh Excl  Temp 0.408*** 0.201 

Table 6. Order of variables entered into the model and adjusted R2 for croplands/natural vegetation 
mosaics according to the addition of a new variable to the model: N deposition: N dep, Temp: 
Temperature, Precip: Precipitation, and Sunsh: Sunshine. Excl: Variable excluded from the model. 
***Statistically significant p < 0.001. 

2000 2007 2010 

Order Adjusted 
R2 

RMSE Order Adjusted 
R2 

RMSE Order Adjusted 
R2 

RMSE 

N dep 0.169*** 0.228 N dep 0.141*** 0.247 N dep 0.142*** 0.238 
Precip 0.189*** 0.225 Temp 0.146*** 0.246 Sunsh 0.171*** 0.234 
Sunsh Excl  Precip 0.160*** 0.244 Precip 0.181*** 0.232 
Temp Excl  Sunsh 0.163*** 0.243 Temp Excl  

In grasslands, standardized residuals were normally distributed in all the cases. D–W values 
from 1.9 to 2 indicated independence of residuals, and the B–P test showed residuals with 
heteroscedasticity that were statistically significant. The leave-one-out cross-validation resulted in 
SR R2 values ca. 0.9 for all the years. The regression coefficients to build the model for statistical 
inference are shown in Table 7. In croplands, standardized residuals were normally distributed for 
all the datasets. D–W values were ca. 1.9, revealing independence of errors. The B–P test showed 
heteroscedasticity that was statistically significant. The leave-one-out cross-validation resulted in SR 
R2 values ca. 0.6 for all the years. The regression coefficients to create the model for statistical 
inference are shown in Table 8. In croplands/natural vegetation mosaics, standardized residuals 
were not normally distributed in all the samples. D–W values ca. 1.8 showed independence of errors. 
The K test indicated heteroscedasticity that was statistically significant. The leave-one-out 
cross-validation resulted in SR R2 values ca. 0.4 for all the years. The regression coefficients to 
generate the model for statistical inference are shown in Table 9. 

Table 7. Regression coefficients with heteroscedasticity-consistent standard errors for grasslands. 
Const: Constant, Ln N dep: Natural logarithm of N deposition, Temp: Temperature, Precip: 
Precipitation, and Sunsh: Sunshine. ***Statistically significant p < 0.001. 

 2000 2007 2010 
 Coefficients 95% CI Coefficients 95% CI Coefficients 95% CI 

Const −0.8075*** ± 
0.0704 

−0.9456 – 
-0.6695 

0.1089 ± 0.0971 −0.0815 – 
0.2994 

0.0783 – 0.0587 −0.0367 − 
0.1934 

Ln N 
dep 

0.6270*** ± 
0.0121 

0.6033 − 
0.6507 

0.5469*** ± 
0.0136 

0.5201 − 
0.5736 

0.6095*** ± 
0.0119 

0.5862 − 
0.6329 

Precip −0.0002*** ± 
0.0000 

— −0.0003*** 
±0.0000 

— −0.0003*** ± 
0.0000 

— 

Sunsh 0.0075*** ± 
0.0013 

0.0051 − 
0.0100 

−0.0057*** ± 
0.0016 

−0.0088 – 
−0.0026 

−0.0066*** ± 
0.0010 

−0.0086 – 
−0.0047 

Temp 
0.0103*** ± 

0.0018 
0.0068 ‒ 
0.0139 

0.0279*** ± 
0.0020 

0.0240 – 
0.0319 

0.0123*** ± 
0.0016 

0.0091 – 
0.0155 
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Table 8. Regression coefficients with heteroscedasticity-consistent standard errors for croplands. 
Const: Constant, N dep: N deposition (natural logarithm of N deposition only used in 2000), Temp: 
Temperature, Precip: Precipitation, and Sunsh: Sunshine. **Statistically significant p < 0.01. 
***Statistically significant p < 0.001. 

 2000 2007 2010 
 Coefficients 95% CI Coefficients 95% CI Coefficients 95% CI 

Const -0.1581 ± 0.0783 
-0.3116– 
-0.0046 

0.5791*** ± 
0.0123 

0.5549 – 
0.6033 1.018*** ± 0.0540 0.9123 – 1.124 

N dep 0.4115*** ± 
0.0114 

0.3891 – 
0.4338 

0.0197*** ± 
0.0008 

0.0181 – 
0.0212 

0.0185*** ± 
0.0009 

0.0168 – 
0.0203 

Precip 
-0.0001*** ± 

0.0000 — — — 
-0.0001*** ± 

0.0000 — 

Sunsh 0.004** ± 0.0012 
0.0017 – 
0.0064 

— — 
-0.0062*** ± 

0.0011 
-0.0083 – 
-0.0042 

Temp — — 0.0192*** ± 
0.0017 

0.0158 ‒ 
0.0226 

0.0104*** ± 
0.0017 

0.0070 – 
0.0138 

Table 9. Regression coefficients with heteroscedasticity-consistent standard errors for 
croplands/natural vegetation mosaic. Const: Constant, N dep: N deposition, Temp: Temperature, 
Precip: Precipitation, and Sunsh: Sunshine. ***Statistically significant p < 0.001. 

 2000 2007 2010 
 Coefficients 95% CI Coefficients 95% CI Coefficients 95% CI 

Const 1.077*** ± 0.0175 1.042 – 
1.111 

0.9787*** ± 
0.0643 

0.8527 – 
1.1048 

1.568*** ± 0.0478 1.475 –  
1.662 

N dep 0.0167*** ± 
0.0006 

0.0154 – 
0.0179 

0.0123*** ± 
0.0008 

0.0107 – 
0.0138 

0.0138*** ± 
0.0007 

0.0123 – 
0.0152 

Precip 
-0.0001*** ± 

0.0000 — 
0.0001*** ± 

0.0000 — 
-0.0001*** ± 

0.0000 — 

Sunsh — — -0.0041*** ± 
0.0010 

-0.0061 – 
-0.0021 

-0.0120*** ± 
0.0010 

-0.0139 – 
-0.0101 

Temp — — 
0.0205*** ± 

0.0022 
0.0161 – 
0.0248 — — 

3.2. Soil Characteristics Per Land Cover Class 

The zonal-statistics analysis using the digital soil suitability map characterized the aptitude for 
croplands, stone content, and water and nutrient storage capacity of the three land cover classes. The 
results indicated that the land cover class grasslands were mostly located in areas inappropriate for 
agriculture. The majority of the values of this land cover class, with regard to stone content and 
water and nutrient storage capacity, resulted in the category unknown. However, the visual 
inspection of the digital soil suitability map for Switzerland [70] reveals that the Alps are 
characterized by extremely low, very low, and low water and nutrient storage capacity values. 
Croplands were mainly placed in areas with very good aptitude for agriculture production, slightly 
stony, and with good water and nutrient storage capacity. Croplands/natural vegetation mosaic 
were mostly characteristic of stony areas inappropriate for agriculture, with good water and nutrient 
storage capacity. 

4. Discussion 

4.1. GPP Response to Limiting Factors Per Land Cover Class: Statistical Analysis 

N deposition achieved a higher predictive power of GPP response than climatic factors, 
especially in alpine grasslands. However, the observed non-linear relationships between N 
deposition and GPP in grasslands for all the years suggest plant N saturation even at the observed 
low N deposition rates. Grasslands are more sensitive to plant N saturation than other ecosystems, 
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which produces non-linear primary productivity responses at lower N saturation thresholds [71]. 
Non-linear responses change according to climate factors and soil conditions [72].  

The correlations between climatic factors and GPP shown in our study are in line with the 
modelling results of Beer, et al. [6] for Switzerland. In particular, we found a low correlation between 
precipitation and GPP. Nevertheless, this climatic factor was relevant to generate the models. 
Therefore, analyzing the correlation results was key to determining the role of this variable in the 
considered years (Figure 2 and Appendix Table A 1–3). We also found a positive correlation between 
N deposition and temperature—such a correlation was also reported by Maskell, et al. [73]. 
Notwithstanding temperature was a relevant factor to explain GPP variance in the years 2000, 2007, 
and 2010, a higher correlation between N deposition and GPP as well as the collinearity threshold 
produced that N deposition overshadowed the role of temperature in the models. Therefore, 
studying how limiting factors of GPP interact among them is key before drawing conclusions from 
statistical models. Moreover, the comparison of results among years shows how the magnitude of 
influence of those limiting factors can vary. We also reported negative correlations between 
sunshine and GPP. Beer, et al. [6] suggested that this negative correlation occurs because sun 
radiation may induce evapotranspiration, which affects water availability and limit GPP. Besides, 
productivity may increase with diffuse sun radiation produced by the complex topography and 
cloudy conditions. Baptist and Choler [74] also observed this relationship, comparing the impact of 
overcast and cloudless conditions on C assimilation in alpine meadows. On the other hand, growth 
cycles constrained by altitudinal gradients may result in lower seasonal GPP values [74]. 
Nevertheless, Zeeman, et al. [75] concluded that accounting for the growing season length and 
management period do not improve GPP estimations in grasslands managed at different elevations 
in Switzerland. The MODIS land cover classes considered in our study spread across a wide 
altitudinal range in which different growing seasons occur within the same land cover class (see 
Section 2.2.1). Therefore, we consider the use of annual values appropriated to carry out our 
analysis. In particular, grasslands have a standard growing season from February to November [76].  

The predictive performance of N deposition decreased in croplands and croplands/natural 
vegetation mosaics. Legume-based crops (grassland in rotation) that reach high rates of N inputs 
through N2 fixation can maintain a moderate-high level of productivity in the long-term [77]. 
Moreover, areas with high intensity of use have additional input of nutrients, and therefore 
modelled N deposition may play a less relevant role to predict GPP response. In addition, the class 
croplands/natural vegetation mosaic is widely located in the Jura mountains, which is characterized 
by various management practices. In particular, extensification processes that decrease biodiversity 
of woody pastures have occurred on remote areas of the Jura mountains, while high intensity of use 
practices have contributed to preserving biodiversity on the proximity of populated zones [47,78]. 
Therefore, the low influence of N deposition in GPP response could be explained by complex 
biosphere-atmosphere interactions triggered by mixed management practices and high species 
richness [79–81]. In particular, Bassin, et al. [23] showed that N deposition could enhance, diminish, 
or not affect the productivity of certain species in abundant plant communities. Abiotic and biotic 
factors mediate N deposition effects in terrestrial ecosystems, producing different impacts among 
biomes [82]. Consequently, different results are expected in areas with different management 
practices and water and nutrient storage capacity. 

5. Outlook 

High N input through animal manure, mineral fertilizer, and N deposition are common in 
croplands and can produce nutrient leaching and eutrophication of surface waters [83–85]. In 
Switzerland, N deposition is the source that provides the least amount of N inputs in agricultural 
soils [19]. However, critical loads (threshold below which adverse environmental effects do not 
occur according to present knowledge) of N deposition have been exceeded in most of the forest and 
semi-natural ecosystems [59]. Despite N deposition decreasing since the mid-1990s, N deposition 
remains still too high in many areas [60]. In particular, the highest N exceedances occur in the 
lowlands where intensive management practices lead to high ammonia emissions because of high 
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manure inputs [59,86]. In our study, the predictive performance of N deposition decreased in those 
areas with high intensity of use. N can stimulate growth differently according to species-specific 
physiology and other co-limiting nutrients, such as phosphorous and potassium [23,87]. However, 
in those cultivated areas, growth is regulated by specific management practices. Detailed 
information about management practices (e.g., fertilization and irrigation), soil components, and 
crop types could shed light on the impact of N deposition on C fixation response in managed areas. 
Therefore, we recommend further research in that field. Determining nutrient balance helps 
characterize N dynamics and the influence of nutrient sources in managed agroecosystems [88,89]. 

On the other hand, N can be a driver, not only of biomass but also of ecosystem respiration in 
grasslands and croplands, which can turn C sinks into sources [10,90,91]. In addition, controlling 
factors of GPP response can have opposite effects. For example, low quantities of N deposition 
promote C storage while high temperatures produce C losses [24,92]. Taking into account these 
interactions is of utter importance because of ever more frequent extreme climatic episodes 
worldwide. Therefore, quantifying the impact of N deposition on the C budget together with other 
factors, such as land management practices and extreme climatic events, is crucial to understanding 
ecosystem processes. The emission-based model adopted in this study to quantify N deposition 
provided good estimates for large areas and produced similar results when compared with 
alternative methods [60]. Therefore, this approach is considered a reliable source of information for 
studies carried out at a national scale. In addition, we suggest the development of further lines of 
research, taking into account the climate inter-annual variability in the study areas, which could 
provide answers to the low correlation found between precipitation and GPP. Model simulations 
have shown the importance of coupling N and C cycles to account for vegetation dynamics and to 
improve global patterns of C and N fluxes [93,94]. There are still limitations on modelling sources of 
fixed N and land management changes, as well as coupling terrestrial C and N cycles [95,96]. 
Nevertheless, we expect our study to contribute to the inclusion of N deposition datasets in Earth 
system models to better account for N dynamics. This could improve predictions of C uptake in 
different ecosystems [97–99]. 

6. Conclusions 

Our study emphasizes the importance of studying how limiting factors of GPP response relate 
among them and to GPP to derive conclusions about their explanatory performance. We showed the 
role of N deposition in explaining GPP variance in soils with low nutrient storage capacity and how 
these areas present plant N saturation. The most important climatic variable to build all the models 
was precipitation. Temperature and sunshine were occasionally relevant in specific years. However, 
temperature was the variable with the second highest correlation with GPP. Therefore, interactions 
among controlling factors need to be taken into account before drawing conclusions from the final 
set of explanatory variables selected by a model.  

This study contributes to characterizing large spatial patterns of GPP in Switzerland and how 
controlling factors vary in areas with complex topography affected by local climatic conditions and 
different land management patterns. However, we recommend developing further research lines to 
disentangle the impact of controlling factors on GPP variance in ecosystems with high intensity of 
use, mixed management practices, and high species richness as well as the role of precipitation in 
GPP response in the study area. Finally, we foster accounting for N dynamics and land management 
practices in conjunction with climatic factors in C budget models to improve our understanding of 
complex ecosystem processes. 
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Appendix A 

 
Figure A1. Spatial variability and statistics of Nitrogen deposition maps per year. Units: kg N/ ha 
year. 

 
Figure A2. Spatial variability of yearly-accumulated precipitation: (a–c) croplands (455–3490 
mm/year), croplands/natural vegetation mosaic (469–3472 mm/year), and grasslands (534–3825 
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mm/year), respectively, for the year 2000; (d–f) croplands (530–2919 mm/year), croplands/natural 
vegetation mosaic (530–2676 mm/year), and grasslands (528–4008 mm/year), respectively, for the 
year 2007; and (g–i) croplands (382–2860 mm/year), croplands/natural vegetation mosaic (386–2793 
mm/year), and grasslands (447–3245 mm/year), respectively, for the year 2010. 

 
Figure A3. Spatial variability of yearly relative sunshine duration: (a–c) croplands (36–57%), 
croplands/natural vegetation mosaic (36–57%), and grasslands (36–57%), respectively, for the year 
2000; (d–f) croplands (40–61%), croplands/natural vegetation mosaic (40–62%), and grasslands (41–
63%), respectively, for the year 2007; and (g–i) croplands (35–56%), croplands/natural vegetation 
mosaic (34–55%), and grasslands (35–55%), respectively, for the year 2010. 
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Figure A4. Spatial variability of yearly mean temperature: (a–c) croplands (–4–12°C), 
croplands/natural vegetation mosaic (-––13°C), and grasslands (–9–14°C), respectively, for the year 
2000; (d–f) croplands (–4–13°C), croplands/natural vegetation mosaic (–4–13°C), and grasslands (–9–
15°C), respectively, for the year 2007; and (g–i) croplands (–6–12°C), croplands/natural vegetation 
mosaic (–5–12°C), and grasslands (–10–13°C), respectively, for the year 2010. 

 
Figure A5. Correlation matrix using the original values of N deposition for the class grasslands and 
the year 2000. 
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Figure A6. Scatterplot of the standardized residuals and the standardized predicted values using the 
original values of the class grasslands for the year 2000. 

 

Figure A7. Correlation matrix using the natural logarithm of N deposition for the class grasslands 
and the year 2000. 
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Figure A8. Scatterplot of the standardised residuals and the standardised predicted values using the 
natural logarithm of N deposition for the class grasslands and the year 2000. 

Table A 1 Pearson’s correlation between GPP: Gross primary productivity and Ln N dep: Natural logarithm of N 

deposition, Temp: Temperature, Precip: Precipitation, and Sunsh: Sunshine, based on a bootstrap of 1000 samples per 

land cover class and year. **Statistically significant p < 0.01. 

 Grasslands 

 GPP 2000 GPP 2007 GPP 2010 

 
Pearson 

Correlation 
95% 
CI 

Pearson 
Correlation 

95% 
CI 

Pearson 
Correlation 

95% 
CI 

Ln N 
dep 0.823** ± 0.006 

0.811— 
0.833 0.798** ± 0.006 

0.786 — 
0.811 0.813** ± 0.006 

0.801 —  
0.824 

Temp 0.741** ± 0.008 
0.724 — 

0.756 
0.749** ± 0.008 

0.734 — 
0.763 

0.748** ± 0.008 
0.733 —  

0.763 

Precip -0.220** ± 0.016 -0.250 — 
-0.190 

0.059** ± 0.017 0.026 — 
0.092 

-0.035** ± 0.017 -0.069 — 
-0.001 

Sunsh -0.121** ± 0.019 
-0.158 — 

-0.086 -0.233** ± 0.018 
-0.270 — 

-0.197 -0.291** ± 0.018 
-0.325 — 

-0.256 
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Table A 2 Pearson’s correlation between GPP: Gross primary productivity and N dep: N deposition (natural logarithm 

used only for the year 2000), Temp: Temperature, Precip: Precipitation, and Sunsh: Sunshine, based on a bootstrap of 

1000 samples per land cover class and year. **Statistically significant p < 0.01. 

 Croplands 
 GPP 2000 GPP 2007 GPP 2010 

 Pearson 
correlation 

95% 
CI 

Pearson 
correlation 

95% 
CI 

Pearson 
correlation 

95% 
CI 

N dep  0.664** ± .011 0.643 — 0.687 0.615** ± 0.013 0.590 — 0.640 0.588** ± 0.013 0.560 —  
0.616 

Temp 0.527** ± .015 0.499 — 0.554 0.487** ± 0.016 0.455 — 0.518 0.477** ± 0.016 0.445 —  
0.508 

Precip -0.383** ± .018 -0.418 — 
-0.347 -0.164** ± 0.023 -0.208 — 

-0.115 -0.236** ± 0.021 -0.276 — 
-0.195 

Sunsh -0.243** ± .018 -0.278 — 
-0.207 -0.307** ± 0.019 -0.346 — 

-0.268 -0.387** ± 0.016 -0.419 — 
-0.357 

 

Table A 3 Pearson’s correlation between GPP: Gross primary productivity and N dep: N deposition, Temp: 

Temperature, Precip: Precipitation, and Sunsh: Sunshine, based on a bootstrap of 1000 samples per land cover class 

and year. *Statistically significant p < 0.05 **Statistically significant p < 0.01. 

 Croplands/ Natural vegetation mosaic 
 GPP 2000 GPP 2007 GPP 2010 

 Pearson 
correlation 

95% 
CI 

Pearson 
correlation 

95% 
CI 

Pearson 
correlation 

95% 
CI 

N dep 0.411** ± 0.013 0.384 — 0.438 0.375** ± 0.014 0.349 — 0.405 0.377** ± 0.014 0.349 —  
0.405 

Temp 0.245** ± 0.017 0.212 — 0.277 0.220** ± 0.017 0.187 — 0.253 0.192** ± 0.017 0.160 —  
0.226 

Precip -0.173** ± 0.016 -0.202 — 
-0.141 0.068** ± 0.016 0.037 — 0.100 -0.040* ± 0.016 -0.074 — 

-0.008 

Sunsh -0.215** ± 0.014 -0.244 — 
-0.186 -0.229** ± 0.015 -0.259 — 

-0.198 -0.320** ± 0.014 -0.348 — 
-0.293 
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