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Abstract: Recent deep-learning counting techniques revolve around two distinct features of data—sparse
data, which favors detection networks, or dense data where density map networks are used.
Both techniques fail to address a third scenario, where dense objects are sparsely located. Raw aerial
images represent sparse distributions of data in most situations. To address this issue, we propose a
novel and exceedingly portable end-to-end model, DisCountNet, and an example dataset to test it on.
DisCountNet is a two-stage network that uses theories from both detection and heat-map networks
to provide a simple yet powerful design. The first stage, DiscNet, operates on the theory of coarse
detection, but does so by converting a rich and high-resolution image into a sparse representation
where only important information is encoded. Following this, CountNet operates on the dense
regions of the sparse matrix to generate a density map, which provides fine locations and count
predictions on densities of objects. Comparing the proposed network to current state-of-the-art
networks, we find that we can maintain competitive performance while using a fraction of the
computational complexity, resulting in a real-time solution.

Keywords: deep learning; automatic counting; UAV; real-time

1. Introduction

Counting objects is a fine-grain scene-understanding problem which can arise in many real-world
applications including counting people in crowded scenes and surveillance scenarios [1–5], counting
vehicles [6], counting cells for cancer detection [7], and counting in agriculture settings for yield
estimation and land use [8,9]. Counting questions also appear as some of the most difficult and
challenging questions in Visual Question Answering (VQA). Despite very promising results in “yes/no”
and “what/where/who/when” questions, counting questions (how many) are the most difficult
questions for the system, which have the lowest performance [10,11].

In natural resource management, livestock populations are managed on pastures and rangeland
consisting of hundreds or thousands of acres, which may not be easily accessible by ground-based
vehicles. The emergence of micro Unmanned Aerial Vehicles (UAVs), featuring high flexibility,
low cost, and high maneuverability has brought the opportunity to build effective management
systems. They can easily access and survey large areas of land for data collection and translate this
data into a user-friendly information source for managers.

Current methods to count animals and identify their locations through visual observation are
very expensive and time consuming. UAV technology has provided inexpensive tools that can be
used to gather data for such purposes, but this also creates an urgent need for development of new
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automatic and real-time object detection and counting techniques. Existing computer vision algorithms
for object detection and counting are mainly designed and evaluated on non-orthogonal photographs
taken horizontally with optical cameras. For UAVs, images are taken vertically at higher altitudes
(usually a hundred meters or less above ground level). In such images, the objects of interest can be
very small, lacking important information; For example, an aerial image of an animal has only the top
view which presents a blob shape, containing no outstanding or distinguishing features. Additionally,
this area of interest presents itself similarly to other objects in background, such as tree and bushes;
while corresponding terrestrial image of the same animal has many distinguishing features such as
head, body, or legs which makes it easier for recognition. Moreover, ground-based images offer a
balance between background and foreground, which is not present in UAV images taken from a high
altitude. A difference between a frontal view (ground-based) of an animal and top view (aerial-based)
is depicted in Figure 1.

Figure 1. The difference between front-view of an object in typical ground-based human-centric
photograph (Top Left) and top view in aerial images (Right; Bottom Left); Objects in aerial images are
small, flat, and sparse; moreover, objects and backgrounds are highly imbalanced. In human-centric
photographs, different parts of objects (head, tail, body, legs) are clearly observable while aerial
imagery present very coarse features. In addition, aerial imagery presents argumentative features, such
as shadows.

In addition, the UAV images we use in this project are associated with a large scene-understanding
problem, which is still a challenging issue even for ground-based images. Specific challenges to count
and localize animals in large pastures include: (1) animals may be occluded by bushes and trees;
(2) variant lighting conditions; (3) small areas of animals in the imagery make it difficult to detect them
based on shape features; (4) herding animals tend to group together (form a herd).

Recent advances in deep neural networks (DNNs) along with massive datasets have facilitated
the progress in artificial intelligence tasks such as image classification [12], object recognition [13,14],
counting [8,9], contour and edge detection [15] and semantic segmentation [16]. Most successful
network architectures have improved the performance of various vision tasks at the expense of
significantly increased computational complexity. In many real-world applications, real-time analysis
of data is necessary. One of the goals of our research is to develop a real-time algorithm that can count
and localize animals while on board UAVs. For this purpose, we need an algorithm that balances
portability and speed with accuracy instead of sacrificing the former for the latter. To address this,
we propose a novel technique influenced by both detection and density map networks along with
specialized training techniques in which coarse and fine detection occurs. One network operates on a
sparse distribution, while the other operates on a dense distribution. By separating and specializing
these tasks, we compete with state-of-the-art networks on this particular challenge while maintaining
impressive speed and portability.

In this research, we have designed a novel end-to-end network that takes a high-resolution and
large image as input and produce the count and localization of animals as output. The first stage,
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DiscNet, is designed to discriminate between foreground and background data, converting a full
feature rich image into a sparse representation where only foreground patches and their locations are
encoded. The second network, CountNet, seeks to solve a density function. Operating on the sparse
matrix from DiscNet, CountNet can limit its expensive calculations to important areas. An illustration
of our network is presented in Figure 2. The novel contributions of our work include:

• We developed a novel end-to-end architecture for counting and localizing small and sparse objects
in high-resolution aerial images. This architecture can allow for a real-time implementation on
board the UAV, while maintaining comparable accuracy to state-of-the-art techniques.

• Our DisCount network discards a large amount of background information, limiting expensive
calculations to important foreground areas.

• The hard example training part of our algorithm addresses the issues of shadow and
occluded animals.

• We collected a novel UAV dataset, prepared the ground truth for it, and conducted a
comprehensive evaluation.
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Figure 2. Our DisCount network: An end-to-end learning framework for counting sparse objects
in high-resolution images. It includes two networks: The first network (DiscNet) will select regions
and the second network (CountNet) will count the objects inside the selected regions. Convolutions
are shown as transparent orange, pooling layers are represented in transparent red, and transposed
convolutions are shown in transparent blue.

2. Related Work

2.1. Counting Methods

Counting can be divided into several categories based on the annotation methods used for
generating the ground-truth data.

2.1.1. Counting Via Detection

One can consider that perfect detection will lead to the perfect counting. In case that objects
are distinct and can be easily detected, this assumption is true. In this method, objects need to be
annotated by a bounding box. Several methods [5,17–19] have applied detection for counting objects.
For instance, Ref. [5] have manually annotated bounding box and trained a Faster R-CNN [20] for
counting people in a crowd. However, in many cases these methods suffer from heavy occlusions
among objects. Moreover, the annotation cost can be very expensive and impractical in very dense
objects. In our case, although animals are sparsely located in the image, they are herding together
which results in dense patches. Using this theory, we use coarse detection methods to model the first
function of density.
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2.1.2. Counting Via Density Map

In this case, annotation involves marking a point location for each object in the image. This
annotation is based on density heat map and is preferred in scenarios that there are many objects
occluding each other. Density heat-map annotation has been used in several cases including counting
cells, vehicles, and crowd [6,21–26]. Since our counting involves counting occluded objects in the
selected patches, we use density heat-map annotation technique.

2.1.3. Counting on Image Level

This counting is based on image level label regression [8,9,27] which is the least expensive
annotation technique. However, these methods can only count. Since we are interested in both
counting and localization of objects, we did not use image level annotation which is basically the
global count in the image.

2.2. Counting Applications

Counting methods have been mainly applied for counting crowd [5,28–31], vehicles [6,32],
and cell [7]. In agriculture, there have been limited research for counting apples and oranges [33],
tomatoes [8,9], maize tassels [34], and animals [27]. However, authors are not aware of any fully
automatic techniques for counting animals or fruit from aerial imagery. The existing techniques for
counting and detection of animals on UAVs [35–37] need manual preparation of training data in a
way that each image contains a single animal [35,36] or extra sensor such as thermal camera [37].
Due to payload limitation, it is not always possible to add extra sensor; thermal cameras are usually
more expensive than optical one which is a prohibitive cost for local farmers. Moreover, counting
in [35,36] is performed via a post-processing step by connected component analysis. Our approach
is different from previous work as we have developed a fully automatic technique where the region
of interest are selected automatically in the first part of the network ( DiscNet) without any manual
cropping of imagery and counting is performed automatically in an end-to-end learning procedure on
optical imagery.

2.3. Unmanned Aerial Systems

In recent years UAS have been extensively used in various areas such as scene understanding
and image classification [12], flood detection [16], vehicle tracking [38], forest inventory [39], soil
moisture [40], and wildlife and animal management [36,41]. There has been very limited work on
use of UAS for monitoring livestock particularly for animal detection, feeding behavior, and health
monitoring. For the review of these techniques , see [42].

In addition, several methods based on DNNs [32,43–45] have been developed for object detection
and tracking in satellite and aerial imagery, particularly vehicles. For counting and detecting of
man-made objects ( such as vehicles in parking lots) in aerial imagery, one deal with the imagery
that contain an equal distribution of objects of interest and background and there is not any overlap
between objects. In typical crowd or vehicle counting from aerial imagery, more than 70% of image
contain the object while in our case less than 1 percent of imagery contain the object of interest (cattle).
Based on our knowledge there are not any fully automatic techniques for counting sparse objects from
UAV imagery. Objects from UAV images are usually flat, proportionally small, and missing normal
distinguishing features. Moreover, the ratio of foreground (object of interest) to background data in
UAV imagery is prohibitively small. This means that we need to handle sparse information to separate
foreground information from background data. Additionally, most domesticated animals used in
agriculture are herding. This means that even though they represent a minute amount of sparsely
distributed information, they will tend to group, leading to density situations that cannot be accurately
handled by detection networks.
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3. Data Set

3.1. Data Collection

UAS flights for cattle and wildlife detection were conducted at the Welder Wildlife Foundation in
Sinton, TX on December 2015. This coincides with the typical dates for wildlife counts due to leaf drop
of deciduous trees. A fixed-wing UAV fitted with a single-channel non-differential GPS and digital RGB
camera for photogrammetry was flown by the Measurement Analytics Lab (MANTIS) at Texas A&M
University-Corpus Christi under a blanket Certificate of Authorization (COA) approved by the United
States Federal Aviation Administration (FAA). Over 600 acres were covered using a fixed-wing small
UAV called the SenseFly eBee (Figure 3). It is an ultra-lightweight (0̃.7 kg), fully autonomous platform
which has a flight endurance of approximately 50 min on a fully charged battery and light wind,
and can withstand wind speeds up to 44 km/h. With this setup, it can cover ten square kilometers per
flight mission. For this survey, the platform was equipped with a Canon IXUS 127 HS 16.1 MP RGB
camera with automatic exposure adjustment for optimal image exposure. Four flights were conducted
at 80 m above ground level with 75% sidelap and 65% endlap to seamlessly cover the entire study
area, which consisted of over one thousand individual photographs. The resultant ground sample
distance (GSD) was on average 3.8 cm. These images were post-processed using structure-from-motion
photogrammetric techniques to generate an orthorectified image mosaic (orthomosaic) (Figure 4).

Figure 3. UAV platform used in this research.

In this work, Pix4Dmapper Pro (Pix4D SA, 1015 Lausanne, Switzerland) was used to process the
imagery. The SfM image processing workflow is summarized as follows [46]: (1) Image sequences are
input the software and a keypoint detection algorithm, such as a variant of the scale invariant feature
transform (SIFT), is used to automatically extract features and find keypoint correspondences between
overlapping images using a keypoint descriptor. SIFT is a well-known algorithm that allows for feature
detection regardless of scale, camera rotations, camera perspectives, and changes in illumination [47]
(2) Key points as well as approximate values of the image geo-position provided by the UAS autopilot
(onboard GPS) are input into a least squares bundle block adjustment to simultaneously solving for
camera interior and exterior orientation. Based on this reconstruction, the matching points are verified,
and their 3D coordinates calculated to generate a sparse point cloud. (3) To improve reconstruction,
ground control points (GCPs) laid out in the survey area are introduced to constrain the solution
and optimize reconstruction. GCPs also improve georeferencing accuracy of the generated data
products. (4) Densification of the point cloud is then performed using a MultiView Stereo (MVS)
algorithm to increase the spatial resolution. The resultant densified set of 3D points is used to generate
a triangulated irregular network (TIN) and obtain a digital surface model (DSM). (5) The DSM is
then used by the software to project every image pixel and to calculate a geometrically corrected
image mosaic (orthomosaic) with uniform scale. Due to the low accuracy of the onboard GPS used to
geotag the imagery, ground control targets were laid out in the study area, and RTK differential GPS
was used to precisely locate their position within 2 to 4 cm horizontal and vertical accuracy. These
control targets were used during the post-processing of the imagery to accurately georeference the
orthomosaic image product.



Remote Sens. 2019, 11, 1128 6 of 17

Figure 4. Orthomosaic image of 600+ acre grazing paddock at Welder Wildlife Foundation taken in
December 2015 with the eBee fixed-wing platform and RGB camera.

3.2. Dataset Feature Description

The prominent features of this data set are roads, cows, and fences which are standard for ranch
land in the southern United States. According to the USDA [48], each head of cattle requires roughly
2 acres (43,560 square feet or 4047 square meters) of ranch land to maintain year-around foraging.
On average, a cow when viewed orthogonal occupies roughly 16 square feet, or 1.5 square meters. This
means when viewed as an area, a properly populated ranch land will have approximately 0.0037% area
that pertain to cattle. As can be seen in Figure 5, any given image in our dataset contains a large amount
of background information. In this figure, background information is represented as translucent areas,
while important areas, containing objects of interest, are transparent. In addition, cattle are herding
animals, meaning they travel in groups. This is especially prevalent in calves, which stay within
touching distance of their mothers. Due to this large disparity of area-to-cow and the propensity of the
cattle to group up, you end up with unique distributions and sub-distributions of data. The description
of these distributions would be densely packed locations of data scattered sparsely in a much larger
area. Figure 5 shows an example of sparsity in an image. Out of 192 regions, only 11, signified by
transparent areas, represent useful information in the given counting task. Furthermore, out of the
useful regions, only 12% of the pixel area represent non-zero values in the probability heat map.

Figure 5. An example of sparsity in our dataset. Translucent area is the background. Transparent
patches are labeled as foreground information, and represent only a small percentage of the total area.
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3.3. Dataset Preparation

Individual images taken from the UAV have a native resolution of 3456 by 4608, which is scaled
down to 1536 by 2048. Ground-truth annotations for this dataset are center of object point locations,
all of which were labeled by hand. The density map is generated by processing the center of point
objects with a Gaussian smoothing kernel with a size of 51 and a sigma of 9. This process can be
visualized in Figure 6, with an example region, its ground-truth point annotation, and the resultant
Gaussian smoothing output. The size of the Gaussian smoothing kernel roughly correlates to the
average distance between the tip of a cow’s head and the base of its tail. Due to the scale of the
data, some unimportant areas may be labeled as important as they are located proximate to cows.
To generate region labels, a sum operation is performed over each region. Any region with a value
greater than zero is classified as foreground, with all others classified as background.

Figure 6. A visualization of density heat-map generation. Starting with the original image, shown
left, a point value is hand labeled at the approximate center of the cow. This value, shown middle,
is processed using a Gaussian smoothing kernel, the result is shown right. The sum of all pixel values
of the right matrix is 1.

4. Our Approach

In this work, we will employ deep-learning models to approximate two density maps, θd and θc

based on assumptions generated from observation of the data. These assumptions are:

1. The data can be accurately described as a set of two distributions.
2. The majority of our data can be classified as background information.
3. Background information can be safely discarded without losing contextual details.
4. Foreground information can be densely packed.

Therefore, we design a two-stage approach to solve the problem. The first stage, DiscNet, is
designed to discriminate between background and foreground data, converting a full feature rich
image into a sparse representation where only foreground data and its location is encoded; this
will approximate θd function. The second network, CountNet, approximates θc by operating on the
sparse matrix from DiscNet; CountNet can limit its expensive calculations to regions. The result
of this design, DisCountNet, is a two-stage, end-to-end supervised learning process that maintains
remarkable accuracy while yielding a real-time solution to the provided problem.

4.1. Implementation and Training

The design for DisCountNet is detailed in Figure 2, and shows the full end-to-end implementation.
DiscNet (the first stage) is an encoder characterized by convolutions of large kernels and leaky RELU
activation functions followed by aggressive pooling. The first four convolutions use kernels with
sizes of seven, six, five, and four. The first three pooling operations are all max pooling with a kernel
and stride of four, and the final pooling operation is another max pooling layer with stride and
kernel size of two. The last next to last layer in the network is a final one-by-one convolution to
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reduce the feature map depth to two, followed by a SoftMax activation, yielding a 12 by 16 matrix
of values that represent the likelihood that a cow is found in a given region. The aggressive striding
allows us to use larger kernel sizes to capture contextual information that could be lost while limiting
expensive operations. DiscNet then uses this matrix to convert the original input image into a sparse
representation, operating on the assumptions listed above. CountNet uses the sparse representation
to generate per-pixel probability values. This flow of information can be visualized in Figure 7,
which shows different data representations at different stages of the proposed network. Our training
procedure is depicted in Algorithm 1. Given the dataset {Xi}N

i=0, DiscNet gets trained using the
full images and region label ground truths via a weighted cross entropy loss to determine if there
is a cow in a given region. Each data Xi consist of R(i) regions, where each region is labeled by y(i)r

with r = 1 . . . where r = 1 . . . R(i). The result of the network prediction is denoted as ỹ(i)r . We use
a weighted cross entropy minimization equation, which is given by Equation (1); for convenience,
we drop the superscript (i) in the formula.

`d = −∑
r
(yr pr−0.5 log(ỹr) + (1− yr)pr0.5 log(1− ỹr)). (1)

where pr ∈ [0, 1] and represents the percentage of regions with desired information. This weighted loss
function serves to counterweight the loss values for our unbalanced data set. For example, if an image
is 90% background regions, the loss for foreground regions will be ten times higher. This will cause
the network to weigh the loss for positive examples more highly than negative examples, resulting
in an increased number of false positives and fewer false negatives. In our given implementation,
a false negative will hurt the performance much more than a false positive. As an example, a false
negative in the discriminator would mean that a region with a cow is not passed to CountNet, meaning
no cows can be detected. However, a false positive means that a region without a cow is passed
on, for which CountNet can still compensate. In the second stage, as CountNet seeks to model a
different function based on Assumption 4, it uses a different implementation. CountNet features a
U-Net structure [49] with modified operations. Operating on a sparse representation of the original
image generated by DiscNet, CountNet creates a sparse density map. The encoding pathway features
four convolution-pooling operations with skip connections to the decoding pathway, which uses
transposed convolutions. All the pooling operations are max pooling with a kernel and stride of two.
Each of the convolutions uses a three-by-three kernel, and all transposed convolutions use a stride
of two. Finally, the network uses a one-by-one convolution with one feature depth that represents
the likelihood that a cow is in one given pixel. The U-Net-like-architecture is proven for providing
accurate inferences while maintaining contextual information for per-pixel tasks.

CountNet is trained by the sparse data generated by DiscNet. CountNet’s loss value is generated
using regions and corresponding ground-truth density map regions by minimizing the Mean Square
Error. The `2 loss function, is given by Equation (2) where zi is a given ground-truth density map and
z̃i is a prediction,

`c =
1

2N ∑
i
||z̃i − zi||22. (2)
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Algorithm 1: DisCount training algorithm is illustrated here.

Data: Nt training images; Nv validation images; {Xi}N
i=0 with ground-truth density maps

{DGT
Xi
}N

i=1
Result: Trained parameters θc for CountNet and θd DiscNet
Initialization : θc and θd ; epoch = 0;
while (d`c/dt < 0 or d`d/dt < 0) and epoch <MaxEpochs do

for i=1 to Nt do
Update θd if d`d/dt < 0;
Update θc if d`c/dt < 0;
Store Lossesc

end
if d`c/dt < 0 then

% Hard Example Mining
for i=1 to m do

% m is determined experimentally
Sort Lossesc;
Lossesc = Upper Median Lossesc;
for i=1 to |Lossesc| do

Randomly perturb regions;
Update θc ;
Store Lossesc;

end
end

end
% Validation
for i=1 to Nv do

Calculate d`c/dt and d`d/dt ;
end
epoch++;

end

=⇒ =⇒

=⇒ =⇒

Figure 7. The flow of information through DisCountNet. Full feature images are given to DiscNet,
which generates a sparse representation of the image to give to CountNet. CountNet then operates
on this sparse representation to generate a per-pixel probability that a cow is in a given pixel. These
values, when summed up, equal the predicted number of cows in the image.
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4.2. Hard Example Training

During end-to-end training, CountNet maintains a list of loss values per region. At the end of
each epoch, it sorts this list, then truncates the lowest half. CountNet then randomly perturbs these
regions using random flipping and rotating, training again with a larger batch size. The loss from this
training is again stored, and the process is repeated m− 1 times. As the population decreases by half
in every iteration, m should be chosen to ensure that the population of regions does not drop below a
given batch size. On observation, regions used multiple times contain argumentative features, such as
black cows that look similar to shadows or obscured cows behind foliage.

5. Evaluation Metrics

For evaluation, we used five metrics in addition to comparing parameters between DisCountNet,
RetinaNet [14] and CSRNet [50]. The targeted goal is to have as-accurate-as-possible counting and
density map generation while providing a real-time solution on portable hardware. The metrics can
be broken into three different sections; image level label comparison, region level label comparison,
and generated density map quality comparison.

5.1. Image Level Label Metrics

To compare raw counting results, we use mean squared error (mSE) and mean absolute error
(mAE). The resultant values provide us with an idea of the average error expected for any image in
our testing set. In both equations, n is the total number of images, yt is a given ground-truth label
count, and ỹt is our count prediction for image t.

mSE = 1
n ∑n

t=1(yt − ỹt)2

mAE = 1
n ∑n

t=1 |yt − ỹt|
(3)

5.2. Image Region Level Metric

The grid average mean absolute error (GAME) [6] metric provides more accurate information
for counting quality. Mean absolute error as a metric does not care where errors occur as long as they
average out, where GAME simultaneously considers the object count, and the location estimated for
the objects.. The formula for GAME is as follows:

GAME(L) =
1
n

n

∑
t=1

(
4L

∑
r=1
|yr

t − ỹr
t |) (4)

where n is the total number of images, L is the amount of gridlines in each dimension, and yr
t is the

actual count for image t on region r. It should be noted that GAME(0) is equal to the mAE, as the
region considered is the whole image.

5.3. Density Map Quality Comparison

To evaluate the quality of the produced density heat maps, we use peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [51]. These metrics provide insight to the quality of the
generated density map compared to the ground truth. Standard implementations of these metrics
are non-distance evaluations, meaning that they cannot be used to evaluate raw counting results,
but rather to provide an insight into a network’s ability to create accurate per-pixel values. The formula
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for PSNR can be found below, with MAXi being the maximum possible pixel value of a given image
and mSE being the mean squared error found in Equation (3).

PSNR = 10 · log10

(
MAX2

I
mSE

)
(5)

The formula for structural similarity is as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(6)

where µ represents the mean, σ represents the standard deviation, σxy is covariance, x is a ground
truth, and y is a prediction. Finally, c1 and c2 are variables to stabilize division.

6. Results

6.1. Experimental Setup

We have compared the performance of our technique with two state-of-the-art techniques namely
RetinaNet and CSRNet [14,50]. RetinaNet is a detection network [14] that generates bounding boxes
and CSRNet generates a density map [50].

All networks were trained on a Spectrum TXR410-0032R Deep Learning Dev Box, leveraging an
Intel Core 17-5930K, 64 GB of RAM, and four Nvidia GeForce Titan Xs.

DisCountNet was trained with the Adam [52] optimizer with a learning rate of 1e-3. The batch
size for DiscNet was 1, and the batch size for CountNet is the number of regions detected by DiscNet.
During hard example training, the batch size of DiscNet was set to be 24, and m was chosen to be three.
The number of repetitions of hard example training, m, was set to three to maintain a large sample
population. A larger dataset could theoretically use a larger number of repetitions, as the batch size of
regions could remain higher.

To generate positive anchors, RetinaNet was trained using images that contained cows extracted
from a three-by-three grid of the original images using bounding box ground truths.

Validation was run with a Dell Inspiron 15-7577 using a solid-state drive, i5-7300 processor,
16 GB of RAM, and an Nvidia 1060 Max-Q. To operate on more limited hardware, images were split
into non-overlapping regions before being processed by CSRNet and RetinaNet. For RetinaNet [14],
a three-by-three grid was used to generate the regions, while CSRNet [50] was validated using a
two-by-two grid. Using this hardware as an analog for consumer attainable and portable hardware,
DisCountNet averaged 34 frames per second. To compare, RetinaNet [14] averaged 4 frames per
second, and CSRNet [50] averaged 12 frames per second. This shows that only our technique can
count and localize objects in real time.

6.2. Qualitative and Quantitative Results

A sample full image, its ground truth, and the predicted density map by our algorithm are
shown in Figure 8. In addition to the density map, the network predicts 6 objects in this image, which
corresponds to the actual count. As it can be seen in Figure 8, our method is able to detect small and
sparse objects in large UAV images. Further results for selected regions by our discriminator network
are shown in Figure 9. This figure shows that our method can distinguish between two adjacent cattle
and those animals that our occluded by foliage.
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Figure 8. From top to bottom, a source image, its label, and our prediction heat map.
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Source Image Label Prediction

Figure 9. From left to right: Source Image regions, heat-map label, and heat-map prediction

As can be seen in Table 1, DisCountNet maintains competitive metrics despite using just over
1% of the parameters of current state-of-the-art networks. In addition, DisCountNet would have the
benefit of limiting computation whereas other networks would not. For example, in an empty image,
DisCountNet would only use the operations of DiscNet, as CountNet would not run. RetinaNet [14]
and CSRNet [50] however, would need to use their full operations on the empty image, resulting in
computations with no benefit.
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As it can be seen in Tables 2 and 3, DisCountNet outperformed state-of-the-art in all GAME
metrics as well as SSIM. This shows that our method is more accurate in simultaneous counting and
localization of objects compared to others.

Table 1. A base comparison between state-of-the-art networks and our DisCountNet method for
counting errors.

Network mAE mSE Parameters

CSRNet [50] 1.58 4.49 16.7M
RetinaNet [14] 1.24 3.54 36.4M
DisCountNet 1.65 4.98 206k

Table 2. Comparison of GAME [6] metric results which shows both counting and localization errors.

Network GAME1 GAME2 GAME3 GAME4

CSRNet [50] 1.520 0.3800 0.0950 0.0237
DisCountNet 1.359 0.3396 0.0849 0.0212

Table 3. Comparison of probability heat-map quality.

Network SSIM PSNR

CSRNet [50] 0.9991 41.33
DisCountNet 0.9999 41.14

SSIM (Table 3) metric is 1e-4 from being a perfect score for DisCountNet. This is due to the fact
that when using a sparse representation, we allow for perfect zero output. This results in absolutely no
error for the majority (around 80%) of all pixels. CSRNet [50] does not have this type of design, so
every pixel output value can be extremely close to zero, but statistically will not be zero. This results
in a small error value in every pixel which is even more pronounced when comparing SSIM over
other metrics.

7. Conclusions

In this paper, we propose an innovative method to work with sparse datasets by designing a
fully convolutional counting and localization method. Our method outperformed state-of-the-art
techniques in quantitative metrics while providing real-time results. Through innovative design,
we limit operations to only important areas while discarding non-important areas. While our method
greatly improves the counting and localization performance, it has the limitation of detecting and
counting highly occluded objects. As it can be seen on the bottom row of Figure 3, our network has
difficulty detecting cows inside shrubbery with high occlusion. This technique is easily portable to
other application domains, as it provides general implementations rather than specific hand-crafted
techniques. Our technique can possibly be expanded to an iterative series of DiscNets, or a cascade
of weak convolutional regional classifiers. By the iterative process of dense to sparse information
representations, successive networks would work on less and less information.
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