
  

Remote Sens. 2019, 11, 1127; doi:10.3390/rs11091127 www.mdpi.com/journal/remotesensing 

Article 

Establishment and Assessment of A New GNSS 
Precipitable Water Vapor Interpolation Scheme 
Based on the GPT2w Model 
Fei Yang 1,2,3, Jiming Guo 1,3,*, Xiaolin Meng 2, Junbo Shi 1 and Lv Zhou 4 

1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;  
coffeeyang@whu.edu.cn (F.Y.); jbshi@sgg.whu.edu.cn (J.S) 

2 Nottingham Geospatial Institute, University of Nottingham, Nottingham NG7 2TU, UK; 
xiaolin.meng@nottingham.ac.uk 

3 Key Laboratory of Precise Engineering and Industry Surveying of National Administration of Surveying, 
Mapping and Geoinformation, Wuhan University, Wyhan 430079, China 

4 College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China; 
zhoulv@glut.edu.cn 

* Correspondence: jmguo@sgg.whu.edu.cn 

Received: 7 March 2019; Accepted: 30 April 2019; Published: 10 May 2019 

Abstract: With the development of Global Navigation Satellite System (GNSS) reference station 
networks that provide rich data sources containing atmospheric information, the precipitable water 
vapor (PWV) retrieved from GNSS remote sensing has become one of the most important bodies of 
data in many meteorological departments. GNSS stations are distributed in the form of scatters, 
generally, these separations range from a few kilometers to tens of kilometers. Therefore, the spatial 
resolution of GNSS-PWV can restrict some applications such as interferometric synthetic aperture 
radar (InSAR) atmospheric calibration and regional atmospheric water vapor analysis, which 
inevitably require the spatial interpolation of GNSS-PWV. This paper explored a PWV interpolation 
scheme based on the GPT2w model, which requires no meteorological data at an interpolation 
station and no regression analysis of the observation data. The PWV interpolation experiment was 
conducted in Hong Kong by different interpolation schemes, which differed in whether the impact 
of elevation was considered and whether the GPT2w model was added. In this paper, we adopted 
three skill scores, i.e., compound relative error (CRE), mean absolute error (MAE), and root mean 
square error (RMSE), and two approaches, i.e., station cross-validation and grid data validation, for 
our comparison. Numerical results showed that the interpolation schemes adding the GPT2w model 
could greatly improve the PWV interpolation accuracy when compared to the traditional schemes, 
especially at interpolation points away from the elevation range of reference stations. Moreover, this 
paper analyzed the PWV interpolation results under different weather conditions, at different 
locations, and on different days. 

Keywords: GNSS remote sensing; precipitable water vapor; interpolation; GPT2w model 
 

1. Introduction 

Water vapor comprises only a small percentage of the atmosphere, but it plays a key role in a 
series of atmospheric processes that act over a wide range of spatial and temporal scales, from global 
climate to micrometeorology [1]. The construction of continuously operating GNSS receiver networks 
enables PWV, which refer to the height of an equivalent column of water vapor, to be acquired by 
GNSS remote sensing technology [2]. In comparison to the traditional methods to achieve PWV, like 
radiosonde and water vapor radiometer (WVR), GNSS remote sensing technique has the advantages 
of low construction and maintenance costs, high temporal resolution, and large coverage [3–5]. 
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Considering the environmental constraints that GNSS receivers are difficult to set up in some 
areas such as oceans, deserts, and mountains, and referring the discontinuous spatial distribution of 
GNSS receivers, which are also several kilometers, some restrictions will be imposed on the GNSS-
PWV meteorological research and applications where atmospheric effects need to be eliminated such 
as InSAR atmospheric calibration [6,7]. Thus, interpolation methods need to be employed to attain 
the PWV information at receiver-free locations. Many algorithms, i.e., natural neighbor interpolation 
by Sibson [8], angular distance weighting by Shepard [9], and conditional interpolation by Hewitson 
and Crane have been introduced in the GNSS-related literature [10]. Furthermore, Jarlemark and 
Emardson evaluated the gradient algorithm, the turbulence algorithm, and linear regression in time 
using WVR measurements [11], and Janssen et al. discussed the application of inverse distance 
weighted (IDW), Ordinary Kriging (Kriging), and spline interpolation algorithm [12].  

Since there is a strong correlation between the water vapor and the terrain caused by the vertical 
stratification of the neutral atmosphere, the influence of terrain elevation in PWV interpolation needs 
to be considered. Based on the higher Taylor series expansion, Yin et al. improved the IDW to take 
into account the impact of different terrain elevations on PWV [13]. Yang et al. proposed an improved 
Kriging algorithm to interpolate PWV, which considered the factor of terrain elevation by adding a 
variogram about the elevation [14]. Thin plate splines (TPS) can also be used for three-dimensional 
PWV interpolation [15]. In addition, Li et al. proposed an elevation-dependent PWV interpolation 
method that employed an elevation-dependent covariance model to determine the best linear 
unbiased estimator weights, which needs a large number of measurements to achieve a reliable 
covariance function [16]. Another method based on the estimator of simple Kriging with varying local 
means and the Baby model was proposed by Li et al. [17], which needs ground meteorological data. 
Xu et al. presented an improved elevation-dependent PWV interpolation method by substituting the 
Baby model with the Onn model [18], which is an exponential law model of water vapor with the 
elevations proposed by Onn and Zebker [19]. However, the coefficients of the Onn model need to be 
determined by regression. 

In this paper, the global pressure and temperature 2 wet (GPT2w) model built on ERA-Interim 
data was used to estimate the approximate PWV [20]. The residual term, namely the difference of 
PWV derived from GNSS and the GPT2w model, was interpolated by the algorithm above-
mentioned. In this method, there is no need for any meteorological data at the interpolation point 
and the long-term regression analysis of observation data. It was found that the proposed method 
had a good performance for the interpolation points that were far from the elevation range of the 
reference stations, which is a significant advantage over the traditional methods above-mentioned. 

2. GPT2w Model and Interpolation Method 

2.1. PWV Derived from GNSS and the GPT2w Model 

In GNSS data processing, the PWV is translated from zenith wet delay (ZWD) by the following 
formula [21,22]: 𝑃𝑊𝑉 = ∏  ×  𝑍𝑊𝐷 = 10𝜌  × 𝑅𝑚  𝑘𝑇  + 𝑘  − 𝑚𝑚  ×  𝑍𝑊𝐷 (1) 

where Π  is the conversion factor consisting of some meteorological parameters. 1k , 2k , and 3k are 
empirical physical constants that equal to77.604𝐾 ·  ℎ𝑃𝑎 , 70.4𝐾 ·  ℎ𝑃𝑎 and, 3.775 × 10  𝐾  · ℎ𝑃𝑎  respectively; 𝑚 =  18.02𝑘𝑔 ·  𝑘𝑚𝑜𝑙  and 𝑚 =  28.96𝑘𝑔 ·  𝑘𝑚𝑜𝑙 denote the molar mass 
of the water and dry atmosphere, respectively; R represents the universal gas constant with the value 
of; 8314𝑃𝑎 ·  𝑚 · 𝐾 · 𝑘𝑚𝑜𝑙  𝜌  with the unit of 𝑔 ·  𝑚  indicates the liquid water density; 𝑇 , 
a function of vapor pressure and temperature at different altitude, is the weighted mean temperature, 
which varies depending on elevation, weather, and location . In this work, it was achieved by using 
the surface temperature 𝑇  (𝑇  =  85.63 +  0.668𝑇 ) [23,24]. ZWD, resulting from the water vapor, 
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is the wet component of zenith tropospheric delay. It can be retrieved by subtracting the zenith 
hydrostatic delay (ZHD) from ZTD using the formula as follows: 𝑍𝑊𝐷 = ZTD − ZHD (2) 

The ZHD can be accurately computed using the empirical model due to the 
well-mixed nature of the hydrostatic gases in the atmosphere [25]:  𝑍𝐻𝐷 = 0.002277 × 𝑃1 −  0.00266 ×  𝑐𝑜𝑠 (2𝜑) −  0.00028 ×  𝐻 

(3) 

where 𝑃  with the unit of hPa is the surface pressure and 𝜑 and 𝐻 represent the latitude and the 
geodetic height of the station, respectively. 

The GPT2w model is an empirical model proving meteorological parameters derived 
consistently from the monthly mean pressure level data of ERA-Interim fields with a horizontal 
resolution of 1°. It is suitable for computing the water vapor pressure at any site in the vicinity of the 
Earth’s surface regarding the approximate station coordinates and date as input. As numerous 
studies have shown a strong correlation between water vapor pressure and PWV [26–30], the water 
vapor pressure derived from the GPT2w model was selected and converted by the formula as follows: 𝑊 = 1.74 × e (4) 

where W and e denote the PWV and water vapor pressure, respectively. The above conversion 
relationship was proposed by Zhang [31], based on the analysis of 308 couples of climatic data at 
different sites in different seasons, with a correlation coefficient of 0.9842. 

2.2. Interpolation Algorithm 

 

Figure 1. Flowchart of PWV interpolation with the GPT2w model. 

It is known that different interpolation algorithms can work better for different variables, and 
geographical factors such as station densities, climate regimes, and seasonality may influence the 
choice of interpolation algorithm and the accuracy of the results. We therefore chose three 
interpolation algorithms, i.e., IDW, Kriging, and TPS, which are the most commonly used in PWV 
interpolation [7,18,32]. 

IDW, based on the SYMAP algorithm by Shepard [9], is a kind of deterministic algorithm for 
interpolation with a known scattered set of stations. It can relate the unknown value of PWV in a 
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defined station to the values of PWV achieved from GNSS stations, on the basis of the distance 
between stations. It assumes that each measured station has a local influence that diminishes with 
distance, that is, the closer a station is to the station of estimate, the higher its influence. 

Kriging, developed by Krige [33], [34] and Matheron [35], and, as pointed out by Hofstra et al. 
[36], is a type of stochastic interpolation algorithm that belongs to the best linear unbiased estimation. 
In the algorithm, the PWV of interest at every unknown station is given by a linear combination of 
the PWV in GNSS reference stations, each weighted, and with the sum of weights equal to one. The 
weights are determined based on the variogram model, which is a spatial covariance function used 
to describe the variability of the observations. Webster and Oliver explain the concept of Kriging in 
more detail in [37].  

TPS, theoretically described by Wahba [38] and further developed for meteorology by 
Hutchinson [39], is a deterministic spatial interpolation algorithm. Like Kriging, TPS is also based on 
spatial covariance function, and their differences lie in how the function is defined. The generalized 
cross-validation error is minimized to define the function in TPS. Basically, this algorithm is designed 
to minimize the total curvature of the measurements in order to pass data values. It is a linear 
combination of the basis function of either Gaussian or elliptical. 

Combining the GPT2w model with the interpolation algorithms above-mentioned, the PWV of 
interest station can be obtained. Figure 1 is a flowchart of PWV interpolation with the GPT2w model. 

3. Experimental Description 

 

Figure 2. Geographic distribution of GNSS stations and their elevations. 

This study utilized GNSS and the surface meteorological data of the Hong Kong Satellite 
Positioning Reference Station Network (SatRet) provided by the Hong Kong Geodetic Survey 
Services, which were freely downloaded via their website (www.geodetic.gov.hk). The GNSS data of 
12 stations with a sampling rate of 30 s, and the surface meteorological data including temperature, 
pressure and relative humidity were downloaded. As shown in Figure 2, the area covered by those 
stations was 113.89°–114.34° for longitude and 22.21°–22.50° for latitude, respectively. The altitude 
ranges from 8.55 to 350.67 m, which is effective to detect the impact of elevation on PWV 
interpolation. Two periods with different weather conditions were selected in the experiment, one 
from 12 June to 18 June 2017 (DOY of 163 to 169, 2017) when Hong Kong suffered heavy rain with a 
maximum daily rainfall of 203.7 mm; the other was from 13 August to 19 August 2017 (DOY of 225 
to 231, 2017) during rainless weather.  

To achieve GNSS PWV, the GAMIT 10.61 software was adopted for the data processing based 
on the double-differenced model. In the processing, three international GNSS service (IGS) stations 



Remote Sens. 2019, 11, 1127 5 of 14 

 

(SHAO, BJFS and LHAZ) were incorporated to reduce the strong correlation of tropospheric 
parameters caused by the short baselines between GNSS stations. The IGS precise ephemeris was 
used and a cutoff elevation angle of 10° was selected. The global mapping function (GMF) and the 
antenna phase center model based on the azimuth- and elevation-dependent data recommended by 
IGS was used. The IERS (International Earth Rotation and Reference System Service) Earth 
orientation parameters and the FES2004 model were applied during data processing. The 
LC_AUTCLN and BASELINE were selected as the processing strategies, representing the GNSS 
observations as ionosphere-free linear combinations and the fixed orbital parameters, respectively. 
After obtaining the ZHD using Equation (3), ZWD can be converted to PWV based on Equation (1), 
all of which require measured meteorological data. 

In order to verify the validity of the interpolation algorithm proposed in this paper, different 
schemes were conducted in the experiment. For the first set, the IDW, Kriging, and TPS algorithm 
without the GPT2w model were used directly regardless of the elevation effect; the difference 
between the second set of schemes and the first set was the addition of the GPT2w model; for the 
third set, the three-dimensional (3D) Kriging and TPS algorithm that take into account the impact of 
elevation were utilized; and then the GPT2w model was added to the third set to form the fourth set. 
Thus, 10 PWV interpolation schemes were constructed in the experiment, i.e., IDW, Kriging, and TPS 
for the first set, IDW-GPT2w, Kriging-GPT2w, and TPS-GPT2w for the second set, 3DKriging and 
3DTPS for the third set, and 3DKriging-GPT2w and 3DTPS-GPT2w for the fourth set. By using these 
interpolation schemes, the improvement of the elevation-dependent interpolation method was 
verified, and the effect of adding the GPT2w model under different circumstances was assessed. 

In the experiment, two approaches for comparison were adopted. The first was the station cross-
validation [40], where each station is excluded in turn and the PWV of the station are interpolated 
from the reference stations. Then, the observed and interpolated PWV at the excluded station are 
compared, enabling us to quantify the relative skill of different interpolation schemes at interpolating 
point values. The second approach was to interpolate the PWV on grid points, the locations of which 
are consistent with the European center for medium-range weather forecasts (ECMWF) data with a 
resolution of 0.125°*0.125°. The ECMWF can provide PWV on these grid points for a comparison of 
the interpolation across the entire region. 

Several skill scores such as the compound relative error (CRE), mean absolute error (MAE), and 
root mean square error (RMSE) were utilized to study the performance of each interpolation scheme. 
Different skill scores highlight different features of the result [15]. MAE is an unambiguous, natural 
measure of average error, which is expressed in the same unit as the PWV itself. RMSE is used as a 
measure of deviation from the observed value and depends on the squared error means and has 
sensitivity to large outliers. CRE is a measure of similarity between the observed and interpolated 
values, namely, the ratio between the mean squared error and the variance of the observed values. 
The equations are presented below, where o  is the observed, or reference series (PWV derived from 
GNSS data or ECMWF data), and y  is the series to interpolate. 

𝑀𝐴𝐸 = 1𝑛  |𝑦  𝑜 | (5) 

𝑅𝑀𝑆𝐸 =  1𝑛   (𝑦  −  𝑜 )  (6) 

𝐶𝑅𝐸 = ∑ (𝑦  −  𝑜 )∑ (𝑜   �̅�)  (7) 

 



Remote Sens. 2019, 11, 1127 6 of 14 

 

Table 1. Summary of the performance evaluation of different interpolation schemes for station cross-validation (left for rainless and right for rainy weather 
condition). 

 Rainless Weather Rainy Weather 
Method MAE # RMSE # CRE # MAE # RMSE # CRE # 

 [mm]  [mm]  [-]  [mm]  [mm]  [-]  
IDW 2.118 8 2.285 8 0.244 8 1.961 8 2.010 8 0.588 8 

IDW-GPT2w 0.780 3 1.004 3 0.037 3 0.665 3 0.838 3 0.073 3 
Kriging 2.373 9 2.570 9 0.292 9 2.204 9 2.375 9 0.723 10 

Kriging-GPT2w 0.728 1 0.928 2 0.032 2 0.652 2 0.820 2 0.070 2 
3DKriging 1.377 7 1.670 7 0.132 7 1.272 7 1.517 7 0.343 7 

3DKriging-GPT2w 0.793 4 1.024 4 0.038 4 0.723 5 0.909 4 0.082 4 
TPS 2.701 10 2.818 10 0.312 10 2.412 10 2.512 10 0.685 9 

TPS-GPT2w 0.731 2 0.914 1 0.032 1 0.642 1 0.808 1 0.067 1 
3DTPS 1.105 6 1.449 6 0.081 6 1.005 6 1.309 6 0.193 6 

3DTPS-GPT2w 0.812 5 1.036 5 0.039 5 0.719 4 0.911 5 0.087 5 
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4. Result and Discussion 

4.1. Station Cross-Validation 

For the station cross-validation, each interpolation scheme was run 12 times for each period with 
11 reference stations and one interpolation station. In Table 1, the average values of the skill scores in 
the 12 runs including RMSE, MAE, and CRE for each interpolation scheme with their corresponding 
rank (#) are shown. From the average ranks, it can be seen that the second set of schemes mentioned 
in Section 3 achieved the optimal results, followed by the fourth set, the third set, and the first set, 
which indicates that the addition of the GPT2w model, in any case, could result in a better 
interpolation result. Some other useful conclusions can be drawn, i.e., TPS and Kriging are extremely 
ineffective when the impact of terrain elevation is not taken into account, especially the TPS, instead 
the IDW should be used in this situation; once the terrain elevation is considered, 3DKriging and 
3DTPS would be effective in improving the PWV interpolation results, especially the 3DTPS, once 
again indicating the importance of elevation information for PWV interpolation. It was noted that the 
interpolation results of the fourth set were slightly worse than those of the second set, that is, Kriging-
GPT2w was better than 3DKriging-GPT2w and TPS-GPT2w was better than 3DTPS-GPT2w, 
respectively. This is mainly because the elevation information of the interpolation station was 
considered in the GPT2w model. Some inconsistencies and errors are likely to be introduced if the 
interpolation algorithm referred to the terrain elevation again. 

  

Figure 3. Scatter (upper) and boxplot (lower) of the observed PWV at each station during the period 
of rainless and rainy days. Blue for the rainy condition and red for the rainless condition. 

From the comparison of the results between rainless and rainy weather conditions, it was found 
that the PWV interpolation results of each scheme on rainy days were slightly better than those on 
rainless days. To clarify this, the observed PWV, namely the PWV derived from GNSS data, in each 
GNSS station during the two periods were collected and counted. In Figure 3, the horizontal and 
vertical axes denote the GNSS stations and observed PWV values, respectively. Obviously, in the 
upper graph, the value of PWV on rainy days (blue ones) was larger than that of rainless days (red 
ones), but the fluctuation of PWV on rainy days was even smaller. Furthermore, the boxplots, which 
is a method for graphically depicting groups of numerical through their quartiles, are shown in the 
lower graph. From the spacings between the different parts of the box, the PWV data of rainy days 
in each station had a smaller degree of dispersion than that of rainless days. When comparing all the 
PWV data for different weather conditions, namely the black ones, it can be found that the PWV 
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during the rainless period was relatively unstable and had a wider range of changes. This is why all 
interpolation schemes have a better performance on rainy days than on rainless days.  

To further demonstrate the performance of different interpolation schemes, the RMSE of each 
day for station cross-validation is drawn in Figure 4, where the colors and symbols indicate the 
interpolation schemes. It is clear that the first set of schemes, i.e., IDW, Kriging, and TPS, performed 
the worst and had a larger RMSE, and the third set of schemes (3DKriging and 3DTPS) reduced the 
RMSE value due to the consideration of terrain elevation. With the addition of the GPT2w model, 
RMSE values were reduced again and the corresponding schemes achieved the best performance. 
The median value of all interpolation schemes on each day is also represented by the dotted blue line 
in each bin, which highlights the difference between the interpolation schemes. It separates the 
schemes by adding the GPT2w model from the schemes that are not added, showing the 
improvement of the GPT2w model for PWV interpolation. Additionally, as the figures of MAE and 
CRE are similar to the RMSE, they are not repeated here. 

 

Figure 4. RMSE of different interpolation schemes on each day for station cross-validation. 

The map of the station RMSE (Figure 5) shows that the ten interpolation schemes performed 
quite nonuniformly all over the study area. The maps of the station MAE and CRE are not shown in 
this paper due to their similarities with RMSE. For each interpolation scheme, the station with the 
largest RMSE always appeared at HKNP, which had the highest elevation and was clearly outside 
the elevation range of other stations that can be seen from Figure 2. This demonstrates that the 
elevation has an important influence on the accuracy of PWV interpolation. It is particularly visible 
that the graphs on the right side of Figure 5, representing the PWV interpolation schemes with the 
addition of the GPT2w model, showed the improved RMSE of all stations compared to the graphs on 
the left without adding the GPT2w model. 
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Figure 5. Map showing RMSE at the 12 stations for the 10 interpolation schemes in rainy weather 
condition. (a) IDW, (b) IDW-GPT2w, (c) Kriging, (d) Kriging-GPT2w, (e) 3DKriging, (f) 3DKriging-
GPT2w, (g) TPS, (h) TPS-GPT2w, (i) 3DTPS, (j) 3DTPS-GPT2w. 

Comparing (c) with (e), namely Kriging and 3DKriging, it was found that the interpolation 
scheme that only considered the elevation could also improve the PWV interpolation accuracy of 
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most stations, but the improvements of some stations were not significant, especially station HKNP. 
When HKNP was regarded as the interpolation station, its elevation was not within the elevation 
range of the other 11 reference stations, and the difference was large. Thus, even if the 3DKriging 
scheme takes into account the influence of the elevation, the 11 reference stations cannot provide a 
sufficiently reliable reference on the elevation to the HKNP station and the improvement of the 
interpolation accuracy may not be much. This can also be proven by another phenomenon, that is, 
the accuracy improvement of the HKST station. As can be seen from Figure 2, HKST is the second 
highest station, and its elevation is very different from most other stations, so the Kriging 
interpolation scheme had poor accuracy. When 3DKriging was used, the elevation of HKST was 
included in the range of the reference station elevations, so there was a significant improvement in 
accuracy. It is conceivable that if there are other stations with elevations similar to that of HKST as 
the reference stations, that the improvement would be even greater. Similarly, if there is a station 
with an elevation higher than HKNP added as a reference station, the 3DKriging can perform better 
on station HKNP. For stations HKNP and HKST, the improvement of RMSE was 0.83/2.73 mm, from 
5.98/4.83 mm for the Kriging scheme to 5.15/2.10 mm for 3DKriging. The above discussion indicates 
that the 3DKriging scheme relies heavily on the selection of the reference stations to improve the 
interpolation accuracy, and requires the elevation range of the reference stations to cover the 
elevation of the interpolation station as much as possible. In addition, the 3DTPS scheme also had the 
same problems. Thus, it can be concluded that the 3DKriging and 3DTPS scheme offer only slight 
improvements on PWV interpolation, when the range of the reference stations has insufficient 
coverage or the elevation of the interpolation station is special, like station HKNP. This is the biggest 
problem with traditional interpolation algorithms that take into account the impact of elevation. 

As can be seen from the graphs on the right side of Figure 5, the above problem was well solved 
for the interpolation schemes that added the GPT2w model. For station HKNP, the improvement to 
RMSE was 4.40 mm from 5.98 mm for the Kriging scheme to 1.58 mm for the Kriging-GPT2w scheme, 
and was 2.89 mm from 4.34 mm from the TPS scheme to 1.45 mm for the TPS-GPT2w scheme. 
Additionally, it is clear that the addition of the GPT2w model not only improved the accuracy of the 
interpolation station with special elevation, but also had a better performance on all other stations 
when compared with the traditional schemes that only considered the effect of elevation (3DKriging 
and 3DTPS). For (d) and (f), that is, the Kriging-GPT2w and the 3DKriging-GPT2w schemes, their 
interpolation accuracy was similar, and the Kriging-GPT2w was slightly better than the 3DKriging-
GPT2w at each station, of which the improvement was around 0.1 mm. This was also the case for the 
TPS-GPT2w and 3DTPS-GPT2w schemes. As mentioned in the previous section, multiple 
introductions of the elevation information in the interpolation can make the result worse. However, 
for the difference between each station, more research on the algorithm itself needs to be done in the 
future such as the assignment of the elevation weighting factors to explain the above phenomenon in 
more detail. 

4.2. Grid Data Validation 

As noted earlier, we used the ECMWF gridded data to evaluate the ability of each interpolation 
scheme in producing accurate grid estimates. In the research region, 25 grid points with the resolution 
of 0.125°*0.125° were selected, ranging from 113.875° to 114.375° for longitude and from 22.125° to 
22.625° for latitude. The geopotential height of the grid points was included in the ECMWF data, and 
converted to the geometric height before interpolation [41]. As with the station cross-validation, we 
calculated the skill scores between the interpolated grid values and the ECMWF gridded data (as 
reference data). The summaries of the performance evaluation of different interpolation schemes are 
listed in Table 2. Overall, the skill scores were similar for grid data validation and station cross-
validation. The third set of interpolation schemes that considered elevation effects (3DKriging and 
3DTPS) was better than those of the first set without consideration (Kriging and TPS). All of the 
interpolation schemes that added the GPT2w model could improve the interpolation accuracy 
accordingly. However, there were some differences with the station cross-validation. For example, 
the Kriging-GPT2w scheme obtained the first rank instead of the TPS-GPT2w scheme, and the rank 
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of the IDW-GPT2w scheme dropped. This demonstrates that the best performing interpolation 
scheme, after adding the GPT2w model, could be affected by the specific experimental conditions. 
This is similar to the situation without considering the GPT2w model in the previous study [42–45]. 
In addition, the skill scores of all schemes in the grid data validation were higher than in the station 
cross-validation, whether they were MAE, RMSE, or CRE. This is mainly due to the overall difference 
in the PWV obtained from the ECMWF gridded data and derived from the GNSS data. 

Table 2. Summary of the performance evaluation of different interpolation schemes for grid points 
comparison with the ECMWF data. 

Method MAE # RMSE # CRE # 
 [mm]  [mm]  [-]  

IDW 2.459 8 2.965 8 0.462 8 
IDW-GPT2w 1.640 4 2.064 5 0.193 5 

Kriging 2.537 9 3.022 9 0.472 9 
Kriging-GPT2w 1.470 1 1.791 1 0.141 1 

3DKriging 1.820 6 2.192 6 0.217 6 
3DKriging-GPT2w 1.587 2 1.895 2 0.160 2 

TPS 2.873 10 3.310 10 0.693 10 
TPS-GPT2w 1.620 3 1.929 3 0.166 3 

3DTPS 1.978 7 2.373 7 0.248 7 
3DTPS-GPT2w 1.699 5 2.007 4 0.181 4 

 
Figure 6. Histogram of RMSE at 25 grid points for the 10 interpolation schemes. 

To intuitively display the interpolation results in the grid points validation, the histogram of 
RMSE at 25 grid points for the 10 interpolation schemes is shown in Figure 6. The five pillars in the 
south of each grid point, representing the schemes that added the GPT2w model, are shorter than the 
corresponding five pillars to the north, which indicates that the addition of the GPT2w model can 
improve the interpolation accuracy at all grid points. Some other trends are the same as those in Table 
2. Moreover, it was found that all of the interpolation schemes performed slightly worse at the grid 
points at the boundary of the study area, which is related to their being away from the reference 
stations. 
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5. Conclusions 

In this paper, to analyze the improvement of PWV interpolation results after adding the GPT2w 
model, three types of interpolation algorithm, i.e., IDW, Kriging and TPS, were selected to construct 
10 interpolation schemes. The station cross-validation and grid data validation were conducted in 
Hong Kong and the performance of different schemes was evaluated by several skill scores. 

There exist differences in the PWV interpolation results of various weather conditions, which 
has little relationship with the interpolation scheme, and mainly depends on the stability of the PWV 
in the research region during the experimental period. This is the reason why the interpolation results 
of various schemes on rainless days are worse than on rainy days.  

It was demonstrated that the addition of the GPT2w model can improve the PWV interpolation 
accuracy for each interpolation algorithm. However, it is best to add the model to the original 
interpolation algorithm, that is, the algorithm that ignores the impact of elevation, instead of the 
3DKriging and 3DTPS. Since the initial PWV estimated by the GPT2w model is based on coordinate 
information of the interpolation point, the influence of elevation on the PWV was included. The 
introduction of the elevation factor again during the interpolation algorithm may bring additional 
errors, which is fully reflected in our experiment. 

In some special cases such as station HKNP, whose elevation is far from the elevation range of 
reference stations, it was difficult for the reference stations to provide sufficient and reliable 
interpolation information in elevation direction, which is the restriction of the traditional 
interpolation algorithms. These deficiencies can be compensated by the GPT2w model, which 
estimates the initial PWV based on the elevation of the interpolation station. The PWV residual, a 
part of the PWV that is not related to the elevation, is then interpolated by the interpolation 
algorithms without considering the elevation range of the reference stations. It was proven in this 
paper that the addition of the GPT2w model can improve the PWV interpolation accuracy at any 
position. 

Grid data validation was carried out in our experiment and its skill scores were slightly worse 
than those of the station cross-validation due to the overall difference in the ECMWF PWV and GNSS 
PWV. However, a good improvement in interpolation accuracy could be seen after adding the 
GPT2w model. This means that the schemes proposed in this paper can provide a more accurate 
value of PWV interpolation to the InSAR atmospheric calibration in the follow-up study. In addition, 
a more accurate conversion model for water vapor pressure and PWV should be studied in the future.  
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