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Abstract: Microwave-based satellite soil moisture products enable an innovative way of estimating
rainfall using soil moisture observations with a bottom-up approach based on the inversion of the soil
water balance Equation (SM2RAIN). In this work, the SM2RAIN-CCI (SM2RAIN-ASCAT) rainfall data
obtained from the inversion of the microwave-based satellite soil moisture (SM) observations derived
from the European Space Agency (ESA) Climate Change Initiative (CCI) (from the Advanced
SCATterometer (ASCAT) soil moisture data) were evaluated against in situ rainfall observations under
different bioclimatic conditions in Brazil. The research V7 version of the Tropical Rainfall Measurement
Mission Multi-satellite Precipitation Analysis (TRMM TMPA) was also used as a state-of-the-art rainfall
product with an up-bottom approach. Comparisons were made at daily and 0.25◦ scales, during
the time-span of 2007–2015. The SM2RAIN-CCI, SM2RAIN-ASCAT, and TRMM TMPA products showed
relatively good Pearson correlation values (R) with the gauge-based observations, mainly in the Caatinga
(CAAT) and Cerrado (CER) biomes (R median > 0.55). SM2RAIN-ASCAT largely underestimated
rainfall across the country, particularly over the CAAT and CER biomes (bias median < −16.05%),
while SM2RAIN-CCI is characterized by providing rainfall estimates with only a slight bias (bias median:
−0.20%), and TRMM TMPA tended to overestimate the amount of rainfall (bias median: 7.82%).
All products exhibited the highest values of unbiased root mean square error (ubRMSE) in winter (DJF)
when heavy rainfall events tend to occur more frequently, whereas the lowest values are observed in
summer (JJA) with light rainfall events. The SM2RAIN-based products showed larger contribution
of systematic error components than random error components, while the opposite was observed for
TRMM TMPA. In general, both SM2RAIN-based rainfall products can be effectively used for some
operational purposes on a daily scale, such as water resources management and agriculture, whether
the bias is previously adjusted.
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1. Introduction

Rainfall is a critical component of the global water cycle [1,2] and is crucial for a wide
range of applications such as crop modeling, hydrometeorology, water resources management,
flood and drought monitoring, and climatological applications [3–6]. Rainfall data from ground
stations have been conventionally used to provide local estimates of rainfall amounts [7,8], but their

Remote Sens. 2019, 11, 1113; doi:10.3390/rs11091113 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-3356-602X
https://orcid.org/0000-0003-2414-2911
http://dx.doi.org/10.3390/rs11091113
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/9/1113?type=check_update&version=2


Remote Sens. 2019, 11, 1113 2 of 28

limited spatial representativeness, inhomogeneous distribution and high maintenance costs constrain
their applicability at the global scale [3,9–11]. Nevertheless, in the last three decades, the development of
remote sensing technology is opening new perspectives for estimating rainfall data from space [12–14],
especially over areas where measurements are scarce, such as deserts [15], forests [16], oceans [17],
and high-altitude regions [18].

The satellite rainfall estimates are mainly derived from thermal infrared (IR) sensors onboard
geosynchronous earth orbit (GEO) satellites, and passive and active microwave (MW) sensors
onboard low-earth orbit (LEO) satellites [19,20]. Some rainfall products combine IR- and MW-based
estimates, thus taking advantage of the high temporal resolution of IR platforms and the better
accuracy in rainfall estimation of MW sensors [21]. Examples include the near-real-time Tropical
Rainfall Measurement Mission Multi-satellite Precipitation Analysis (TRMM TMPA 3B42RT, [22]),
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN, [23]), the Climate Prediction Center MORPHing technique (CMORPH, [24]), the Climate
Hazards Group InfraRed Precipitation with Station (CHIRPS, [25]), among others. More recently,
the Multi-Source Weighted-Ensemble Precipitation (MSWEP) product exploits a range of data sources,
including gauge, satellite, and reanalysis data to provide more reliable rainfall estimates at the global
scale [26]. These state-of-the-art rainfall products adopt different methods to retrieve rainfall through
a top-down approach, which is based on the inversion of the atmospheric signals scattered or emitted
by atmospheric hydrometers [27].

A novel approach for rainfall estimation using in situ soil moisture (SM) measurements
and satellite-based SM estimates was proposed by Brocca et al. [28], who used SM data to obtain
a direct estimate of rainfall by inverting the soil-water balance Equation (i.e., bottom-up approach).
For this purpose, rainfall is computed from knowledge of the SM state and its variation in time utilizing
an algorithm called SM2RAIN. The SM2RAIN algorithm has been applied on a local scale with in situ
observations [28,29] and on a regional/global scale with satellite data [3,27,30–33] showing promising
results. SM2RAIN has also been blended with state-of-the-art rainfall products (i.e., top-down
approach) for obtaining more accurate and reliable rainfall products in Australia [33] and Italy [14].
Currently, the SM2RAIN-based products are receiving more and more attention, as confirmed by several
projects funded by the European Space Agency (ESA), European Organization for the Exploitation of
Meteorological Satellites (EUMETSAT), and National Aeronautics and Space Administration (NASA)
on this topic [34,35].

In early 2017, the ESA CCI SM v03.2 dataset was released by the European Space Agency
Climate Change Initiative (ESA-CCI) project. This dataset was obtained by merging SM retrievals
from both active and passive MW instruments carried by various satellite platforms and provided
daily SM estimates on a global scale [36,37]. This then allowed Ciabatta et al. [32] to develop
a global-scale rainfall dataset by applying the SM2RAIN algorithm to the ESA-CCI SM products
to obtain the rainfall estimate at 0.25◦ and daily spatial-temporal resolution (hereinafter referred to
as SM2RAIN-CCI). SM2RAIN-CCI showed reasonable performance when the five-day accumulated
rainfall data and the Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product were
compared [32]. Similarly, other datasets were obtained by the application of the SM2RAIN algorithm
to three surface soil moisture (SSM) products derived from the Advanced SCATterometer (ASCAT),
Soil Moisture and Ocean Salinity (SMOS), and Advanced Microwave Scanning Radiometer for
Earth Observing System (AMSR-E) [27]. ASCAT is a scatterometer operating at 5.255 GHz (C-band,
VV polarization) onboard MetOp A, B, and C satellites, which constitute the space segment of
the EUMETSAT Polar System (EPS) [38]. The ASCAT-derived rainfall product (hereinafter referred to
as SM2RAIN-ASCAT) was found to be more accurate in terms of Pearson correlation (R), root mean
square error (RMSE), and detection of rainfall events, with performance similar to the TRMM
TMPA 3B42RT rainfall product [27].

The studies mentioned above highlighted that the SM2RAIN-based rainfall products can provide
relatively reliable rainfall estimates. Nevertheless, they have received little attention in Brazil [30],
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whereas several studies assessed rainfall products based on a top-down approach for operational
hydrologic, climatic, and meteorological applications. For example, Melo et al. [39] evaluated
the quality of the TRMM TMPA 3B42V6 and 3B42V7 products on a daily and monthly basis by
comparing them with gridded ground-based rainfall data distributed in Brazil. TRMM TMPA combines
rainfall estimates retrieved from passive MW and thermal IR observations from multiple satellite
sensors with radar data from TRMM [12,22]. They found that TRMM TMPA performed poorly
in coastal areas of Northeast Brazil (NEB), but exhibited good performance in its semiarid zone.
In this same region, the monthly rainfall estimates from the CHIRPS product were compared with
ones from the rain gauges’ data [15]. CHIRPS blends satellite and gauge rainfall estimates using
inverse-error weighted averaging to produce an unbiased estimate [25,40]. According to these authors,
CHIRPS data correlate well with observations, but tend to overestimate low and underestimate
high rainfall values. On the other hand, CHIRPS achieves better results during the wet season,
but its ability for rain detection is reduced. Similar results are reported by Nogueira et al. [41],
who applied a comparison and validation among rainfall estimates derived from the Eta/CPTEC
(Centro de Previsão de Tempo e Estudos Climáticos) model, the 3B42V7-TRMM and CHIRPS products,
and the rainfall data from the INMET (National Institute of Meteorology) meteorological stations located
in the south-southeast sub-region of the NEB. The authors pointed out that CHIRPS, 3B42V7-TRMM,
and the Eta model show relatively good results in terms of correlation coefficient (0.88 ≤ R ≤ 0.98
for CHIRPS, R ≥ 0.90 for 3B42V7-TRMM, and 0.69 ≤ R ≤ 0.94 for Eta). Concerning the RMSE,
3B42V7-TRMM presented values between 9.51 mm and 17.33 mm (the best performance). For CHIRPS,
this metric varied from 10.25 mm and 21.85 mm, while the Eta model showed values between
37.45 mm and 93.47 mm (the worst performance). Unlike rainfall products based on a top-down
approach, only two studies analyzed the SM2RAIN-CCI v1.0 product. Paredes-Trejo et al. [30] showed
that for the NEB, this product provides the best performance in terms of Pearson correlations over
the Cerrado biome, but fails in the estimation of the amount of rainfall under extreme moisture
conditions. Souto et al. [42] presented similar results for the São Francisco River basin in Brazil.

The different references described above indicate that a study investigating the performance of
the SM2RAIN-based rainfall products, including their range of applicability and their limitations
across all of Brazil, is still needed. Thus, the objective of this study is to evaluate the capabilities
of the SM2RAIN-CCI and SM2RAIN-ASCAT rainfall products in entire Brazil, using high-quality
ground-based observations as a benchmark. The rationale behind the choice of these two products
is related to their novel approach (bottom-up), good spatial-temporal coverage (global and daily),
and that they were both very recently updated [43,44]. Another innovation of this research is that
the analysis was performed under different bioclimatic conditions determined by the main biomes in
Brazil (i.e., Amazon Forest, Cerrado, Atlantic Forest, Caatinga, Pantanal, and Pampa).

2. Materials and Methods

2.1. Study Area

The study was carried out over the continental region of Brazil, which is located between
5.2◦N–33.7◦S and 34.7–74◦W, occupying an area of about 8,515,759 km2. It has more than 207 million
inhabitants and a human population density of about 22 inhabitants per square kilometer [45]. It is
characterized by a vast range of biodiversity, landscapes, topography, climates, and rainfall regimes,
with the mean annual rainfall ranging from ~400 to >2000 mm/year (Figure 1). The main biomes of
Brazil are Amazônia (Amazon Forest), Cerrado, Mata Atlântica (Atlantic Forest), Caatinga, Pantanal,
and Pampa; hereinafter AMZ, CER, MAT, CAAT, PTN, and PMP, respectively.

The AMZ biome is a moist broadleaf forest, which comprises the largest and most biodiverse
tract of tropical rainforest in Brazil and is characterized by the highest rainfall regime [46]. The CER
biome is a vast tropical savanna. Its main habitats are forest savanna, wooded savanna, park savanna,
gramineous-woody savanna, savanna wetlands, and gallery forests [47]. The MAT biome extends along
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the eastern coastal strip, and groups the seasonal moist and dry broad-leaf tropical and subtropical
grasslands, savannas, shrublands, and mangrove forests [48]. The CAAT biome is characterized by
a mosaic of seasonally dry tropical forests and thorn scrubs [49,50], with the lowest rainfall regime [51].
The PTN biome is a sedimentary basin dominated by a combination of mesic and xeric vegetation
growing side by side due to seasonal flooding [52]. The PMP biome consists of large areas of natural
grasslands with a floristic matrix composed of forest formations interspersed along the watercourses [53].
Table 1 summarizes other characteristics of the Brazilian biomes, whereas the rainfall regime for each
is shown in Figure 2. The spatial distribution of such biomes is strongly linked to the spatiotemporal
variability of rainfall [54–56] (see Figure 1a,d). Consequently, in this study, they are selected
as benchmark areas to investigate the performances of the SM2RAIN-CCI and SM2RAIN-ASCAT
rainfall products under different bioclimatic conditions.
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Figure 1. Geographical location of the study area: (a) Brazil’s main biomes: AMZ, Amazônia; CER, Cerrado;
MAT, Mata Atlântica; CAAT, Caatinga; PTN, Pantanal; and Pampa, PMP. (b) Land cover for 2015 derived
from the Land Cover-Climate Change Initiative (LC-CCI) product (source: http://maps.elie.ucl.ac.be/CCI) [57].
(c) Brazil’s terrain elevation. Elevation based on 250-m Digital Elevation Model—Shuttle Radar Topographic
Mission (DEM-SRTM) images (source: https://earthexplorer.usgs.gov) [58]. (d) Mean annual rainfall derived
from ground-based gridded rainfall dataset developed by Xavier et al. [59] (period: 1980–2015).

Table 1. Main characteristics of the biomes in Brazil: Area (km2), median elevation (meters above sea level,
m a.s.l.), dominant land cover/use (name and %), mean annual rainfall (MAR), and wettest trimester.

Biome Area
(km2/1000) *

Median Elevation
(m a.s.l.) **

Dominant Land Cover/Use 1

(Name/%)
MAR 2

(mm)
Wettest

Trimester 3

AMZ 4094 176 Forest/82% 2215 JFM
CER 2089 504 Agriculture/43% 1400 DJF
MAT 1166 550 Agriculture/40% 1457 DJF

CAAT 825 418 Agriculture/36% 639 FMA
PTN 156 127 Forest/25% 1145 DJF
PMP 186 152 Agriculture/41% 1433 SON

1 Derived from the LC-CCI product shown in Figure 1b; 2,3 Calculation based on the ground-based gridded rainfall
dataset developed by [59] (period: 1980–2015). * for instance, 4094 is equivalent to 4,094,000 km2; ** a.s.l. = above
sea level.

http://maps.elie.ucl.ac.be/CCI
https://earthexplorer.usgs.gov
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annual rainfall amount (>2000 mm/year), while the CAAT biome receives on average <700 mm/year 
(see Table 1). 

Figure 2. Boxplots for the mean monthly rainfall estimated from ground-based gridded rainfall
dataset developed by Xavier et al. [59] over the biomes: (a) AMZ; (b) MAT; (c) CER; (d) CAAT;
(e) PTN; and (f) PMP during the period 1980–2015. The center line of each boxplot depicts the median
value (50th percentile), and the box encompasses the 25th and 75th percentiles of the sample data.
The whiskers extend from q1 − 1.5 × (q3 − q1) to q3 + 1.5 × (q3 − q1), where q1 and q3 are the 25th
and 75th percentiles of the sample data, respectively.

The AMZ biome is characterized by prevailing convective rainfall, which is related to the position
of the Intertropical Convergence Zone (ITCZ) in the year [60,61]. The position of the ITCZ also plays
an important role in most of the CER, CAAT, and MAT biomes, defining the rainy season in those
biomes (see Figure 2). In this region, higher rainfall rates occur along the eastern coastal strip, due to
the contrast in air temperature over the ocean and continent. However, the rainfall regime is mainly
controlled by the orographic effect, resulting in orographic rainfall on the east side and limiting
rain from reaching the semiarid region [39,62] (see Figure 1d). Over the PTN and PMP biomes in
Southern NEB, and most of the Southern MAT and CER biomes, the Front Systems and the South
Atlantic Convergence Zone (SACZ) is active [63,64]. Moreover, the El Niño–Southern Oscillation
(ENSO) phenomenon and mesoscale convective systems and frontal systems over the Southern Atlantic
Ocean are primarily responsible for interannual variations of the rainfall in Brazil [65,66]. All factors
mentioned above contribute to the fact that the AMZ biome receives the highest annual rainfall amount
(>2000 mm/year), while the CAAT biome receives on average <700 mm/year (see Table 1).
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2.2. Rainfall Datasets

2.2.1. Ground Observation Dataset

A grid with a spatial resolution of 0.25◦ × 0.25◦ of daily rainfall developed by Xavier et al. [59] using
in situ rainfall observations (>9200 rain gauges; time coverage: 1980–2015) provided by the Brazilian
Water Agency (ANA), the National Institute of Meteorology (INMET) and the Water and Electric
Energy Department of São Paulo state (DAEE), was used (version 2.2 released on February 2018
and available at [67]); hereinafter GBGR (see Figure 1d). The procedure to generate the GBGR
dataset involved a quality control check, in which rainfall data exceeding 450 mm/day and less
than 0 mm/day were eliminated, and as well as rain gauge data that was duplicated. To create this
dataset, Xavier et al. [59] tested six different methods to interpolate rainfall throughout the period
1980–2015: angular distance weighting (ADW), inverse-distance weighted (IDW), average inside
the area of each grid of 0.25◦ × 0.25◦, thin plate spline, natural neighbor, and ordinary point kriging.
Among them, they verified using cross-validation analysis that the ADW interpolation scheme was
superior to the others. The ADW method used two weights: one based on the correlation decay
distance (CDD) and the other based in the position of the rain gauges concerning the query point
where the estimate is desired [59,68]. The choice to use this dataset was driven by its full availability
during the period of analysis (i.e., 2007–2015) and the high quality of rainfall data [69]. However, it is
not a completely independent dataset [70]; this is because the rainfall observations from the GBGR
dataset could have been partially used in the calibration step of SM2RAIN-CCI [32] and TRMM
TMPA [41], but not for SM2RAIN-ASCAT [44]. For more details about the GBGR product, the reader is
referred to [69].

2.2.2. SM2RAIN-CCI Rainfall Product

The SM2RAIN algorithm proposed by Brocca et al. [28] is based on the inversion of the soil-water
balance equation for retrieving rainfall from soil moisture data. It assumes that during rainfall,
the evapotranspiration rate and the surface runoff are negligible [27,29]. In this context, a simplified
version of the soil-water balance equation is formulated as follows:

p(t) = Z∗
ds(t)

dt
+ a.s(t)b (1)

where p(t) is the estimated rainfall between two successive SM retrievals for the time step dt
(L/T), Z* represents the water capacity of the soil layer (L), s(t) denotes the relative soil saturation
(dimensionless), t is the time (t), and a and b are two parameters describing the nonlinearity between
soil saturation and drainage. The parameters a, b, and Z* are estimated through calibration [32].
More information about the SM2RAIN algorithm can be found in Brocca et al. [29].

The SM2RAIN-CCI product was obtained by applying the SM2RAIN algorithm separately to
the ESA CCI soil moisture active and passive products. Then, an integration procedure based on
a weighted average is applied to obtain the accumulated rainfall between 00:00 and 23:59 UTC of
the indicated day. The quality flag provided within the raw soil moisture observations (i.e., ESA CCI
SM v3.2) is used to mask out low-quality data and those observations characterized by issues in retrieval
(e.g., frozen soil, snow-dominated regions, dense vegetation, and high topographic complexity). For this
product, the SM2RAIN algorithm was calibrated during the 1998–2001, 2002–2006, and 2007–2013
periods against the GPCC-FDD gauge-based product by minimizing the RMSE between the five-day
estimated rainfall and the GPCC-FDD data on a pixel-by-pixel basis [32]. The use of different calibration
periods relies on the various data and sensors that have been used for building the active and passive
SM datasets. In this study, the SM2RAIN-CCI product (version 2.0 released in July 2018; source: [43]),
available from 1 January 1998 to 31 December 2015 at a daily timescale and spatial resolution of 0.25◦,
was used (Ciabatta et al. [32], for more details).
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2.2.3. SM2RAIN-ASCAT Rainfall Product

The SMRAIN-ASCAT rainfall product was obtained through the inversion of ASCAT soil moisture
observations via SM2RAIN, but unlike to SM2RAIN-CCI, the Medium-Range Weather Forecasts (ERA5)
reanalysis data has been used for its calibration and bias correction [44,71]. The surface soil moisture data
were derived by backscattering retrievals from the ASCAT sensor onboard the MetOp-A and MetOp-B
satellites using the TU Wien soil moisture retrieval algorithm [38]. This surface soil moisture
data is distributed within the EUMETSAT Satellite Application Facility on Support to Operational
Hydrology and Water Management project (H-SAF, http://hsaf.meteoam.it/), which are denoted as H113
(temporal coverage: 2007–2017) plus H114 (only 2018) products [35,72]. In this study, the SM2RAIN-ASCAT
product (version 1.0 released in March 2019), disseminated over an irregular grid at 12.5 km on a global scale
with a temporal coverage from January 2007 to December 2018 (source: [43]), was used. Further details of
SM2RAIN-ASCAT can be found in Brocca et al. [44].

2.2.4. TRMM TMPA Rainfall Product

In this study, the TRMM Multi-satellite Precipitation Analysis rainfall product (TRMM 3B42 v7,
hereinafter referred to as TRMM TMPA) provided by National Aeronautics and Space Administration
(NASA) Goddard Space Flight Center (GSFC) and available at [73] was used. It has a spatial resolution
of 0.25◦ (~25 km at the equator) for the ±50 latitude bands every 3 h with a temporal coverage
from January 1998 to present (released in July 2011). The TRMM TMPA product was derived
from the combination of rainfall estimates based on observations in the microwave and infrared
channels obtained by satellites. These multi-satellite estimates were computed using re-analyzed
rainfall data from the GPCC-FDD dataset [39,41] (Huffman et al. [22] for more details). The selection
of this product was motivated by the fact that some studies in Brazil have recognized to TRMM
TMPA as a state-of-the-art rainfall product [39,41,74].

2.3. Dataset Pre-Processing

The SM2RAIN-CCI, SM2RAIN-ASCAT, and TRMM TMPA rainfall products were clipped using
a shapefile of Brazil as a mask. To harmonize the datasets, the SMRAIN-ASCAT rainfall product has
been resampled via the nearest neighbor algorithm over the 0.25◦ GBGR grid by considering at least
five pixels from the 12.5 km SMRAIN-ASCAT grid around each GBGR pixel [35].

2.4. Performance Evaluation Methods

Figure 3 summarizes the methods of analysis applied in this study. Because of the different
time durations of the considered satellite products and the GBGR dataset, the performance of each
satellite rainfall product is only assessed during 2007–2015 (i.e., common period). To perform a fair
intercomparison, the SM2RAIN-ASCAT and TRMM TMPA rainfall products were previously masked
with the same mask of SM2RAIN-CCI, resulting 6293 common pixels over which the scores were
computed (12.11%, 17.02%, 40.71%, 23.33%, 3.67%, and 3.16% are located in AMZ, CAAT, CER, MAT,
PMP, and PTN, respectively). As can be seen in Figure 3, to examine the spatial consistency of
the three satellite rainfall products over Brazil, an intercomparison of daily rainfall estimates derived
from SM2RAIN-CCI, SMRAIN-ASCAT, and TRMM TMPA with estimates from the GBGR dataset has
been carried out (first step in Figure 3). Secondly, a comparative analysis on the seasonally and monthly
time scales using continuous and categorical metrics with the GBGR dataset as a benchmark was made
over different bioclimatic conditions to determine whether the effects of bioclimatic conditions on
performance varied regionally (second step in Figure 3). Finally, we assessed systematic and random
error components of the SM2RAIN-CCI, SMRAIN-ASCAT, and TRMM TMPA rainfall products through
a decomposition technique (third step in Figure 3).

http://hsaf.meteoam.it/
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In this study, the meteorological seasons were defined for the northern hemisphere.
However, the meteorological seasons for Brazil are winter instead of summer, spring instead of autumn,
summer instead of winter and autumn instead of spring due to its location in the southern hemisphere.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 28 
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Figure 3. Flowchart of the summarized research design and method.

Four continuous metrics were used to measure how the value of estimates from the SM2RAIN-CCI,
SMRAIN-ASCAT, and TRMM TMPA products differed with the value of the GBGR dataset. These metrics
were based on a pair-wise comparison to evaluate the performance of each product in estimating rainfall
amounts derived from the GBGR dataset on a pixel-to-pixel basis. The Pearson correlation coefficient
(R), root mean square error (RMSE), unbiased root mean square error (ubRMSE), and bias (B) were
considered in this study, whose equations are outlined in Table 2. R measures the linear relationship
strength between estimations and observations, varying from −1 to 1, with the best score equal to 1.
The RMSE, ubRMSE, and B metrics measure how the value of estimates differs from the observed value.
RMSE and ubRMSE acquire only positive values, with lower values corresponding to better performance.
B can take any negative or positive value, with a perfect score equal to 0. Positive B values indicate
an overestimation, while negative ones indicate an underestimation [21,70].
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Table 2. Formulas of continuous metrics, where G: GBGR-based rainfall measurement (mm/day),
G: average GBGR-based rainfall measurement (mm/day), C: product-based rainfall estimate (mm/day),
C: average product-based rainfall estimate (mm/day), and N: number of data pairs (dimensionless).
The rainfall products are SM2RAIN-CCI and SMRAIN-ASCAT.

Name Formula Perfect Score

Pearson correlation coefficient R =
∑
(G−G)(C−C)√

(G−G)
2
√
(C−C)

2 1

Root mean square error RMSE =
√

1
N
∑
(C−G)2 0

Unbiased root mean square error ubRMSE =
√

RMSE2
− B2 0

Bias B =
∑
(C−G)∑

G 0

In this study, the total mean square error (MSE) in the satellite rainfall estimates is separated
into systematic (MSEs) and random error (MSEr) components based on the method proposed by
AghaKouchak et al. [75], whose equations are:

MSE = MSEr + MSEs (2)

MSEr =

N∑
i=1

(
Ci −C∗i

)2

N
(3)

MSEs =

N∑
i=1

(
C∗i −Gi

)2

N
(4)

C∗i = a×Gi + b (5)

where for N discrete points in time, Ci is the satellite estimate (mm/day) and Gi represents
gauge-based rainfall (mm/day). The daily time series of Ci

* (mm/day) in Equations (3)–(5) is derived
from the satellite estimates least squares linearly regressed against the ground-based observation
at each grid. Therefore, in Equation (5), a is the offset and b is a scale parameter [76]. The contribution
of MSEs or MSEr to MSE is given by MSEs/MSE × 100% (MSEr/MSE × 100%) [3,75].

To examine the rain-detection capability of the SM2RAIN-CCI, SMRAIN-ASCAT, and TRMM
TMPA products, four categorical metrics were used with six rainfall thresholds (i.e., 1, 2, 5, 10, 15,
and 20 mm/day) to classify the intensity of rainfall events (i.e., rain/non-rain, light, light-moderate,
moderate, heavy-moderate, and heavy, respectively) on a pixel-to-pixel basis. The categorical metrics
used were: Probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), and bias
score (BS). These terms represent the ability of a rainfall product to detect observed rainfall events, taking
into account a threshold to differentiate the rainfall events from non-rainfall events at any time scale [15].
These metrics were derived from a contingency table in which the letters A–D represent, respectively, hits
(satellite estimates to occur, and did occur), false alarms (satellite estimates to occur, but did not occur),
missing (satellite estimates not to occur, but did occur), and correct negatives (satellite estimates not
to occur, and did not occur), with a rainfall threshold (see Table 3). The equations for these metrics
are listed in Table 4. POD and FAR indicate the fraction of the observed events that were correctly
forecasted and the fraction of the predicted events did not occur, respectively [76]. POD and FAR
vary from 0–1, with a perfect score equal to 1 and 0, respectively. CSI (also known as the threat score)
is the fraction between hits to all product-based events. The value varies from 0 ≤ CSI ≤ 1, with the best
score equal to 1 [75,77]. BS is the fraction of all product-based events that were correct. The BS value
ranges from 0 ≤ BS ≤ 1, and the best score is 1. For the sake of simplicity, these metrics are often depicted
through a Roebber’s diagram, which exploits the geometric relationship among POD, BS, CSI, and FAR
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to represent them in a single diagram [78]. For good forecasts, POD, 1–FAR, BS, and CSI approach unity,
such that a perfect performance lies in the upper right of the diagram [74].

Table 3. Contingency table for comparing gauge-based rainfall (GBGR) and satellite rainfall
(SM2RAIN-CCI, SMRAIN-ASCAT, and TRMM TMPA). Threshold: 1, 2, 5, 10, 15, and 20 mm/day.

Gauge ≥ Threshold Gauge < Threshold

Satellite ≥ Threshold A B
Satellite < Threshold C D

Table 4. Formulas of categorical metrics, where A: number of hits, B: number of false alarms, C: number
of misses, and D: number of correct negatives. N: number of events.

Name Formula Perfect Score

Probability of Detection POD = A
A+C 1

False Alarm Ratio FAR = B
A+B 0

Critical Success Index CSI = A
N 1

Bias Score BS = A+B
A+C 1

3. Results

3.1. Annual and Seasonal Mean Precipitation

Figure 4 shows the spatial distribution of the seasonal and annual climatic mean rainfall over
Brazil during 2007–2015. The ground-based rainfall shows distinctive seasonal variations. The rainfall
decreases from winter (mean areal rainfall, MAP: 7.12 mm/day) to summer (MAP: 2.15 mm/day)
and then increases in autumn (MAP: 3.68 mm/day). Some heavy rainfall spots with intensities over
11 mm/day in winter and spring are observed at the Amazon basin. High rainfall rates with intensities
above 8 mm/day in summer are located near the Venezuelan and Colombian borders at the upper
Negro and Branco rivers basin. Large rainfall spots with more than 6 mm/day in autumn can be seen
near the Peruvian and Colombian borders and over Southern Brazil at the Paraná River basin.

Visual inspection of Figure 4 reveals that the SM2RAIN-based and TRMM TMPA products are
relatively similar in reproducing the seasonal and annual rainfall patterns, particularly in summer.
Note that the blank area in most of the Amazon River basin in Figure 4 for the SM2RAIN-CCI rainfall
product is due to the use of a static mask to filter rainforest areas before applying the SM2RAIN
algorithm to the ESA CCI SM dataset [32,79].

The gauge-based data show that the annual daily mean rainfall over Brazil gradually decreases
from northwestern Brazil to northeastern Brazil (Figure 4a1). The annual daily mean rainfall over
8 mm/day (below 3 mm/day) is located in north and northwestern (northeastern) Brazil. As can be seen
in Figure 4, the three satellite precipitation products (SPPs) can capture the overall spatial distribution
of the gauge-based annual daily mean rainfall over Brazil, except over the AMZ biome where,
as mentioned above, SM2RAIN-CCI only provides rainfall estimates in the lowest part of the Negro,
Tapajó, Xingu, Tocantins, Mapuera, and Madeira rivers. The semiarid regions within the CAAT, CER,
and MAT biomes are accurately delimited by the SM2RAIN-CCI and TRMM TMPA rainfall products
(Figure 4b1,d1), whereas the SMRAIN-ASCAT rainfall product and the GBGR dataset are relatively
comparable in the AMZ biome (Figure 4c1).
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Figure 4. Spatial distribution of the seasonal and annual climatic mean rainfall in mm/day from: (a1–a5)
the GBGR dataset; (b1–b5) the SM2RAIN-CCI rainfall product; (c1–c5) the SM2RAIN-ASCAT rainfall
product; (d1–d5) the TRMM TMPA rainfall product during 2007–2015. The Brazilian biomes are shown
in Figure 1a. Whited cells in the panels from b1–b5 depict gaps due to the application of a static mask
used by the SM2RAIN-CCI product [32].

Figures 5 and 6 display the spatial distributions of the correlation coefficient (R) and bias (B)
obtained after the pixel-to-pixel comparison of SPPs against the gauge-based dataset for the 2007–2015
period, but only considering those common pixels (n = 6293). The R and B median values listed
in each subpanel were obtained by averaging R and B values from all-pixels over each biome via
median. The median values of R for the SM2RAIN-CCI (SM2RAIN-ASCAT; TRMM TMPA) product
are equal to 0.47, 0.51, 0.57, 0.43, 0.40, and 0.41 (0.55, 0.55, 0.60, 0.53, 0.43, and 0.49; 0.52, 0.59, 0.53,
0.50, 0.53, and 0.51) in the AMZ, CAAT, CER, MAT, PMP, and PTN biomes, respectively, on an annual
timescale. For the same timescale, the median values of B for the SM2RAIN-CCI (SM2RAIN-ASCAT;
TRMM TMPA) product are equal to −5.50%, 1.10%, −0.90%, 0.40%, −3.50%, and 1.80% (−5.60%,
−27.80%, −14.90%, −14.00%, −13.10%, and 5.90%; 3.90%, 11.30%, 6.00%, 5.80%, 9.70%, and 10.20%)
in the AMZ, CAAT, CER, MAT, PMP, and PTN biomes, respectively. As expected, both SM2RAIN-based
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rainfall products provide the lowest performance in terms of R and B in the PTN biome, likely due to
the high saturation of their soil throughout the year, which affects the estimation of rainfall via
SM2RAIN [32]. The TRMM TMPA data correlate well with observations (median R over 0.50), but it
tends to overestimate the amount of rainfall, particularly over the CAAT and PTN biomes (median R:
11.30% and 10.20%, respectively).Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 28 
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Figure 5. Pearson linear correlation derived from the SM2RAIN-CCI rainfall product against the GBGR
dataset, the SM2RAIN-ASCAT rainfall product against the GBGR dataset, and the TRMM TMPA rainfall
product against the GBGR dataset for: (a,b,c) annual; (d,e,f) winter; (g,h,i) spring; (j,k,l) summer;
and (m,n,o) autumn during 2007–2015. Whited cells in the panels are as per Figure 4. For each product
and season, the median value per biome is reported.

From Figure 5, the R mean values for SM2RAIN-CCI (SM2RAIN-ASCAT; TRMM TMPA) in winter,
spring, summer, and autumn are 0.40, 0.39, 0.34, and 0.43 (0.46, 0.46, 0.39, and 0.51; 0.47, 0.506, 0.47,
and 0.52), respectively. The B percentage mean values in Figure 6 for SM2RAIN-CCI (SM2RAIN-ASCAT;
TRMM TMPA) in winter, spring, summer, and autumn are 0.75%, 0.30%, −10.15%, and 0.30% (−12.30%,
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−14.50%, −22.15%, and −11.50%; 8.65%, 9.06%, 5.14%, and 8.30%), respectively. These first quantitative
results indicate that the SM2RAIN-ASCAT and TRMM TMPA rainfall products exhibit slightly closer
agreement with the gauge-based rainfall in terms of linear correlation compared to the SM2RAIN-CCI
product, mainly in the CAAT biome and autumn (R mean over 0.50 for SM2RAIN-ASCAT and TRMM
TMPA). From Figure 6, one can see that SM2RAIN-ASCAT tends to underestimate the seasonal daily
mean rainfall at all biomes, with the greatest magnitude of B over the CAAT biome in summer (B mean:
−34.70%). Unlike SM2RAIN-ASCAT, SM2RAIN-CCI shows values of B moderately near zero across
the country (i.e., perfect score), except in summer where the B median values for all points is equal
to −10.15%. TRMM TMPA tends to overestimate the seasonal daily mean rainfall at all biomes,
excepting the CAAT biome in summer, where the values of B reflect a moderate underestimation of
the rainfall amount (B mean: −7.40%).

A more detailed comparison, considering the land use/cover and elevation simultaneously
for an annual time scale, shows that the lowest R values for the SM2RAIN-CCI product are
observed at the non-vegetated regions with ≤141 m a.s.l. (e.g., Chapada das Mangabeiras in
the CAAT biome) and the wetland areas located between 142 and 438 m a.s.l. (e.g., Serra da
Mantiqueira in the MAT biome). SM2RAIN-ASCAT shows its lowest R values in the densely forested
regions with elevation between 741 and 994 m a.s.l. and those mosaic tree cover and shrub regions
located above 995 m a.s.l., while for the TRMM TMPA product those values were observed in mosaic
cropland regions located over 1277 m a.s.l. (Table 5). The highest R values for SM2RAIN-CCI
and TRMM TMPA are prevalent in the wetland regions above 740 m a.s.l., whereas SM2RAIN-ASCAT
exhibits its highest R values in the vegetation natural mosaics and rainfed-cropland regions
above 994 m a.s.l. It is interesting to remark that the lowest and negative B values for SM2RAIN-CCI
(i.e., the largest underestimation) are persistent in those landscapes dominated by the tree cover
regions regularly flooded located below 141 m a.s.l, while for SM2RAIN-ASCAT and TRMM TMPA are
observed in the sparse vegetation regions situated in lowland areas (below 438 m a.s.l). The highest
and positive B values (i.e., the largest overestimation) for SM2RAIN-CCI and TRMM TMPA are
frequent in areas characterized by the presence of non-vegetated areas and the tree cover regions
regularly flooded with an elevation below 141 m a.s.l. In contrast, SM2RAIN-ASCAT shows a low
frequency of positive B values (mainly in the tree cover regions regularly flooded).
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Figure 6. The percent bias derived from the SM2RAIN-CCI rainfall product against the GBGR dataset,
the SM2RAIN-ASCAT rainfall product against the GBGR dataset, and the TRMM TMPA rainfall product
against the GBGR dataset for: (a,b,c) annual; (d,e,f) winter; (g,h,i) spring; (j,k,l) summer; and (m,n,o)
autumn during 2007–2015. Whited cells in the panels are as per Figure 4. For each product and season,
the median value per biome is reported.
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Table 5. Median values of R and Bias against elevation and land use/cover for each rainfall product
at annual time scale.

R BIAS

Elevation Range 1 Land Cover/Use 2 CCI ASCAT TMRR CCI ASCAT TMRR

Very Low
(≤141 m a.s.l.)*

Bare Area 0.33 0.50 0.52 24.60 −19.05 −5.80
Forest 0.44 0.54 0.50 −5.60 −8.00 5.90

Grassland 0.46 0.54 0.50 −5.85 −18.50 2.70
Mosaic Cropland 0.47 0.54 0.52 −3.70 −14.40 5.30

Mosaic Natural Vegetation 0.46 0.52 0.52 −4.20 −14.30 5.30
Mosaic Tree and Shrub 0.46 0.54 0.53 −4.50 −10.70 3.80

Rainfed Cropland 0.50 0.55 0.51 −1.20 −11.80 6.60
Settlement 0.47 0.58 0.48 −6.15 −21.50 1.85
Shrubland 0.52 0.55 0.50 0.40 −11.20 8.10

Sparse Vegetation 0.38 0.51 0.55 7.30 −18.60 −0.50
Tree Cover Flooded 0.34 0.54 0.43 −11.70 −17.30 6.00

Tree Cover Flooded Saline 0.34 0.60 0.60 −16.80 −9.80 3.35
Water 0.40 0.49 0.53 −1.05 −5.55 3.75

Wetland 0.42 0.49 0.50 0.20 0.65 6.45

Low
(142–438 m a.s.l.)

Bare Area 0.49 0.55 0.61 18.60 −25.50 16.60
Forest 0.52 0.57 0.54 2.55 −14.00 10.55

Grassland 0.51 0.57 0.52 1.80 −19.05 5.05
Mosaic Cropland 0.53 0.57 0.54 −0.30 −18.90 5.30

Mosaic Natural Vegetation 0.50 0.55 0.56 −0.15 −20.95 7.10
Mosaic Tree and Shrub 0.52 0.58 0.52 1.50 −14.90 7.70

Rainfed Cropland 0.53 0.58 0.53 −0.80 −13.75 6.60
Settlement 0.51 0.58 0.51 −5.80 −8.50 3.60
Shrubland 0.55 0.59 0.53 1.50 −17.30 9.10

Sparse Vegetation 0.54 0.56 0.60 1.40 −48.60 −4.00
Tree Cover Flooded 0.49 0.53 0.55 41.30 7.60 22.90

Water 0.52 0.56 0.54 −1.95 −20.25 0.50
Wetland 0.33 0.50 0.50 1.70 −12.50 5.40

Medium
(439–740 m a.s.l.)

Forest 0.49 0.57 0.52 1.60 −14.60 8.15
Grassland 0.48 0.61 0.52 1.70 −16.80 6.00

Mosaic Cropland 0.55 0.62 0.54 −2.00 −16.90 7.40
Mosaic Natural Vegetation 0.57 0.62 0.56 0.25 −19.00 6.05

Mosaic Tree and Shrub 0.50 0.58 0.52 3.40 −14.50 9.10
Rainfed Cropland 0.57 0.62 0.55 −0.10 −16.65 6.60

Settlement 0.38 0.53 0.49 2.40 −18.10 5.00
Shrubland 0.60 0.64 0.57 0.00 −18.40 5.50

Water 0.60 0.63 0.56 −0.30 −28.35 1.90
Wetland 0.63 0.63 0.61 −1.10 −9.30 2.80

High
(741–994 m a.s.l.)

Forest 0.36 0.48 0.51 2.05 −10.30 9.65
Grassland 0.51 0.58 0.54 −0.30 −17.70 6.30

Mosaic Cropland 0.56 0.61 0.54 −0.85 −14.40 4.65
Mosaic Natural Vegetation 0.54 0.66 0.55 2.35 −15.85 4.25

Mosaic Tree and Shrub 0.53 0.63 0.52 0.05 −13.05 5.25
Rainfed Cropland 0.58 0.64 0.55 −0.30 −13.20 4.25

Settlement 0.53 0.65 0.58 8.80 −18.50 10.90
Shrubland 0.58 0.65 0.56 −1.40 −20.35 4.40

Very High
(≥995 m a.s.l.)

Forest 0.41 0.59 0.48 -0.70 −5.45 6.85
Grassland 0.46 0.56 0.53 -3.65 −0.15 6.15

Mosaic Cropland 0.39 0.57 0.40 2.55 2.70 9.70
Mosaic Natural Vegetation 0.48 0.62 0.45 3.40 −15.50 4.20

Mosaic Tree and Shrub 0.35 0.48 0.53 1.60 −5.70 13.20
Rainfed Cropland 0.62 0.65 0.55 -0.50 −10.40 −0.50

Shrubland 0.56 0.65 0.55 1.05 −17.35 0.60
1 Derived from the LC-CCI product shown in Figure 1b; 2 Derived from the DEM-SRTM product shown in Figure 1c;
* a.s.l. = above sea level; For each score, the maximum (minimum) value is reported in blue (red) bold.
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To investigate the impact of elevation on R and B, the linear correlation between the R and B scores
against elevation for each product at annual time scale were calculated. For SM2RAIN-CCI, R and B
were found to be moderately sensitive to elevation (correlations equal to 0.27 and 0.17 for R and B,
respectively). Similar results were found for SM2RAIN-ASCAT (TRMM TMPA) with correlations
equal to 0.38 and −0.12 (0.17 and 0.10) for R and B, respectively. A comparison more exhaustive
of results from Table 5 reveals that the highest difference between both SM2RAIN-based products
in terms of R occurs on those landscapes located between 741 and 994 m a.s.l. and characterized
by the presence of the rainfed croplands or water bodies (about 0.05). By contrast, when B is
considered, the difference is very significant in all elevation ranges; particularly in the lowlands
dominated by non-vegetated soils and areas of sparse vegetation (values of B over 23%). These findings
suggest that the performance of three rainfall products in terms of R and B is affected by the type of
vegetation and the terrain complexity. In general, the values of R tend to increase in those regions with
higher elevation (in particular, SM2RAIN-ASCAT and TRMM TMPA), but this is not the case for B,
because the B-elevation relationship is not linear.

To evaluate the performance of the SPPs at a local scale, the daily rainfall estimates were compared
to in situ rainfall measurements at six pixels randomly selected from the GBGR dataset (i.e., one per
biome, see its location in Figure 1a). This comparison can be seen in Figure 7. As expected, these products
slightly overestimate light rainfall (i.e., the red line over the orange line in Figure 7), but significantly
underestimate heavy rainfall (i.e., the orange line over the red line in Figure 7). Moreover, when the R
and B scores for each site are calculated (results not shown), one can note that the SM2RAIN-CCI rainfall
estimates show reasonably good agreement with GBGR, especially over the CER and CAAT biomes in
terms of R (R median: 0.62 and 0.41, respectively). It also shows slight biases, except in the CAAT
biome where the B median is equal to −11.20%. Regarding the SM2RAIN-ASCAT product, results are
in accordance with those inferences obtained from Figures 5 and 6. Over the CAAT, MAT, and PMP
biomes, the SM2RAIN-ASCAT product provided the highest underestimation (B median: −67.50%,
−14.90%, and −18.4%, respectively), while a significant overestimation was observed in the AMZ biome
(B median: 48.5%). The TRMM TMPA product is comparable with the SM2RAIN-based products
in terms of R and B. They provided the highest values of R in the CAAT biome, but the low values
in the AMZ biome. In terms of B, these products tend to overestimate (underestimate) the amount
of rainfall in the (CAAT) AMZ biome. An inspection of Figure 7a reveals that the SM2RAIN-based
products tend to overestimate the light rainfall in the AMZ biome. However, this behavior is attributed
to the nearness of this pixel to the Amazon River, which is a permanent source of superficial moisture
that the SM2RAIN algorithm has confused with rainfall during the dry season.
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were computed from 2007–2015, as shown in Figure 8. Several validation studies pointed out that 
the biases and errors could be amplified over those regions with no gauge stations [4,80,81]. 
Therefore, for this analysis, only those grid points with more than one gauge station per pixel and 
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Figure 7. Daily rainfall estimates from TRMM TMPA, SM2RAIN-CCI, and SM2RAIN-ASCAT products
against in situ daily rainfall from the GBGR dataset located in the biomes: (a) AMZ; (b) MAT; (c) CER;
(d) CAAT; (e) PTN; and (f) PMP during the period during 2007–2015. The orange line indicates 1:1
correspondence and red line gives the linear regression best fit. The BS1, BS4, BS3, BS2, BS6, and BS5
benchmark sites shown in Figure 1a provided the in situ rainfall data for AMZ, CAAT, CER, MAT, PMP,
and PTN, respectively.

3.2. Monthly Mean Precipitation

We further evaluated the performance of SPPs on a monthly scale to investigate the seasonal
variation in Brazil. For quantitative comparison purposes, the R, RMSE, ubRMSE, and B metrics were
computed from 2007–2015, as shown in Figure 8. Several validation studies pointed out that the biases
and errors could be amplified over those regions with no gauge stations [4,80,81]. Therefore, for this
analysis, only those grid points with more than one gauge station per pixel and with 50% or more
of rain gauge data frequency at the GBGR dataset were considered. Thus, the values of R, RMSE,
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ubRMSE, and B for each pixel (i.e., 4144 pixels met the defined criterion, equivalent to about 66% of
common pixels for both rainfall products), month (i.e., 12 months per year), and year (i.e., nine years
from 2007–2015) were calculated. Then, each point in Figure 8 was obtained by averaging those values
from all-pixels over all-Brazil via median (n = 108 points).
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Figure 8. Monthly time series for: (a) R (dimensionless); (b) RMSE (mm/day); (c) ubRMSE (mm/day);
and (d) B (%) derived from the SM2RAIN-ASCAT rainfall product against the GBGR dataset (red line),
the SM2RAIN-CCI rainfall product against the GBGR dataset (blue line), and the TRMM TMPA rainfall
product against the GBGR dataset (orange line) for all-Brazil during the period 2007–2015.

The R, RMSE, and ubRMSE of the three SPPs exhibit a similar temporal variability during
the period 2007–2015 (Figure 8). Note that results for R and B are quite consistent to those obtained
from Figures 5 and 6. The higher R values occur in winter (DJF), while the lower R values are observed in
summer (JJA). The SM2RAIN-ASCAT rainfall product exhibits higher R values than the SM2RAIN-CCI
and TRMM TMPA rainfall products for all months, except in summer where the correlation is slightly
higher for TRMM TMPA. Additionally, the temporal distribution of RMSE and ubRMSE is similar
for the three SPPs, showing a w-style pattern. That is, the higher RMSE and ubRMSE values are
observed from January to March (a wet trimester in almost whole Brazil; see Figure 2), whereas lower
RMSE and ubRMSE values occur in summer (JJA). TRMM TMPA exhibits higher RMSE and ubRMSE
values than the SM2RAIN-based rainfall products for all months. Concerning the bias percentage,
the SPPs show an irregular pattern in time, characterized by a high monthly variability (see Figure 8d).
However, SM2RAIN-ASCAT (SM2RAIN-CCI) tends to underestimate (overestimate) rainfall in all
months (almost all months, except in January, March, and April). When compared to the GBGR
dataset, TRMM TMPA shows relatively good performance in terms of B and R, but it tends to
underestimate the amount of rainfall in summer. Interestingly, the two SM2RAIN-based rainfall
products exhibit a slight increase (decrease) of performance for the ground measurements in term of R
(RMSE and ubRMSE) since 2009 onward. These results are consistent with ones from the previous
section (e.g., Figure 7) and once again confirm that SM2RAIN-ASCAT provides rainfall estimates
with a higher bias (median B: −13.10%) than that obtained with the SM2RAIN-CCI (median B: 6.10%)
and TRMM TMPA (median B: 3.80%) rainfall products.

3.3. Error Characteristics of Daily Precipitation

In this section, the systematic and random errors for the SM2RAIN-based rainfall products and TRMM
TMPA are further analyzed to reveal the detailed features of the errors in the rainfall estimates. Figure 9
shows the spatial distributions of error components (i.e., the systematic and random errors) for the three
SPPs during 2007–2015. More significant contributions of systematic error components as compared
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to random error components over the country are evident for the SM2RAIN-based rainfall products.
By contrast, TRMM TMPA shows larger contribution of random error components than systematic error
components (MSEr explains more than 92% of MSE in each biome). SM2RAIN-ASCAT exhibits larger
systematic error (relative to the total error) within the MAT and CAAT biomes and near the Venezuelan,
Peruvian, and Colombian borders, particularly in those grasslands and sparse-vegetation regions located
at the lowest part of the São Francisco River basin (MSEs median > 86%). The values of systematic error
at the highest part of the Paraguay River basin (the PTN biome) are less than 65%. On the other hand,
from Figure 9a,d, the systematic errors for SM2RAIN-CCI is lower than the random errors over most
the Amazon basin where rainfall estimates are available. It is interesting to mention that SM2RAIN-CCI
shows the most significant contribution of systematic error components than random error components
over the agricultural regions at the PMP biome (MSEs median > 64%).
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Figure 9. Spatial distributions of systematic [%] and random [%] error components across Brazil
from: (a,d) the SM2RAIN-CCI product; (b,e) the SM2RAIN-ASCAT product; and (c,f) the TRMM
TMPA product against the GBGR dataset for 2007–2015. Whited cells for all products are as per Figure 4.

3.4. Performance of Precipitation Product in Detecting the Rainy Events

Figure 10 displays the spatial distribution of POD and FAR with the threshold of 1 mm/day
(see Tables 3 and 4). The three SPPs tend to show higher POD (lower FAR) values over the Amazon
basin and most parts of the CER biome than over Northeastern Brazil and other Brazilian regions.
Compared to the SM2RAIN-CCI product, SM2RAIN-ASCAT shows higher POD values in all biomes,
excepting the CAAT biome where SM2RAIN-CCI is slightly better. About the skill of detection of
rainfall events in terms of FAR, the best performance for SM2RAIN-ASCAT was achieved in the AMZ,
MAT, and CAAT biomes, while SM2RAIN-CCI exhibited slightly lower FAR values in the CER, PMP,
and PTN biomes. Figure 10 also reveal the good performance of the SM2RAIN-based rainfall products
to detect rainfall in terms of POD. Conversely, the TRMM TMPA rainfall product tends to outperform
the other two products in terms of FAR, in particular over the AMZ and CER biomes.

To evaluate the performance of the satellite estimates for light to heavy rainfall events over each
biome, Figure 11 presents the Roebber’s performance diagram [78] of SM2RAIN-ASCAT (red circles),
SM2RAIN-CCI (blue circles), and TRMM TMPA (orange circles) products for the different daily
rainfall thresholds (i.e., 1, 2, 5, 10, 15, and 20 mm/day) over the six biomes of Brazil during 2007–2015.
Since the dashed lines represent the BS and solid lines the CSI, the best scores are located in the upper
right area of the diagram. The three SPPs tend to show decreased POD (increased FAR) with the rainfall
threshold increased in all biomes of Brazil, revealing that the performance of each SPP in detecting
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the rain occurrence deteriorates with increasing rainfall thresholds. Overall, if the threshold value
is greater than 10 mm/day, TRMM TMPA tends to show higher CSI values than SM2RAIN-ASCAT
and SM2RAIN-CCI. In terms of FAR, the results were relatively similar between both SM2RAIN-based
products, excepting the CAAT biome; where FAR values for SM2RAIN-ASCAT are significantly lower
(Figure 11b). Regarding the B metric, results disclose that the three SPPs tend to underestimate the area
for moderate and heavy rain events (i.e., threshold ≥ 10 mm/day and B < 1) in all biomes.
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Figure 10. Spatial distributions of the POD [fraction] and FAR [fraction] across Brazil from:
(a,d) the SM2RAIN-CCI product; (b,e) the SM2RAIN-ASCAT product; and (c,f) the TRMM
TMPA product against the GBGR dataset for 2007-2015. Whited cells for all products are as per
Figure 4. POD and FAR are calculated with a threshold of 1 mm/day.
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Figure 11. Roebber’s performance diagram [78] for the SM2RAIN-ASCAT rainfall product (red circles),
the SM2RAIN-CCI rainfall product (blue circles), and the TRMM TMPA rainfall product (orange circles)
in the biomes: (a) AMZ; (b) CAAT; (c) CER; (d) MAT; (e) PMP; and (f) PTN during 2007–2015.
Dashed lines depict BS metric (see Table 4) with labels the upper axis, whereas labeled solid contours
show values of CSI (see Table 4). Circles portray the six rainfall thresholds. The smallest circle indicates
the rain/no rain threshold (≤1 mm), and the largest circle indicates the threshold ≥ 20 mm.
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4. Discussion

Several statistical metrics were used to evaluate the SM2RAIN-CCI, SM2RAIN-ASCAT, and TRMM
TMPA rainfall products against gridded rainfall observations in six Brazilian biomes with different
rainfall regimes, and the whole Brazilian territory, during the period from January 2007 to December 2015.
As already mentioned, SM2RAIN-CCI does not provide rainfall estimates over frozen soil, snow-cover,
rainforest, and high topographical regions, because its processing chain uses a mask for removing
these areas characterized by issues in the soil moisture retrieval [3] (see Figure 4). Inputs are
based on the integration of the active and passive ESA CCI SM datasets with a calibration and bias
correction based on the GPCC-FDD data [32]. In contrast, the SM2RAIN-ASCAT dataset is derived
from the application of the SM2RAIN algorithm [29] to ASCAT soil moisture data without a previous
filter and with a calibration and bias correction based on the ERA5 reanalysis data [71]. The GPCC-FDD
dataset is a gauge-based product [32,82] while the ERA5 data is the fifth generation European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalysis based on a global atmospheric model
in which different types of observations are routinely assimilated [83]. The TRMM TMPA rainfall
product combines the estimates of rainfall from several satellite sensors and incorporates rainfall data
from the GPCC-FDD data to scale the final product [84].

From a broad perspective, the three SPPs captured the temporal dynamics of the in situ daily
and seasonal rainfall relatively well (see Figure 5), but tended to fail to estimate the amount of rainfall
(see Figure 6), mainly in those regions dominated by a semiarid climate at the CAAT and CER biomes
(in particular, SM2RAIN-CCI and SM2RAIN-ASCAT) and in coastal areas of the NEB (in particular,
TRMM TMPA). These results are in good agreement with those shown by Paredes-Trejo et al. [30],
who found that SM2RAIN-CCI (version 1.0) exhibits this same feature over most of Northeastern Brazil
(particularly, in the Sertão region). In general, SM2RAIN-CCI and TRMM TMPA tended to show slightly
better agreement with the gauge-based data in different seasons relative to the SM2RAIN-ASCAT
rainfall product (Figures 4 and 6). This can be partially explained by the fact that very likely, some of
the rain gauges from the GPCC-FDD data used during the stage of calibration and bias correction
of both SM2RAIN-CCI and TRMM TMPA have also been used for developing the GBGR dataset,
resulting lower bias magnitudes than that obtained with SM2RAIN-ASCAT.

Although SM2RAIN-ASCAT significantly underestimated the seasonal mean rainfall over most
of the Brazilian biomes (Figure 6), the locations of most of the heavy rainfall spots over the inland
regions of Southern Brazil and the upper Amazon region were relatively well detected (Figure 4).
Larger biases in these SPPs were evident over inland northeast Brazil and on the eastern part of
the Chapada Diamantina and Serra do Espinhaço cordilleras, in particular for SM2RAIN-ASCAT in
summer and autumn (Figure 6j–l). In these regions, the impact of topographic complexity (see Figure 1c)
and volume scattering in dry soils [71] on soil moisture retrieval accuracy has been well documented
and extensively analyzed in the literature [42,85–87]. A factor less evident that influenced the numerical
performance of both SM2RAIN-based products in term of bias is linked to the fact that the rainfall
in summer is characterized by intense and short rainfall events (excepting the PMP biome) [88].
Therefore, it is possible that sensors (in particular, ASCAT) missed rainfall during the period.

As shown in Figure 2, there has been more rainfall in autumn and winter than in summer
and spring (excepting the PMP biome where rainfall are uniformly distributed [52]). As can be seen in
Figure 8, the three SPPs showed the highest (lowest) values of error in terms of RMSE and ubRMSE
in winter and autumn (summer and spring), as expected because RMSE and ubRMSE are strongly
dependent on the rainfall magnitude [27].

The TRMM TMPA rainfall product performed relatively similar to SM2RAIN-CCI
and SM2RAIN-ASCAT in terms of R (Figure 8a), implying that they reproduced the dynamic
of the rainfall reasonably well, except in summer. Nevertheless, this does not appear to have
a regular pattern in relation to the seasonal bias (B) (Figure 8d). Overall, SM2RAIN-CCI tended
to show higher overestimation during the transition from summer to autumn, whereas a general
underestimation characterized SM2RAIN-ASCAT throughout the year, but was significantly noticeable
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in spring. Interestingly, the SM2RAIN-based products performed better than TRMM TMPA against
the GBGR dataset in terms of R, RMSE, and ubRMSE (in particular, SM2RAIN-ASCAT). The three SPPs
slightly overestimated light rainfall, but they significantly underestimated heavy rainfall (Figure 7),
thus confirming the tendency of the SM2RAIN algorithm to underestimate the higher rainfall rates [27]
and the difficulty of estimating the amount of rainfall for light and heavy rainfall events from TRMM
TMPA [84]. For the SM2RAIN-based rainfall products, this can be put down to soil moisture retrieval
errors, which significantly affected the quality of the rainfall estimates derived from the SM2RAIN
algorithm (i.e., via error propagation) [71]. In terms of B, SM2RAIN-CCI showed better performance
than SM2RAIN-ASCAT across Brazil (i.e., B values closer to 0 mm/day). This could be partially
explained by the fact that the SM2RAIN parameters for SM2RAIN-CCI were obtained by minimizing
the RMSE between the five-day estimated rainfall and the GPCC-FDD data during three calibration
periods 1998–2001, 2002–2006, and 2007–2013 on a pixel-by-pixel basis [32], whereas SM2RAIN-ASCAT
implemented a static correction procedure for climatological correction based on a cumulative density
function (CDF) and the ERA5 reanalysis data [44]. A different reason for the best performance
of SM2RAIN-CCI in terms of B can be because this product combines multiple soil moisture data
sources [43], while SM2RAIN-ASCAT uses only ASCAT soil moisture data disseminated by H-SAF in
its processing chain (i.e., H113 and H114) [35]. In this context, it is interesting to mention that also
the type of land cover/use and the terrain complexity influenced the overall performance for the three
SPPs in terms of R and B (see Table 5). For the SM2RAIN-based products, the higher positive or
negative B values should be expected over forested regions where the signal of satellite sensors does
not penetrate the dense vegetation cover [87] or over flooded regions where the soil remains saturated
through the year [27], respectively.

Regarding the error components, results revealed that the two SM2RAIN-based SPPs were quite
similar in terms of error characteristics (Figure 9). They showed more significant contribution of
systematic error components than random error components across Brazil, coinciding with findings
from a previous study carried out by Prakash [3] in India. Therefore, such products may require
refinement and correction before being used for operational application (e.g., drought monitoring) [89],
particularly in the CAAT (PMP) biome for SM2RAIN-ASCAT (SM2RAIN-CCI). By contrast, TRMM
TMPA showed a more significant contribution of random error components than systematic error
components; thus, TRMM TMPA performed better than the SM2RAIN-ASCAT and SM2RAIN-CCI
products (see Figure 9).

In terms of the detection of rainfall events, results showed that the two SM2RAIN-based SPPs have
a relatively similar ability (median POD > 0.70), with a rainfall threshold of 1 mm/day and performed
better than TRMM TMPA (see Figure 10). Nevertheless, for the SM2RAIN-based SPPs, this feature
tended to decrease in those semiarid regions with complex topography, such as in the CAAT biome.
SM2RAIN-ASCAT showed better performance than SM2RAIN-CCI over almost all Brazil in terms
of POD (excepting the CAAT biome), which was somewhat unexpected given the sophisticated
calibration scheme and multiple soil moisture datasets employed in generating the SM2RAIN-CCI
dataset [32]. Additionally, the three SPPs tended to show decreased POD with an increase in rainfall
threshold (i.e., from 1–20 mm/day) in all Brazilian biomes (Figure 11), indicating that the performance
of each SPP for rain event detection decreased with an increased rainfall threshold. This result is
consistent with the findings of similar studies [74,76]. Overall, SM2RAIN-CCI and SM2RAIN-ASCAT
are still facing a significant challenge to estimate the amount of rainfall accurately and to detect
rainfall over Northeastern Brazil, especially over the Sertão region where the rainfall is largely
underestimated. Nevertheless, it should be highlighted that SM2RAIN-ASCAT performed better
than TRMM TMPA and SM2RAIN-CCI in terms of R, RMSE, and ubRMSE (see Figure 8), and in terms
of POD and FAR with a rainfall threshold equal to 1 mm/day (see Figure 11). Thus, their rainfall
estimates can offer a valuable alternative to ground-based observations whether the bias is adjusted
before its use in operational applications such as water resources management and agriculture.
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5. Conclusions

Microwave-based satellite soil moisture products allow an innovative way to directly estimate
rainfall using soil moisture observations with a bottom-up approach based on the inversion of the soil
water balance Equation (SM2RAIN). The SM2RAIN–CCI (SM2RAIN-ASCAT) product provides rainfall
estimates obtained from the inversion of the microwave-based satellite soil moisture observations
derived from the ESA–CCI project (from the ASCAT soil moisture data). This study set out with the aim
of evaluating the performance of SM2RAIN-CCI, SM2RAIN-ASCAT, and TRMM TMPA satellite rainfall
estimates against gridded rain gauge observations (GBGR) in six Brazilian bioregions with different
rainfall regimes, and the whole Brazilian territory. The analysis was performed on a sub-regional scale
at 0.25◦ spatial sampling with daily rainfall during the period 2007–2015. Concerning the obtained
results, the following conclusions could be drawn:

(1). SM2RAIN-ASCAT (SM2RAIN-CCI) was slightly better compared to gauge-based rainfall estimates
than SM2RAIN-CCI and TRMM TMPA (SM2RAIN-ASCAT) rainfall estimates in all-Brazil
and sub-regional scales in terms of R (bias) (see Figures 5–7).

(2). The reliability of rainfall products was partially dependent on the topography and types of land
use/land cover (biomes); for instance, they tended to fail to estimate the amount of rainfall in
those regions dominated by a semiarid climate at the CAAT and CER biomes (see Figures 1c
and 6, and Table 5).

(3). These products showed the highest (lowest) values of error in terms of RMSE and ubRMSE in
winter and autumn (summer and spring), as expected because these scores are strongly dependent
on the rainfall magnitude (see Figure 8).

(4). SM2RAIN-CCI tended to show higher overestimation during the transition from summer
to autumn, while a general underestimation characterized SM2RAIN-ASCAT throughout
the year, and was significantly noticeable in spring (see Figure 8). TRMM TMPA tended
to overestimate the seasonal daily mean rainfall in all biomes, excepting the CAAT biome in
summer, where a moderate underestimation of the rainfall amount was observed (see Figures 5
and 6).

(5). The systematic error component in SM2RAIN-CCI and SM2RAIN-ASCAT was dominant to
the random error component in all-Brazil (see Figure 9), suggesting the need for bias correction
to these rainfall products before integrating them in any operational application. By contrast,
TRMM TMPA showed a larger contribution of random error components than systematic
error components.

(6). In terms of POD, the results of the two SM2RAIN-based rainfall products were quite similar
(excepting the CAAT biome) when a rainfall threshold of 1 mm/day was used (see Figure 10).
Interestingly, the SM2RAIN-based and TRMM TMPA products tended to show decreased
POD with the rainfall threshold increased (i.e., from 1–20 mm/day) over all biomes of Brazil.
Thus, indicating that the performance of each product in detecting the rain occurrence declined
with the rainfall threshold increased (see Figure 11). In terms of the detection of rainfall events,
the two SM2RAIN-based SPPs performed better than TRMM TMPA (see Figure 10).

The overall results indicated slightly better performance of SM2RAIN-CCI rainfall product
than SM2RAIN-ASCAT across Brazil for rainfall estimation. Nevertheless, further improvements
for the SM2RAIN-ASCAT rainfall product could be obtained by using the GPCC-FDD data for its
calibration and bias correction rather than the ERA5 reanalysis data. Results also demonstrated
that both SM2RAIN-based rainfall products can be effectively used for some operational purposes
on a daily scale, such as water irrigation planning, where the best accuracy of rainfall estimates
was observed (Figures 5 and 6). Future work should involve validation of these rainfall products
considering others satellite-based rainfall products, and also against fully independent observed data
(e.g., radar estimates), to come to more conclusive results about the performance of SM2RAIN-ASCAT
and SM2RAIN-CCI in Brazil.
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