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Abstract: This manuscript provides a robust framework for the extraction of common structural
components, such as columns, from terrestrial laser scanning point clouds acquired at regular
rectangular concrete construction projects. The proposed framework utilizes geometric primitive as
well as relationship-based reasoning between objects to semantically label point clouds. The framework
then compares the extracted objects to the planned building information model (BIM) to automatically
identify the as-built schedule and dimensional discrepancies. A novel method was also developed
to remove redundant points of a newly acquired scan to detect changes between consecutive
scans independent of the planned BIM. Five sets of point cloud data were acquired from the same
construction site at different time intervals to assess the effectiveness of the proposed framework.
In all datasets, the framework successfully extracted 132 out of 133 columns and achieved an accuracy
of 98.79% for removing redundant surfaces. The framework successfully determined the progress of
concrete work at each epoch in both activity and project levels through earned value analysis. It was
also shown that the dimensions of 127 out of the 132 columns and all the slabs complied with those in
the planned BIM.

Keywords: semantic object classification; point cloud segmentation; terrestrial laser scanner (TLS);
progress monitoring; dimensional compliance control; reinforced concrete construction; 3D surface
intersection; change detection; building information modeling (BIM)

1. Introduction

In construction projects, as-designed vs. as-built dimensional incompliances result in rework,
which can cost up to 25% of the contracted construction cost [1]. In concrete structures, rework has
shown to be a dominant factor in increasing concrete waste with the highest impact on project cost
over-run due to waste, compared to other construction materials [2]. Concrete is in fact the most
widely used material in the construction industry, used almost twice as much as other construction
materials in the United States of America [3]. Not only does rework contribute to a direct cost
over-run due to concrete waste, but it also causes an implicit cost to the environment since cement
manufacturing accounts for about 5–7% of the global CO2 emissions annually [4]. Other than the cost,
time, and possible environmental impact associated with rework in concrete construction, dimensional
errors and structural damages may impact structural integrity, diminishing safety during and after
construction. One prime example of structural failure during construction is the 2018 pedestrian
bridge collapse in Florida [5], which resulted in several fatalities. Early and accurate identification and
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reporting of delays, cost over-runs, rework, and structural instabilities through continuous inspection
and as-built documentation are imperative to enabling project proponents to take corrective measures
on time. An accurate and reliable as-built 3D/4D building information model (BIM) is not only
beneficial during construction, but also during facility operations for maintenance work [6] as well as
sustainability and waste management [7].

As-built documentation using traditional surveying methods, such as total station and measuring
tape, is, however, labor-intensive, costly, and error-prone, particularly when performed frequently.
In addition, only a portion of the site elements can be monitored for practicality as traditional
instruments can only provide spot measurements [8]. To this end, the application of terrestrial laser
scanners (TLS) for 4D as-built BIM documentation during construction is growing markedly, especially
with the recent advancements in the speed and quality of data capture as well as the reduction in
instrument cost. TLS acquires panoramic 3D coordinates of the surrounding surfaces, referred to as
point clouds. TLS point clouds overcome the shortcoming associated with traditional single-point
measurement instruments. However, due to the large amount of data, manual extraction of different
structural components to generate a semantically rich BIM from the acquired point clouds is impractical,
subjective, and error-prone [8]. Therefore, reliable and automated processing and semantic object
extraction from TLS point clouds is essential to enabling its utilization in the construction industry
for frequent and reliable as-built BIM documentation. To this end, this paper provides a new robust
context-based framework for the extraction of primary structural components, namely column, slab,
and rebar, in regular rectangular reinforced concrete structures from unorganized point cloud data for
automated progress monitoring and dimensional conformity control during construction.

2. State of the Art in Semantic Extraction of Structural Components from Point Clouds

Comprehensive reviews of the recent developments in processing of point clouds acquired
from construction sites and indoor environments can be found in [8–14]. Since the focus of this
manuscript is the automated semantic extraction of structural components in regular rectangular
concrete construction, the review of previous work is restricted to that addressing the specific problem of
automated semantic labeling of objects with predominantly planar and linear facades. The presentation
of the previous work in semantic feature extraction from point clouds is divided into the following
three research categories:

1. Scan vs. BIM, which is used only when a reliable as-planned 4D BIM exists;
2. Supervised learning, which is used when an object template or library of preclassified similar

objects exist for training/matching;
3. Spatial and contextual relationship, which uses unique a prior knowledge of an object and its

relationship to other objects.

2.1. Scan vs. BIM

Scan vs. BIM, initially proposed by Bosché [15–17], utilizes the as-planned 4D BIM to assign
points to a BIM element in close spatial proximity. First, synthetic as-planned point clouds are
generated by decomposing the planned BIM into points with the same spatial resolution of the point
cloud. The as-planned and as-built point clouds are then registered through an iterative closest point
(ICP) method, and corresponding points are matched by satisfying some spatial similarity criteria [8].
Once matched, the as-built point cloud is labeled as the element representing the as-planned point cloud.
The scan vs. BIM method has been widely implemented in the previous literature for applications
such as progress monitoring and reporting [18,19], extraction of formwork/rebars [20], and completion
of rectangular concrete columns [21]. Scan vs. BIM is easy to implement and enables semantic labeling
of key objects directly from BIM when a detailed planned BIM is available. The approach is, however,
unreliable when the distance between the as-built and as-planned locations of an object is larger than
the predefined spatial similarity criteria. In other words, the method works well when the planned and
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actual location of objects comply, which cannot be a presupposition since the objective of automated
monitoring and control is to determine the discrepancies between the planned and actual location
of each object [22]. Therefore, the studies presented in the following subsections aimed to reduce the
dependency of the semantic object extraction on the details of the planned BIM.

2.2. Supervised Learning

An alternative to the scan vs. BIM method is to use a library of preclassified object attributes/features
as templates for semantic feature extraction. For instance, a library of preclassified images were used
as training data for a supervised learning sequence to find walls and construction materials in images
taken from construction sites [23,24]. In point cloud processing, the preclassified object attributes can be
generated through different means, such as the planned or as-built BIM [25,26], Monte Carlo simulation
to generate synthetic point clouds of objects subject to random instrumental measurement errors [22],
or manual classification of structural elements and its attributes from previously acquired point
clouds [27]. To initiate the process, local curvature estimation together with planar/linear segmentation
of raw point clouds are typically carried out. The features of each segment are then matched to the
features of preclassified objects in the training datasets through a machine learning sequence for
semantic labeling of the segment.

Reference [26] used features of preclassified point clouds of industrial components to label
segmented points in the dataset that follow similar patterns. In [28], Rabbani’s region growing
method [29] was adopted to segment planar surfaces of existing indoor buildings. The stacked
supervised learning method [30] was then applied to classify the planar segments into objects such as
walls, floors, and openings. Reference [31] first employed a combination of random sample consensus
(RANSAC; [32]) and density-based attribute clustering (DBSCAN), as proposed by [33], to group
together planar points of a completed indoor building. Eighteen geometric features, including the
distance between a plane’s centroid and scan boundaries, were then calculated for each planar patch
and fed to a k-means clustering and supervised learning framework to predict the object class (e.g., wall)
that best matched the features. Their framework was able to correctly determine the object class of 71.2%
of the segmented planes. Reference [27] aimed to extract concrete structures such as slabs, beams, and
columns from point cloud data. First, points on concrete structures were isolated from other site objects
using their color information through the method described in [34]. The remaining concrete points
were then segmented through an edge-based segmentation procedure. For each segment, the level of
linearity and planarity, as well as the directional axis, were estimated and assigned to a predefined
class of objects (e.g., column) that best matched the estimated attributes through a support vector
machine (SVM) classifier. For instance, a column is more linear than floors or walls and its directional
vector is vertical. To populate the training data, a large library of historic point cloud datasets of each
object class was used to manually estimated the suggested features (i.e., level of planarity/linearity).

The application of machine learning for semantic labeling of point clouds is suitable for the
extraction of complex geometries or repeatable objects, such as in the case of the manufacturing
industry. However, it requires a library of preclassified object attributes or historical point clouds
from similar objects to populate the training data, which may neither be readily available nor always
practical. To this end, the research studies presented in the following subsection only used spatial
and contextual relationships between objects (also referred to as hard-coded knowledge in [14]) for
semantic labeling.

2.3. Spatial, Geometrical, and Contextual Relationship

An alternative to the aforementioned methods uses only the logical and unique spatial and
geometrical relationships between different object types to semantically label planar segments [9,35].
For instance, a segmented planar surface of an indoor room can be a wall, floor, ceiling, or clutter.
However, due to the generic arrangement of rooms, the following relationships can be inferred:

• Floors and ceilings are predominantly in horizontal planes [22];
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• Walls are in vertical planes orthogonal to the floors/ceilings [36];
• Walls span from the floor to the ceiling [37];
• Segment sizes of permanent components (walls, floors) are likely larger than clutter [38]; and so on.

Using contextual information of the specific object of interest, it is possible to semantically label
surfaces in the point cloud that follow similar characteristics. This process typically starts with some
method of local curvature estimation, followed by planar/linear segmentation (region growing or
clustering). The contextual hard-coded knowledge for each class of object (e.g., column and walls) is
then used to semantically label each planar (or linear) patch that satisfies the object’s conditions.

Reference [38] used prior information of common building objects (e.g., façade and window) to
semantically label planar segments collected from the exterior of existing buildings. The framework
first applies the segmentation method of [39] to extract planar segments. The planar segments are then
assigned to a predefined class of objects (e.g., wall, ground, window, etc.) using some prior information
about their relative size, position, orientation, topology, and point density. These categories of a priori
relationships were also employed in [40] for semantic labeling of the exterior of existing buildings.

The RANSAC method, proposed in [32], was employed in [36,41,42] with thresholds tuned
to the specific dataset to extract planar surfaces of existing indoor rooms before semantic object
extraction. In [36], planar segments whose normal vector was parallel and perpendicular to the x−y
plane were then considered as floor/ceilings and walls, respectively. In [42], slabs and walls were
detected when two proximate planar surfaces with parallel normal vector in opposing directions
were found. Reference [37] proposed a semiautomated method for the generation of BIM models of
existing indoor buildings. First, points from different floor levels were extracted using the histogram
of floor height (for example, in [22,43]). Points within each floor were then projected onto the x−y
plane to create a binary (grayscale) image to determine the boundaries of each room. For each room,
walls were differentiated from occlusions based on the points’ proximity to both the ceiling and floor.
Proximate parallel walls of two adjacent rooms were then labeled as one wall (similar to [42]). In [44],
the histogram of point height was also used to determine points of the same floor level in existing
indoor buildings through some predefined bin size and prior knowledge of the thickness of the slab.
Reference [45] proposed a method to extract columns with rectangular and circular cross sections
directly from the point cloud. Since the orientation of columns were assumed to be vertical, the point
cloud was first projected onto the x−y plane and converted into a grayscale image (similar to [37]).
A 2D Hough transform was then adopted to extract circular and rectangular objects from the binary
image. The results showed that rectangular cross sections were prone to Type I errors, while circular
cross sections were prone to Type II errors.

Many previous studies focused on the extraction of architectural and exterior components, such
as walls and windows, from existing buildings (after completion of construction) [36–38,40–42,44].
However, point clouds acquired from construction sites contain outliers due to dust, occlusions, and
moving objects, which requires additional robust outlier removal procedures [22]. Other group of
studies that focus on semantic labeling of point clouds acquired from construction sites mainly require
either an up-to-date 4D BIM [15–22,25] or a library of historical preclassified objects [23,24,26–28,31],
which may be neither available nor practical. In addition, to provide a generalizable solution, a point
cloud processing framework is required whose effectiveness is independent of subjectively predefined
thresholds [22]. This study provides a robust solution to the semantic labeling of common reinforced
concrete elements from point clouds using the spatial relationship, method of construction, and
systematic thresholds, adopted from reliable standards of reinforced concrete construction.

3. Methodology

This manuscript focuses on the robust extraction of common structural elements, columns, rebars,
and slabs from point clouds acquired from regular rectangular reinforced concrete structures for
progress monitoring and dimensional compliance control. Regular rectangular reinforced concrete
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structures are targeted here specifically, since they are commonly employed in the building construction
industry [3,46,47]. The overview of the methodology is as follows:

1. Robust extraction of planar and linear features from registered point clouds (Figure 1b);
2. Semantic labeling of point clouds into floors, columns, and rebars using contextual and spatial

information (Figure 1c);
3. Surface intersection and modeling (Figure 1d);
4. Identification and visualization of deviations between as-built and planned BIM (Figure 1g); and
5. Removal of redundant points of previously modeled surfaces for newly acquired point clouds

(Figure 1f). For prospective scans, the processes described in steps 1–4 will only be carried out for
the new points (shown in green; Figure 1f).
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Figure 1. Step-by-step process for semantic extraction of regular rectangular reinforced concrete
components: (a) point cloud of first epoch; (b) robust planar and linear segmentation using the method
described in [22]; (c) extraction of semantic features, here concrete columns, using contextual constraints;
(d) 3D model generation through surface intersection; (e) point cloud of the second (to last) epoch; and
(f) removal of redundant points that had been modeled in the previous epoch.

3.1. Target-Based Point Cloud Registration

The convention proposed in [8,22] is used to register point clouds to a reference coordinate system
(the coordinate system of the planned BIM). This approach uses signalized TLS targets on presurveyed
site control points to register coordinate systems of scans at each epoch to a reference coordinate
system. The centers of the signalized targets are measured through high-precision surveying and the
TLS instrument. The centers of targets are matched to estimate the exterior orientation parameters
along with registration precision through rigid body transformation.

3.2. Robust Planar and Linear Segmentation

As illustrated in Figure 1b, planar and linear segmentation is the first step towards semantic
extraction of concrete elements. Here, the method developed in [22] is employed for robust planar
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and linear segmentation. The method is specifically adopted since it is robust to common outliers
of construction site point clouds and the segmentation results are not a function of a subjectively
predefined threshold. According to this method, horizontal planes are first extracted using the histogram
of point height (similar to [37,43]) to promote computational efficiency. The horizontal plane extraction
method used in [22] is robust to Type II errors and was shown to be effective in extracting floor
objects from construction site environments. The remaining points are then classified into planes
and lines using a robust principal component analysis (PCA) method to determine local surface
curvature. The local surface curvature values are then matched to that obtained by Monte Carlo point
cloud simulations, subjected to random measurement errors, to determine the final set of planar and
linear points. The classified planar and linear features are then segmented into surfaces with similar
geometrical attributes using a new iterative and robust variation of the complete linkage hierarchical
clustering method.

3.3. Semantic Object Extraction Using Relationship-Based Reasoning

Here, the objective is to extract flat slab floors, rectangular columns, and rebars from the segmented
planar and linear features. For floors, the method developed in [22] is used since it was consistently able
to extract floors from other possible horizontal objects in various construction site settings. The problem
is now reduced to the semantic extraction of rectangular columns and rebars from other elements.
Figure 2 shows the point cloud of a typical column before and after the slab of the top floor is poured.
The exposed rebars on the top of the columns in Figure 2a enable the seamless transfer of stresses and
bending moments between floors. After the concrete for the top floor slab is poured, these rebars are
no longer visible (Figure 2b). From Figure 2, it can be observed that rebars are linear features on top of
columns. Figure 2 also shows that rectangular columns are confined by a floor object at the bottom and
either linear objects (rebars) or a floor object (ceiling) on the top.
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Figure 2. Typical point cloud of a rectangular column: (a) before top floor concreting; (b) after top floor
concreting (colors represent intensity).

Another important characteristic of structural columns is its responsibility to transfer the bending
moments and vertical stresses from top floors to the foundation. For regular rectangular buildings,
columns are almost always oriented in the direction of the two orthogonal main axes of the rectangular
plan to accommodate consistent load transfer [3,47,48]. The consistent column orientation is also
desirable to preserve symmetry. Therefore, by examining the orientation as well as the objects
surrounding the boundaries of planar surfaces, planar surfaces representing columns can be uniquely
identified. These two criteria are used to distinguish columns from other planar objects on sites.
Once the columns are identified, rebars objects are linear segments on top of the columns. The solution
to the column extraction is formulated as follows:
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• Algorithm 1: First, the two main orthogonal orientation directions of planar surfaces, excluding
the floor objects, are identified. The planar surfaces whose normal vectors are in the same direction
of these two vectors are selected as potential column candidates (i.e., planes whose normal vector
follows the direction of the main orthogonal site axes).

• Algorithm 2: The boundaries of the extracted planar candidates are then assessed to determine
the presence of floor and/or linear objects in the proximity of their exterior boundaries.

3.3.1. Algorithm 1: Detection of Planes Following the Main Orthogonal Site Axis

1. Select the planar surfaces, excluding the floor objects.
2. Assign the normal vector associated with the planar surface to each point of that segment.
3. Estimate the mode of the bivariate x−y components of the normal vectors. In this study,

the mean-shift mode detection [49] with a normal kernel and optimized fixed-bandwidth
proposed by [50] was adopted.

4. For every two identified modes, calculate the allowable standard deviation of the inner product
of two modes, σ

〈
⇀
ni,

⇀
n j〉

, derived by applying the law of variance propagation, using Equation (1):

σ2
〈
⇀
ni,

⇀
n j〉

= 2σ2
θ

(
1−

(
cos2 θxi cos2 θx j + cos2 θyi cos2 θy j + cos2 θzi cos2 θz j

))
, (1)

where
⇀
ni and

⇀
n j are the normal vectors of the ith and jth mode, respectively; σ

〈
⇀
ni,

⇀
n j〉

is the allowable

tolerance of the inner product of vectors
⇀
ni and

⇀
n j; σθ is the allowable angular tolerance in radians;

〈θxi ,θyi ,θzi〉 are the angles of the normal vector of the ith mode to the x, y and z axes, respectively;

and 〈
⇀
ni,

⇀
n j〉 is the inner product of vectors

⇀
ni and

⇀
n j. In this study, the allowable plumb tolerance

(σθ) is set to approximately 0.52◦, derived from ACI 117 [51,52].
5. Select the two modes whose absolute value of the inner product satisfies the orthogonality criteria

of Equation (2): ∣∣∣∣〈⇀ni,
⇀
n j〉

∣∣∣∣ ≤ 3σ
〈
⇀
ni,

⇀
n j〉

, (2)

The threshold 3σ
〈
⇀
n1,

⇀
n2〉

is used to account for approximately 99% confidence.

6. For the pair of normal vectors satisfying Equation (2), find the normal vectors of the planar
surfaces whose angles are within ±3σθ in each direction.

The surfaces satisfying step 6 are the surfaces whose normal follows the direction of the main site axes.
Other than identifying surfaces following the main site axes, the algorithm can also identify surfaces
that are not built to the specified tolerances in relation to the majority of the built surfaces before a plan
vs. actual comparison is even performed. The two main orthogonal axes can also be used to improve
registration of point clouds in the absence of reliable target-based registration.

3.3.2. Algorithm 2: Assessment of Column Boundary Conditions

1. Select the planar candidates obtained from Algorithm 1.
2. Calculate the first and third quartile of the height of all planar candidates.
3. Identify planar surfaces whose minimum height is smaller than the first quartile, and maximum

height is larger than the third quartile of height (to ensure removal of shorter clutters).
4. Identify the outer boundary points of each planar segments using α-shapes [53,54], following the

method described in [22].
5. Perform connected components region growing (Algorithm 5 of [8]) on the identified boundaries

to group together potential columns. Here, the neighborhood size is set to r
√

2, where r is the
radius of the neighborhood used for robust PCA classification [22]. This neighborhood size was
chosen since the local neighborhood of points within r from the edge of two intersecting surfaces
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are prone to misclassification using classical PCA (see Figure 3b,c). Since robust PCA classifies
more planar points closer to the boundaries than classical PCA [22,43], the defined threshold will
be large enough to group together surfaces of the same column.
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Figure 3. (a) Typical point cloud of a rectangular column; (b) schematic planar classification of the
column surfaces using classical PCA; (c) the top view of the potential points identified as planar using
classical PCA; (d) cross-sectional view of a reinforced concrete column and rebar cover.

6. Select the connected segments that contain a floor object within r from its minimum height
(r is used for the same reasons given in step 5 and Figure 3c).

7. From the remaining connected segments satisfying step 6, a connected segment is labeled a column
if one of the following two criteria is satisfied:

a. The largest height of the segment is within r from the median height of a floor object; or

b. A linear segment within
√
(2r)2 + (rebar cover size)2 (derived from the Pythagorean

theorem) of the boundaries of the connected segment exists. The cover size, schematically
shown in Figure 3d, is set to 50 mm following ACI 318 (2014) [55].

Once the columns are extracted using Algorithms 1 and 2, the enclosed linear segments are labeled as
rebar objects using Algorithm 3: Semantic Rebar Extraction, as follows:

1. Select the column segments from Algorithm 2 that satisfy the condition of step 7b.
2. For each column segment, identify all linear segments whose minimum height is larger than the

column’s height.
3. Project all identified linear segments onto the x−y plane.
4. The linear segments whose boundaries in the x−y plane are enclosed by the boundaries of the

columns are considered as rebars.

3.4. Parametric Surface Representation

After the floors, rebars, and columns have been automatically extracted from the segmented point
cloud, it is important to provide a parametric model to represent the as-built for comparison with the
planned BIM. The parametric representations of the identified objects are as follows:

1. Floors: every floor is represented by a normal vector (estimated through robust PCA), and a point
on the plane (robust center of the points) [22]. The boundary of the floors is identified using
the modified convex hull algorithm and boundary regularization presented in [56] to define the
extents of the floor planes.
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2. Rebars: each rebar is represented by a point (e.g., robust center of the segmented rebar), length
of the rebar, cylinder’s axis, and radius. The radius and cylinder’s axis are estimated through
Algorithms 1 through 3 of [8] to provide an accurate and robust estimation. To define the length
of the cylinder, rotate the cylinder’s axis to the z direction using Rodrigues rotational formulation.
The length of the rebar is then the difference between the maximum and minimum heights of the
rotated rebar.

3. Columns: the extents of the rectangular columns are defined by the eight vertices of the rectangular
prism (Figure 2b). Each planar façade of the column is represented by the four plane parameters
(see floor objects above). The bottom vertices are estimated through the intersection of planar
surfaces and the floor object on the bottom. The process is identical in cases where a floor object
also exists on the top (i.e., ceiling; see Figure 2b). In cases where only rebars exist on top, a virtual
plane parallel to the bottom floor plane with distance of the maximum height of the column
segment from the bottom floor is generated. The top four vertices are calculated accordingly
through planar intersection.

3.5. Planned vs. As-Built Comparison

As explained in Section 3.1, the scans are registered to the reference coordinate system of the
planned BIM following the convention proposed in [8,22]. To compare the planned and the as-built,
the corresponding objects between the plan and as-built are identified using a distance threshold.
Following the convention set forth by [15–18], a 50 mm distance threshold is suggested as expected
construction errors. Figure 4a represents the planned 4D model of a construction site at a given baseline.
Figure 4b,c show the superimposition of the planned model and the automatically identified columns
at the baseline. The blue crosses in Figure 4c represent the generated edges (8 vertices) of the identified
columns using the method presented in Section 3.4. The objects whose minimum distance is smaller
than 50 mm are then identified. The progress can then be visually presented through a color-coding
scheme. In Figure 4d, blue represents on-schedule activities (identified objects), the red color represents
behind-schedule activities (not found), and green objects (not shown in the presented example) are
ahead of schedule activities.
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3.6. Redundant Point Removal of Prospective Scans

Since the process of monitoring and control is carried out in a continuous manner, it is possible
that a newly acquired scan contains points of objects that were modeled from previous scans. It is,
hence, desirable to remove these points first before point cloud processing so that only the new changes
in structural components are detected.

Consider a newly acquired scan j registered to the reference coordinate system (object space),
following the convention proposed in Section 3.1. The objective is to identify if point A (Figure 5a)
of scan j is close enough to a presegmented object surface P to be considered as a point on surface
P. To this end, an error ellipsoid (Figure 5b) is estimated around point A that accounts for both
scanner observational as well as registration uncertainties. Point A of scan j is considered redundant if
a presegmented surface P in the object space exists such that the error ellipsoid has an intersection
with surface P (Figure 5c). Point A is then semantically labeled as the object represented by surface P.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 23 
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surface P.

To determine the error ellipsoid, the covariance of the radiated point i from scanner space j to
the object space (reference coordinate system) is calculated through the law of variance propagation
as follows: 

x
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z
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j ri j + Rc
j, (3)

Cri j =


σ2
ρ sec2 βi j 0 0

0 σ2
θ 0

0 0 σ2
α

, (4)

CRi =
∂Ri
∂xe

Cx j

∂Ri
∂xe

T
+
∂Ri
∂ri j

Cri j

∂Ri
∂ri j

T
, (5)

where ri j is the observed scanner space vector of point i in space j, Ri is the object space vector of
point i, Rc

j is the object space vector of scanner j (translation vector), M j is the rotation matrix from

object space to scanner space j, Cri j is the covariance matrix of observation i in scanner space j, σ2
ρ is

the instrumental range error variance at normal incidence, σ2
θ and σ2

α are the instrumental angular
variances, βi j is the incidence angle of observation i collected from scan j, xe is the set of registration
parameters, and Cx j is the covariance matrix of registration parameters for scan j. Using the covariance
matrix of Equation (5), an error ellipsoid is constructed with 95% confidence and three degrees of
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freedom (three-dimensional data). Using the derived equations, the redundant surfaces are removed
following Algorithm 4: Redundant Surface Extraction:

1. For every new scan point, i, calculate the covariance matrix, CRi using Equation (5).
2. Calculate the eigenvalues (λ) and eigenvectors (v) of the covariance matrix (CRi ).
3. Construct error ellipsoid using Equation (6):

(X −Ri)
Tvλ−1vT(X −Ri) = (X −Ri)

Tv
(
λ−

1
2

)T
λ−

1
2 vT(X −Ri) ≤ X

2
0.95,3 (6)

where Ri is the vector of coordinates of point i in the object space and X2
0.95,3 is a chi-squared

probability with 95% confidence and 3 degrees of freedom (X2
0.95,3 = 7.8147).

4. Find all planar and cylindrical (rebars are modeled as cylinders; see Section 3.4) objects from
Algorithms 1–3 that intersect the error ellipsoid.

5. If more than one surface meets the conditions of step 4, the point is assigned to the closest
surface. The point is then semantically labeled to the corresponding object represented by the
segmented surface.

Step 4 of Algorithm 4 requires a procedure to find the intersection between an ellipsoid and a plane
as well as a cylinder, which is not trivial. Here, two original and generic algorithms (Algorithms 5 and 6)
are developed to identify the intersection of a plane/cylinder and ellipsoid in space.

3.6.1. Algorithm 5: Intersection of an Ellipsoid and Plane

1. Calculate the distance of the point to the planar segments (ρAP of Figure 5a).

2. Identify all surfaces where ρAP is smaller than
√
λmaxX20.95,3, the semimajor axis.

3. Calculate the linear transformation matrix λ−
1
2 vT that transforms the error ellipsoid of Equation (6)

into a sphere with radius
√
X20.95,3. This transformation reduces the problem to finding the

intersection between a sphere and a plane, since planes are affine equivariant.
4. Calculate the distance of point i from each transformed planar segment (pd).

5. Identify all surfaces whose distances (pd) are smaller than
√
X20.95,3.

6. Project the transformed error sphere onto the surfaces satisfying condition 5 to construct an error

circle with the point’s projection as the center and radius
√
X20.95,3 − p2

d (Pythagorean theorem).

7. The point is assigned to the surface if and only if its projected circle intersects with the boundary
of that surface.

3.6.2. Algorithm 6: Intersection of an Ellipsoid and Cylinder

1. Calculate the distance of the point to the axis of the cylindrical segments
(
ρAL

)
.

2. Identify all cylinders where ρAP is smaller than
√
λmaxX20.95,3 + rcyl, where rcyl is the radius of

the cylindrical segment.
3. Find the rotation matrix, Mcyl, that orients the cylinder’s axis parallel to the z-axis following

Rodrigues rotation formula.
4. Rotate the error ellipsoid (Equation 6) and the cylindrical segment using Mcyl.

5. Project the rotated ellipsoid and cylinder onto the x−y plane. This reduced the problem to finding
the intersection between a circle and an ellipse in a 2D plane. To this end, we first identify the
closest point, PClosest, from the center of the circle (Ocyl) to the ellipse using the following steps.

6. Calculate the transformation matrix λ−
1
2 vTMT

cyl of the newly rotated error ellipse.

7. Transform the error ellipse into an error circle with radius
√
X20.95,3 and center, Oelp.
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8. Transform the center of the circle, Ocyl, into OTrans using the same transformation matrix as step 6.
This transformation further reduces the problem to identifying the closest point between the
newly transformed point (OTrans) and error circle of step 7.

9. Calculate the point of intersection, PTrans, between the line segment OTrans − Oelp and the
error circle.

10. Identify PClosest by transforming the point of intersection, PTrans, back to the correct coordinate
system (i.e., before the affine transformation of step 6).

11. Identify all segments where the distance between PClosest and Ocyl is smaller than the radius, rcyl
(the condition for the intersection of the ellipse and circle).

12. Project the rotated error ellipsoid of step 4 onto the z axis. Identify the maximum and minimum
height of the projected ellipsoid. The point is assigned to the surface if and only if its projected
height intersects with the height of the cylindrical segment.

3.7. Method of Validation of Results

To assess the effectiveness of the object classification as well as the redundant surface extraction,
the precision, recall, and accuracy are estimated following the definitions presented in [57]:

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + Fn
, (8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where TP, TN, FP, and FN are the number of true positive, true negative, false positive, and false
negative counts, respectively. The ground truth is determined through manual extraction.

Planned vs. as-built comparison for progress monitoring and dimensional compliance is also
performed. For progress reporting, the well-established earned value management (EVM) is used
to determine the project’s performance at different epochs. For dimensional quality control, the
dimensions of structural components such as columns were compared to the design as well as ground
truth measurements. For each epoch, the percentage of columns passing the standard dimensional
tolerances is also determined. The ground truth measurements for the required object dimensions were
manually estimated using measuring tape. To calculate the horizontal (two-dimensional) accuracy,
the distance root mean squared (DRMS) [58] is used. To calculate the one-dimensional accuracy, such as
in the case of slab thickness, the absolute deviation is used.

4. Experimental Results

4.1. Experiment Description

Five sets of TLS point clouds were acquired from the Graduate Student Hall of Residence (GSHR)
construction site (Figure 6) at the University of Calgary. The objective of this experiment was to
automatically monitor the progress of concrete work on a specific portion of the site (Figure 6b).
The building structure is comprised of cast-in-place reinforced concrete with flat slab floors, steel
rebars, and rectangular columns. The planned schedule for the completion of the concrete work for
each floor was one week; hence, the site was monitored roughly once every week for a duration of
five weeks. For each floor, one dataset was collected after the scheduled completion of the columns of
the floor, and another just after the completion of the slab of the floor above. The point cloud data
was acquired using the Leica HDS6100 TLS [59]. The scans were registered to the planned model
reference coordinate system using signalized targets on presurveyed site control points as described in
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Section 3.1. The number of points, number of scan stations, and registration precision per epoch is
provided in Table 1.
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Figure 6. (a) Graduate Student Hall of Residence (GSHR) construction site; (b) plan view of the portion
of the site under study.

Table 1. Number of scan stations, number of points, and registration precision per epoch.

Epoch No. of Scan Stations Total No. of Points (millions) Registration Precision (mm)

1 3 37 1.5
2 3 153 1.4
3 4 201 2.2
4 3 115 1.5
5 5 358 1.8

4.2. Extraction of Columns from Segmented Planar and Linear Features

The results of the planar and linear segmentation of the GSHR construction site using robust PCA
classification and robust complete linkage segmentation were given in [22]. Here, the planar and linear
segmentation results are used to extract structural columns through Algorithms 1 and 2. Figure 7a,b
illustrates the point cloud and segmented planar and linear features for epoch 1. In Figure 7b, the red
ovals represent two instances where the rebars were not effectively identified due to low point density
of the collected data. As can be seen in Table 1, the scan resolution was increased after epoch 1 to collect
more points and prevent the misclassification problem due to low point density [22].

Figure 7c shows the bivariate histogram of the x−y components of the normal vector of the identified
planar surfaces. Illustrated in red ovals, the histogram consists of two main modes, which represent the
planar surfaces corresponding to the columns. The two modes with the highest frequency satisfying
the orthogonality criteria of Algorithm 1, Equations (1) and (2), were identified. To provide some
perspective, the absolute value of the dot product of the two main axes was 0.0036 (Equation 2), whereas
the threshold of Equation (1) was 0.035, almost an order of magnitude larger. The boundaries of the
planar segments whose normal vectors comply with the identified modes (the final output of Algorithm
1) are presented in Figure 7d. Figure 7e shows the boundaries of the segmented columns after the
application of Algorithm 2 (i.e., segments satisfying the height and boundary conditions). In Figure 7d,
the planar surfaces that followed the main site axes but were unable to satisfy the height restriction or
boundary conditions are also marked. The planar surface shown in the blue dashed oval is the same
surface shown in Figure 7b, where low point density prevented the correct extraction of the rebars.
Since the rebars were not extracted, the surface was incorrectly eliminated following Algorithm 2.
This shows the importance of the point cloud density on the planar and linear segmentation results
and consequently the column extraction procedure. Once the point density was increased (epochs
2 through 5), all surfaces representing columns were consistently extracted correctly. The results of
the column extraction for all epochs is summarized in Table 2. As observed, the overall precision,
recall, and accuracy for the presented column extraction is 99.24%, 100.00%, and 99.31%, respectively.
The visual results of the column extraction for epochs 2 through 5 can be illustrated in Figures 8 and 9.
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Figure 7. Epoch 1: (a) point cloud; (b) robust planar and linear classification and segmentation.
The process of automated column identification: (c) histogram of the x−y components of normal
vector; (d) planar surfaces satisfying the orientation and orthogonality criteria; (e) identified columns
(segmented planar surfaces satisfying the boundary conditions); (f) generated 3D as-built model of the
column and floor.

Table 2. Precision, recall, and accuracy of the automated column extraction for each epoch.

Epoch Precision Recall Accuracy

1 95.45 100.00 96.30
2 100.00 100.00 100.00
3 100.00 100.00 100.00
4 100.00 100.00 100.00
5 100.00 100.00 100.00

Overall 99.24 100.00 99.31
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Figure 8. Epoch 2 redundant surface removal and column extraction: (a) point cloud of epoch 2;
(b) generated model of epoch 1; (c) determination of new, redundant, and old points (Algorithms 4–6);
(d) planar and linear segmentation of epochs 1 and 2 (adopted from [22]); (e) boundaries of planar
segments after applying Algorithm 1; and (f) final set of extracted columns after Algorithm 2.
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Figure 9. Results of redundant surface removal and column extraction: (a) epoch 3: point cloud
(top left), as-built model of epoch 2 (bottom left), redundant surface removal (top middle), planar and
linear segmentation (bottom middle), side-view of the extracted boundaries of columns (top right), and
as-built model of epoch 3 (bottom right); (b) epoch 4: point cloud (left), redundant surface removal
(top middle), planar and linear segmentation (bottom middle), side-view of the extracted boundaries of
columns (top right), and as-built model of epoch 4 (bottom right); and (c) epoch 5: point cloud (left),
redundant surface removal (top middle), planar and linear segmentation (bottom middle), side-view of
the extracted boundaries of columns (top right), and as-built model of epoch 4 (bottom right).
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4.3. Results of Redundant Surface Removal

The generated as-built model of the final set of extracted columns for epoch 1 is shown in Figure 7f.
Approximately one week after epoch 1, epoch 2 was acquired from the construction site. Based on the
project’s planned schedule, the ceiling and surrounding columns of the first floor were expected to be
completed. Before the point cloud of epoch 2 was processed, Algorithms 4–6 were applied to remove
possible redundant surfaces so that the remaining processes (planar segmentation and object extraction)
would only be carried out on points of newly added components. The results of the redundant surface
removal for epoch 2 are shown in Figure 8c. The newly added points, redundant points between
epochs 1 and 2, and points available in epoch 1 but not covered in epoch 2 are shown in green, blue,
and red colors, respectively.

The redundant points (shown in blue Figures 1, 8 and 9) are semantically labeled as the objects
represented by the matched surface (e.g., column represented by a plane). The processes described in
Sections 3.2 and 3.3 are then only carried out for the newly added points (green points in Figures 1,
8 and 9). Figure 8e shows the output of Algorithm 1, i.e., the planar surfaces following the main
orthogonal orientations of the site. Figure 8f shows the extracted columns, shown in different colors
following the height and boundary conditions imposed by Algorithm 2. As shown in Table 2, all columns
for epoch 2 were correctly extracted.

The results of the redundant surface removal as well as column extraction (Algorithms 1 through
3) for epochs 3 through 5 are shown in Figure 9. Table 3 presents the precision, recall, and accuracy of
the redundant surface extraction algorithm for epochs 2 through 5. The redundant surface removal
method achieved an overall precision, recall, and accuracy of 97.09%, 98.04%, and 98.79%, respectively.
The recall rate shows that a very small percentage of the new points were incorrectly added to the
presegmented surfaces of previous epochs. Upon closer examination, 95.2% of the new points that were
incorrectly identified as redundant were points close to two intersecting planar surfaces, where one
of the surfaces was not covered in the previous scan; hence, the point was assigned to the closest
presegmented surface. The rest (4.8%) were outlier points, such as mixed pixels, commonly present in
datasets acquired from construction sites that satisfied the conditions presented in Algorithms 4–6.

Table 3. Precision, recall, and accuracy of the automated redundant surface extraction.

Epochs Precision Recall Accuracy

1–2 97.44 98.70 98.04
2–3 95.71 97.10 99.38
3–4 97.16 97.71 96.09
4–5 96.70 97.78 99.65

Overall 97.09 98.04 98.79

4.4. As-Built vs. Planned BIM Comparison

4.4.1. Progress Monitoring through EVM

Using the method described in Section 3.5, the corresponding elements between those planned
and as-built were identified. Since the planned BIM did not contain 3D information related to the rebars,
only the correspondence of columns and floor slabs were examined. Figure 10 (right) shows the result
of the superimposition of the planned and the as-built elements. The object correspondences between
the planned and as-built elements are visualized through color-coding. On-schedule, behind-schedule,
and ahead-of-schedule objects are shown in blue, red, and green colors, respectively.
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Figure 10. 4D planned model (left), 4D as-built model (middle), and 4D superimposition (right) for
(a) Epoch 1, (b) Epoch 2, (c) Epoch 3, (d) Epoch 4, and (e) Epoch 5.

The colors presented in Figure 10 help with visual identification and reporting of the progress
of specific construction elements (i.e., in activity level). To determine the performance of the whole
project at each baseline, EVM is commonly employed [18]. Using the basic principles of EVM, the
budgeted cost of work scheduled (BCWP), budgeted cost of work performed (BCWP), and schedule
performance index (SPI) for each epoch were calculated. The result of the EVM is presented in Table 4.
Using the calculated SPI, the schedule performance of the whole project at each epoch was determined
(behind, ahead of, and on schedule). According to earned value analysis, SPI smaller than, equal to,
or larger than 1 demonstrates that the project is behind, on, or ahead of schedule, respectively.
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Table 4. Result of the earned value management to determine the project’s progress at each epoch.

Epochs BCWS 1

(Units of Cost)
BCWP 2

(Units of Cost) SPI 3 Schedule Performance of
Project

1 1.73 1.29 0.74 Behind
2 2.56 2.56 1.00 On
3 3.62 3.35 0.93 Behind
4 4.18 4.18 1.00 On
5 4.90 5.57 1.14 Ahead

1 Budgeted cost of work scheduled (BCWS), 2 Budgeted cost of work performed (BCWP), 3 Schedule performance
index (SPI).

4.4.2. Dimensional Compliance Control

Since no information about the rebars’ placements was available in the planned BIM, only the
conformity of the as-built dimensions of the columns and the slab thickness of those planned are
presented. The planned cross-sectional dimensions of the columns (width and length) and thickness
of the slabs were 350 mm, 600 mm, and 175 mm, respectively. The width and length of these
columns as well as the slab thickness were also measured by means of a measuring tape as ground
truth. Based on the information presented in [52], the tolerance of the cross section of a rectangular
column with planned dimensions between 305 mm and 914 mm is between +13 mm and −10 mm
(i.e., the column’s dimensions can exceed more than they can be reduced due to designed strength
limitations). The tolerance of the thickness of the concrete slabs is ±6 mm. For each epoch, the
DRMS [58] of the dimensions of the columns’ cross sections from those planned were calculated. The
DRMS was also calculated for the estimated dimensions compared to ground truth measurements
(dimensions obtained by measuring tape) for comparison. The results of the column dimensional
compliance are presented in Table 5. The percentage of columns passing the cross-sectional tolerance
criteria for each epoch is also provided in Table 5. A column is considered compliant if it satisfies the
tolerance check criteria in both width and length. As illustrated, 96.21% of the columns (127 out of 132
identified columns) in all datasets complied with their planned dimensions (i.e., their cross-sectional
dimensions were within +13 mm and −10 mm from the planned dimensions).

Table 5. Accuracy assessment of column cross-section dimensions.

Epochs DRMS 1 Compared
to Planned (mm)

DRMS Compared to
Ground Truth (mm)

Columns within
Tolerance (%)

1 9 2 90.48
2 6 1 100.00
3 8 2 96.15
4 6 2 100.00
5 8 1 93.10

Overall 7 1 96.21
1 Distance root mean squared (DRMS).

Accordingly, the difference in the slab thickness from the designed as well as the ground truth for
floors 2 and 3 is calculated and presented in Table 6. The first floor was on the ground (slab on grade),
and hence, calculation of the slab thickness is not relevant. As illustrated, the thickness of the slab of
both floors 2 and 3 are within 6 mm of the planned dimensions.
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Table 6. Accuracy assessment of floor slab thickness.

Floors Estimated Slab
Thickness (mm)

Absolute Difference
from Plan (mm)

Absolute Difference
from Ground Truth

(mm)

2 173 2 0
3 179 4 1

5. Summary of Findings and Discussion

The objective of the experiment was to assess the effectiveness of the column extraction and
redundant point removal methods (Algorithms 1–6) in real-world point cloud data acquired from
cast-in-place regular rectangular concrete construction. It was shown that 132 out of 133 columns were
extracted correctly using Algorithms 1 and 2 as presented in the manuscript. In all five datasets, only
one column was not correctly extracted. This was attributed to the low point density of the scan in
epoch 1, preventing the linear classification and segmentation of [22] to identify the rebars on top of this
particular column. Once the point density of the TLS instrument was increased for prospective scans,
the column extraction was able to correctly extract the remaining columns consistently. The recall rate
of the column extraction was 100%, which demonstrates the robustness of the method to type II errors
(i.e., no other object was incorrectly identified as a column).

The redundant surface removal was also applied to epochs 2 through 5 with an overall precision,
recall, and accuracy of 97.09%, 98.04%, and 98.79%, respectively. The recall rate suggests that only
a small portion of the points of the new scan was incorrectly identified as redundant. Upon closer
examination, it was observed that 95.2% of the incorrectly classified points were points of an adjacent
surface where the surface was not covered in the previous scan.

The success of the algorithms in the removal of redundant as well as the semantic labeling of
points enabled the automatic comparison of as-built vs. planned elements. Here, two applications,
namely progress monitoring as well as dimensional compliance control, using the proposed methods,
were presented. It was shown that the system identified and visualized the progress of construction
work in activity level, which is one of the limitations of current progress-monitoring practices in the
industry [60]. It was also shown that the produced results can be used to determine the performance
of the whole project at a given baseline using some project controls method, such as EVM.

The as-built dimensions of the cross section of the rectangular columns and the thickness of the
floor slabs were compared to that of the planned to determine potential dimensional discrepancies.
It was shown that the thickness of the flat slabs of floors 2 and 3 complied with the planned dimensions
(i.e., within standard tolerances). It was also shown that 127 out of the 132 identified columns were also
within the acceptable tolerances from their planned dimensions. The ground truth of the dimensions
of the columns and slabs was collected using a measuring tape to a millimeter precision. The DRMS
of all the dimensions of columns to the ground truth was approximately 1 mm, which shows good
agreement since most quality standards in industrial construction allow up to 5 mm deviation in each
direction [8].

6. Conclusions

This manuscript provides a robust framework for the semantic labeling of common reinforced
structural concrete components from unorganized point clouds acquired at regular rectangular
buildings during construction. The framework first classifies and segments registered point clouds
into planar and linear features using robust PCA, Monte Carlo simulation, and the robust variation of
the complete linkage hierarchical clustering method, as proposed by [22]. Columns, floors, and rebars
are then extracted through relationship-based reasoning derived from the specific characteristics of
reinforced concrete structures and regular rectangular buildings. The framework also incorporates a
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novel redundant point removal method to remove points of prospective scans that were classified into
objects in previous scans.

Five sets of point cloud data were acquired from the GSHR construction site at the University of
Calgary to assess the effectiveness of the proposed methods for semantic labeling and redundant point
removal. The results substantiated the effectiveness and the ability of the column extraction to extract
132 out of 133 columns in all datasets with an overall object extraction accuracy of 99.31%. The redundant
point removal also achieved an overall extraction accuracy of 98.79%, which demonstrates its
applicability in redundant point removal of point clouds acquired from construction sites.

Two applications, namely progress monitoring and dimensional quality control, of the proposed
column extraction and redundant point removal were presented. It was observed that these methods
enable the automated color-coding for visual representation of progress in activity level. An EVM was
also carried out to determine the overall project’s performance at each epoch. The dimensions of the
extracted columns and slabs were also compared to the planned and ground truth. It was shown that
127 out of the identified 132 columns and both floor slabs (levels 2 and 3) passed the tolerance criteria
set within the standard code for concrete structures.

The methods presented in this manuscript showed great promise for the automated extraction
of common structural elements from reinforced concrete structures with applications to automated
progress monitoring and dimensional compliance control. The following provide additional avenues
for future research and expansion:

• Examination of the methods proposed in this manuscript for progress monitoring and dimensional
conformity control of rebars in reinforced concrete projects where a detailed planned BIM,
containing the complete details of the rebars, exists.

• The simultaneous application of scan vs. BIM, supervised learning, and the methods proposed in
our study for the extraction of structural components with complex geometries. Additionally,
the application of novel methods used to reduce the dependency of semantic labeling on new
training data, such as those presented in [61], for TLS acquired from construction sites is an
interesting research topic for future investigations.

• The extraction of temporary objects, such as scaffolds and formwork, from TLS acquired from
construction sites using validated methods applied to photogrammetric point clouds, such as
those proposed in [62].

• Evaluations of methods proposed by [63] for surface flatness assessment to generate a standardized
surface flatness metric.

• Development of a fuzzy logic-based uncertainty model for the estimation of the location of
structures, similar to the method proposed by [64] for the prediction of the locations of utility data.
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