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Abstract: Rapid identification of affected areas and volumes in a large-scale debris flow disaster
is important for early-stage recovery and debris management planning. This study introduces
a methodology for fusion analysis of optical satellite images and digital elevation model (DEM) for
simplified quantification of volumes in a debris flow event. The LiDAR data, the pre- and post-event
Sentinel-2 images and the pre-event DEM in Hiroshima, Japan affected by the debris flow disaster on
July 2018 are analyzed in this study. Erosion depth by the debris flows is empirically modeled from
the pre- and post-event LiDAR-derived DEMs. Erosion areas are detected from the change detection
of the satellite images and the DEM-based debris flow propagation analysis by providing predefined
sources. The volumes and their pattern are estimated from the detected erosion areas by multiplying
the empirical erosion depth. The result of the volume estimations show good agreement with the
LiDAR-derived volumes.
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1. Introduction

Landslides triggered by heavy rainfalls and earthquakes have been one of the frequently occurring
natural disasters in all over the world. A landslide is defined as a movement of a mass of rock, debris or
earth down a slope, and involves various slope movements such as rotational/translational landslides,
rockfalls, topples, debris flows and others [1,2]. Debris flow is a form of rapid movement of loose soil,
rocks and driftwoods flowed to downstream along valleys due to slope failures. Debris flows have
produced severe damage to built-up areas in downstream since enormous debris largely spread to
buildings, roads and other infrastructures.

Chugoku district, located in the western part of Honshu Island, Japan including Hiroshima
prefecture is widely covered with weathered granites, and has been experienced by many debris flow
disasters. On 29 June 1999, rainfall-induced debris flows brought damage to the residential areas with
31 fatalities in the western part of Hiroshima city [3]. On 20 August 2014, heavy rainfall-induced
debris flows hit the residential areas and produced severe structural damage including 76 fatalities
in the northern part of Hiroshima city [4,5]. After these debris flow disasters in Japan, the national
and local governments have undertaken the disaster mitigation measures such as new construction of
debris control dams, re-identification of hazardous zones and their public disclosure to citizens. At the
beginning of July 2018, an extremely heavy rainfall occurred over wide areas of Japan. Despite the efforts
by the governments, extensive damage was produced by huge number of flooding and landslides,
including debris flows triggered by the heavy rainfalls, mainly in the western part of Japan. The damage
includes 216 fatalities, more than 20,000 damaged buildings and 8,500 houses inundated above floor
level [6,7]. The most severe damage was recorded in Hiroshima prefecture including 108 fatalities,
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six missing people, a total of 14,862 damaged buildings and 689 destroyed houses [8]. The damages in
Hiroshima were caused mainly by debris flows occurred at approximately 8,000 sites.

2. Related Works and Research Objective

In order for emergency response, early-stage recovery and debris management to work efficiently
following such landslide disasters, rapid identifications of affected areas and volumes of debris are
indispensable. Remote sensing images such as aerial photographs and satellite images have contributed
to detection of landslide areas over a wide area. Since trees and grass on the surface of slopes are
collapsed and flowed to downstream in landslide events, vegetation indices such as the normalized
difference vegetation index (NDVI) have been used as one of key parameters for landslide detection from
remote sensing images [9–16]. Change detection using pre- and post-event images have been widely
used for detecting areas affected by a disaster. In particular, pixel-based change detection techniques
have been applied to middle- to high- resolution images for landslide detections [9–11]. More recently,
object-oriented approaches have been introduced for landslide identification based on change detection
using pre- and post-event images [17,18], change detections with topographical information derived
from DEM [14], and fusion analysis of post-event image and DEM [13]. These object-oriented
approaches would be effective, especially for very high-resolution images with the resolution of less
than 1 m, because not only spectral information (tone, color), but also spatial features (size, shape,
texture and pattern), can be incorporated in the identifications. However, in most of the object-oriented
approaches, parameter tuning for image segmentation and selection of training samples are required
to achieve accurate identification. On the contrary, although the pixel-based change detections are
generally sensitive to the salt-and-pepper effect, fewer parameters are required than object-oriented
approaches. Thus, they are still effective for the middle-resolution (around 10 m) images and for quick
response after a disaster. In order to reduce false alarms, such as seasonal change of vegetation and
mixed pixel-induced noises other than landslide-related changes, additional information would be
necessary in the pixel-based approach.

Digital elevation models (DEMs) are also valuable data sources to evaluate topographical
characteristics of the slopes. Recently, DEM-based debris flow susceptibility mapping methodologies
have been developed for predicting and/or evaluating debris flow propagation areas [19–22]. Most of
the debris flow simulation techniques require detailed soil parameters such as predefined volumes,
soil thickness, weights, frictions and others. However, it is difficult to define such parameters for over
a wide area before an event. Among the debris flow simulation techniques, Flow-R [20] can estimate
regional-scale debris flow susceptibility mapping by providing predefined or automatically defined
sources without assuming such detailed parameters of soil conditions. Therefore, the technique would
be helpful to assist the rapid identification of debris flow propagation areas immediately after an event.

Light detection and ranging (LiDAR)-derived DEMs have been utilized for quantifying volumes
of landslides [23–26]. The DEMs created from stereo pairs of satellite images have been also used for
landslide volume estimations [27,28]. The volumes were estimated by aggregating the elevation change
between pre- and post-event DEMs in landslide areas. However, in order to obtain such high-resolution
DEMs, numbers of observations are required to cover whole affected areas in a large-scale disaster
such as the July 2018 event in Hiroshima. If such LiDAR-derived DEMs are not available in affected
areas, landslide areas need to be delineated manually in most cases from post-event aerial photographs
before assessing the debris flow disaster. The preparation of the LiDAR-derived DEMs and the
identification of landslide areas require a lot of time and labor. According to the previous studies
for debris flow volumes [29–34], scaling relationships have been found between landslide areas and
volumes. The results suggest the possibility of simplified volume estimation only from landslide areas
by developing an empirical relationship between areas and volumes. In order for a rapid service for
identifying landslide areas and quantifying volumes of debris flows, an automated or semi-automated
technique without preparing post-event LiDAR data and manual delineation of landslide areas would
be more effective.
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Based on the backgrounds shown in Figure 1, this study proposes a fusion analysis technique of
optical satellite images and pre-event DEM to detect landslide areas and quantify volumes of debris
flows. First, an empirical erosion depth of debris flows is developed by analyzing elevation change
between pre- and post-event LiDAR-derived DEMs observed in the affected areas by the debris flow
disasters in Hiroshima. Second change detection technique is applied to identify landslide areas using
vegetation indices between pre- and post-event satellite images. Third debris flow propagation analysis
is performed by applying the regional-scale susceptibility mapping technique [Flow-R, 20] to pre-event
DEM. Erosion areas due to the debris flows are extracted by combining the vegetation-based change
detection and the debris flow propagation analysis. Volume is estimated by multiplying the developed
empirical erosion depth to the detected erosion areas. Finally, the applicability of the technique is
validated by comparing the estimated debris flow volumes with the LiDAR-derived volumes.Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 18 
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typical unaffected areas selected for accuracy assessment of LiDAR data. (b) Location of Hiroshima 
prefecture. (c) Ground photograph of debris flow with large blocks flowed during the 2018 event 
in Kumano town. 

Figure 1. (a) Target area in Hiroshima prefecture, Japan. Background image is the post-event
satellite Sentinel-2 image. Yellow triangles indicate sources of debris flows in the 2018 event [35].
White rectangular indicates LiDAR data area analyzed in this study. Blue stars (1-3) represent typical
unaffected areas selected for accuracy assessment of LiDAR data. (b) Location of Hiroshima prefecture.
(c) Ground photograph of debris flow with large blocks flowed during the 2018 event in Kumano town.

3. Methodology and Used Data

The target area of this study is the southern part of Hiroshima prefecture, Japan, severely damaged
by the debris flows in the July 2018 event. Figure 1a,b show the location of Hiroshima. As shown by
yellow triangles, debris flows were occurred at approximately 8,000 locations [35]. Most of the landslides
collapsed from the evening of July 6 to the morning of July 7. During the event, maximum amounts
of 72-hour rainfalls reached more than 400 mm in the affected areas [6]. Many buildings, roads and
railways in Hiroshima city, Saka town, Kumano town, Kure city, Higashi-Hiroshima city, Takehara city
and Mihara city were severely damaged by the debris flows. As shown in Figure 1c, large blocks with
the size of larger than 3 m were flown to the residential area in Kuamano town.

Figure 2 illustrates the schematic diagram of a debris flow event. The collapse starts at a source
point in a slope, and debris including soil, mud and rock flow to downstream along a valley thalweg.
In the upstream area, the surface grounds are eroded due to the slope failures and the elevation
decreases after the event. On the contrary, in the downstream area, the elevation increases after the
event due to the debris deposition process. When the debris flow propagation area is divided to the
erosion area and deposition area as shown in Figure 2, the erosion area can be detected from remotely
sensed images because the collapse in the vegetated slope can be clearly identified from remote sensing
images. In contrast, the identification of the deposition area is more difficult, because the discrimination
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between the widely spread debris and other ground features such as buildings and bare grounds is
not an easy task. Furthermore, the quantification of volumes from the deposition data is also difficult
because it is almost impossible to quantify volumes flowed into affected buildings, even from LiDAR
data, and extensive disposal of debris starts immediately after an event in affected residential area.
On the other hand, since debris movement in an erosion area is more stable after a while from an event,
reliable quantification of volumes can be achieved from the erosion data.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 18 
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Figure 2. Schematic plan and cross-section of debris flow area.

In this study, a fusion analysis technique of satellite images and DEM is examined to identify
erosion areas of debris flows. An empirical erosion depth model is developed from the relationship
between erosion areas and volumes derived by LiDAR data analysis. A methodology for simplified
quantifying debris flow volumes is proposed by combining the erosion area detection and the empirical
erosion depth. Figure 3 shows the flowchart of the detection of erosion areas and the volume estimation
for debris flows. First, elevation changes in erosion areas of debris flows are analyzed using the pre-
and post-event LiDAR-derived DEMs in Hiroshima to obtain the empirical erosion depth model.
Second, pixel-based change detection is applied using the pre- and post-event optical satellite images
by NDVI differencing to extract the erosion candidate areas. Third, debris flow propagation analysis is
performed by using the pre-event DEM and Flow-R [20] in order to extract the candidate areas affected
by debris flows. Manually and automatically identified source points of the debris flows are examined
in the analysis. Manual sources in the actual event are identified from the visual interpretation of
the post-event aerial photographs. Automatic sources are extracted from the thresholds of slopes
and upslope contributing areas proposed by Horton et al. [20]. Combining the result of the change
detection, the debris flow propagation analysis and the slopes, erosion areas due to debris flows are
detected. Finally, volumes of the debris flows are estimated from the detected erosion areas and the
empirical erosion depth model.
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Figure 3. Flow of LiDAR data analysis and fusion analysis of optical satellite images and DEM.

The data list used in this study is summarized in Table 1. The data observed before and after
the July 2018 debris flow disaster (this event hereafter is referred to as the 2018 event) in Hiroshima
is mainly analyzed in this study. The high-resolution LiDAR-derived DEMs are provided by the
Hiroshima prefectural office. The pre-event LiDAR was observed in 2015 to 2017. The post-event
LiDAR was observed at 15 to 24 July 2018. The spatial resolution of the DEMs is 1 m. The coverage of
the LiDAR data analyzed in this study is shown by a rectangle in Figure 1. The area covers the heavily
damaged regions in the 2018 event such as the northern part of Kure city, Kumano town and Saka town.
The optical satellite Sentinel-2 images [36] are used in this study because of their wide coverage, no cost
and relatively high resolution. The pre- and post-event images were observed at 1 June and 16 July 2018,
respectively. The visible and near infrared band images are analyzed. The spatial resolution of the
images is 10 m. The DEMs developed by Geospatial Information Authority of Japan (GSI) [37] are used
for the debris flow propagation analysis. The DEM in most of the target area was derived by LiDAR.
Since LiDAR observation was not conducted in some area, the DEM was created by sequential aerial
photo stereopairs. In this study, the DEMs derived from LiDAR and steraopairs were merged for the
following analysis. These data was observed in 2015. Although the spatial resolution of the original
DEM is 5 m, the resolution is converted to 10 m by down-sampling with cubic convolution technique
to combine with the satellite image analysis and to reduce the computation time during the debris flow
propagation analysis. The target area of this study is shown in Figure 1 as illustrated by the post-event
Sentinel-2 image, covering most part of the affected areas by the 2018 event in Hiroshima prefecture.

Table 1. Characteristics of spatial data analyzed in this study. Spatial resolution of DEM for debris flow
propagation analysis is converted to 10 m from 5 m by down-sampling.

Data Timing Acquisition Date Spatial Resolution (m)

LiDAR-derived DEM *1 Pre-event 2015–2017 1

Post-event 15–24 July 2018 1

Optical satellite image
(Sentinel-2 *2)

Pre-event 1 June 2018 10

Post-event 16 July 2018 10

DEM derived by LiDAR
and photogrammetry *3 Pre-event 2015 10(5)

Data source: *1 Hiroshima prefecture; *2 Copernicus (https://scihub.copernicus.eu/dhus/); *3 Geospatial Information
Authority of Japan (https://fgd.gsi.go.jp/download/).

https://scihub.copernicus.eu/dhus/
https://fgd.gsi.go.jp/download/
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4. LiDAR Data Analysis

As discussed in the previous studies [38,39], LiDAR-derived DEMs include uncertainties due to
horizontal and vertical positional errors, LiDAR sampling density and filtering non-terrain features
such as buildings and vegetation. Before analyzing the LiDAR-derived DEMs, vertical accuracy of the
DEMs are assessed by comparing the elevations in areas unaffected by the debris flows. Three typical
land surface such as slope, paddy field and built-up area are selected as shown in Figure 1 and the
difference of elevations between the pre- and post-event DEMs are calculated. The subset area is
approximately 500 × 400 m2. Figure 4 shows the histograms of the difference of elevations in the three
areas. The values in brackets indicate the mean value and standard deviation in each area, respectively.
The standard deviation in the slope area is slightly larger than those in other areas. These standard
deviations are almost comparable to the errors discussed in the previous studies [38,39].Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 18 
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Figure 4. Histograms of difference of elevation between pre- and post-event LiDAR-derived DEMs in
typical unaffected land surfaces.

The debris flow affected areas were delineated by visual interpretation of post-event aerial
photographs and the polygon data is available in the website of the Association of Japanese
Geographers [35]. Figure 5a shows the post-event aerial photograph in the affected area of Kumano town.
The polygons indicate the interpreted debris flow affected areas. The attributes of erosion and deposition
are assigned to each polygon by using the elevation change (after-before) obtained from the pre- and
post-event LiDAR-derived DEMs as shown in Figure 5b. While the elevation is significantly decreased
after the event in the erosion areas, the elevation is slightly increased in the deposition areas. Due
to the errors in the LiDAR-derived DEMs shown above, we found elevation changes in the slopes
other than the debris flow areas as shown in Figure 5b. This indicates that it would be still difficult to
automatically identify the landslide areas without the help of aerial photographs.
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Figure 5. (a) Visually delineated erosion and deposition areas in debris flows in Kumano town.
Background aerial photograph was observed after the event. (b) Elevation change (after-before) of
LiDAR-derived DEMs.

The volumes of the debris flows are calculated by aggregating the negative elevation changes
in each delineated erosion area. Figure 6a shows the relationship between area (A) and volume
(V) derived from the erosion data of the 2018 event. The relationship obtained from the analysis of
the LiDAR-derived DEMs in the debris flow event on 20 August 2014 in Hiroshima (hereafter the
2014 event) [5] is also plotted. Totally 637 debris flows are analyzed in this study. The data varies
1.6 × 101 m2

≤ A ≤ 1.1 × 105 m2 and 4.0 × 101 m3
≤ V ≤ 8.6 × 104 m3. The empirical relationships

derived from the previous debris flow studies [29–33] summarized by Guzzetti et al. [34] are also
illustrated in the figure. In the previous studies, the empirical relationships were modeled by an
equation of the form V = αAγ. The equations, range of A and number of analyzed data of the previous
studies are summarized in Table 2. Whereas the areas in the previous studies mean the total debris flow
areas including erosion and deposition areas, this study limits only the erosion areas in the analysis.
The data distributions of the 2014 and 2018 events are almost consistent with the previous empirical
relationships. From a linear regression analysis based on least square approximation for the 2014 and
2018 events to derive the coefficients α and γ of the form V = αAγ, the equation of V-A is developed as
shown below.

V = 0.285A1.127 (1)
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Figure 6. (a) Relationship between landslide area and volume of debris flow events. The relationships
of the 2014 and 2018 events are derived from the LiDAR data analysis in Miura [5] and this study,
respectively. (b) Relationship between erosion area and erosion depth derived from LiDAR data
analysis in the 2014 and 2018 events. Empirical relationships derived in the previous debris flow studies
are illustrated by colored lines. Empirical relationships derived from regression analysis and mean
depth of the 2014 and 2018 events are plotted as blue dotted and solid lines, respectively.

Table 2. Empirical relationships linking area to volume obtained in this study and the previous studies
[29–33]. Equation of Larsen and Torres-Sanchez [30] was developed by Guzzetti et al. [34].

ID Equation Minimum A (m2) Maximum A (m2) N Source

1 V = 0.285A1.127
1.6 × 101 1.1 × 105 637

Regression model (This study)

2 V = 0.782A Mean depth model (This study)

3 V = 0.0329A1.3852 3 × 101 5 × 102 30 Innes (1983)

4 V = 1.826A0.898 5 × 101 1.6 × 104 1019 Larsen and Torres-Sanchez (1998)

5 V = 0.1549A1.0905 7 × 102 1.2 × 105 124 Guthrie and Evans (2004)

6 V = 0.39A1.31 1 × 101 3 × 103 51 Imaizumi and Sidle (2007)

7 V = 0.19A1.19 5 × 101 4 × 103 11 Imaizumi et al. (2008)

The derived regression line is plotted in Figure 6a. The correlation coefficient between area and
volume is 0.91. Since the dependency of volume on area is not significant in the equation (γ = 1.127),
area-independent model (γ = 1.0) would be applicable for more simplified scaling.

In this study, average erosion depth is defined as erosion volume divided by erosion area.
Figure 6b shows the relationship between the erosion areas and the depths obtained in the 2014
and 2018 events. The depth models from the regression analysis, including the previous empirical
models shown above, are plotted as the exponential curves. Although the average erosion depths
scatter is around 0 to 1.5 m, the variation of the data falls within the previous empirical relationships,
and no significant dependency on the area is found for the erosion depths. The erosion depth can be
approximated by an area-independent model. The mean value of the erosion depths is calculated
at 0.78 m, as shown by the solid line. The area-independent erosion depth model (mean depth
model) shown in Equation (2) would be more convenient for rapid and simplified volume estimation,
because the total volume can be estimated directly from the pixel-based analysis without delineating
landslide areas.

V = 0.782A (2)

The empirical relationship of V-A by the mean depth model is also plotted in Figure 6a.
The difference between the regression model and mean depth model is approximately 0.2 in logarithmic
scale at maximum. Therefore, the mean erosion depth of 0.78 m is adopted for volume estimation in
this study.
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5. Fusion Analysis of Optical Satellite Images and DEM

5.1. NDVI-based Change Detection

The Sentinel-2 satellites were launched under the Copernicus Programme managed by the
European Commission for the purpose of the optical imaging mission for land service [36].
The Sentinel-2A and Sentinel-2B launched on July 2015 and March 2017, respectively, are now
operating. The pre- and post-event images were observed by the Sentinel-2A and the Sentinel-2B,
respectively. The Level-1C products of the images contain orthorectification using a 90 m-grid DEM and
an atmospheric correction of top-of-atmosphere [36]. In this study, the Level-2A images are developed
from the Level-1C products by applying an atmospheric correction to obtain bottom-of-atmosphere
reflectance products based on the Sen2Cor algorithm for the Sentinel-2 toolbox [40]. The Level-2A
images are used in the following analysis. The Level-2A products also include automatically detected
cloud and shadow mask. The pixels in the cloud and shadow masks of the pre- and post-event images
are eliminated before analyzing.

Figure 7a,b show the close-up of the pre- and post-event Sentinel-2 images in the same area of
Figure 5. False color images are displayed in the figures, indicating that the red colors represent strong
reflections of vegetation in the near infrared band. The erosion areas generated by the debris flows
can be easily identified from the decrease of the red color areas. In order to quantify the vegetation
change, normalized difference vegetation index (NDVI) is calculated from each image based on the
equation below.

NDVI =
NIR−Red
NIR + Red

(3)
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Here, NIR and Red indicate the digital numbers of near infrared and red band images, respectively.
NDVI is related to the amount of greenness in a pixel and yields a number from −1 to +1. A higher
NDVI value means a higher density of vegetation. Pixel-based change detection is applied to the pre-
and post-event NDVI images. Figure 7c shows the distribution of the NDVI change (after-before).
We can clearly identify the significant decrease of NDVI in the erosion area.

A simple thresholding technique is applied to detect candidates of the erosion areas from the
NDVI difference image. Figure 7d shows the histogram of the NDVI change. The data distribution
can be approximated by normal distribution. The mean value (µ) and the standard deviation (σ) are
shown in the figure. The author examined the thresholds for pixel-based damage detection from
optical images [41] and determined the threshold value at µ+ 1.5σ by comparing detected pixels
with ground truths. In this study, a preliminary analysis is performed by setting the three thresholds,
namely µ− 1.0σ (T1), µ− 1.5σ (T2) and µ− 2.0σ (T3) as shown by arrows in Figure 7d. Since we found
overestimation and underestimation detected by T1 and T3, respectively, T2 is selected as the threshold
value for the erosion candidate detection. The pixels whose NDVI change is smaller than T2 are
classified to erosion candidate areas.

5.2. Debris Flow Propagation Analysis

Only from the NDVI-based change detection, numbers of misdetections are extracted, such as
seasonal change of the vegetation. In order to reduce such misdetections, numerous efforts have
been undertaken by calibrating the geometric and radiometric characteristics and by including land
use information [9–11,13,14,41]. In this study, the regional-scale debris flow propagation analysis,
Flow-R [20] is performed to identify the candidates of debris flow affected areas including the
erosion areas.

Flow-R is based on spreading the algorithm of flow accumulation. Flow-R can assess debris
flow susceptibility by providing source areas, and subsequently simulating flow spreading based on
multi-flow direction algorithm [42]. The simulation stops when the estimated debris flow velocity
or travel angle in the distal zone reach a given criteria. Although several input parameters are still
necessary for the propagation analysis, parameters for soil conditions that are difficult to define over
a wide area are not required.

In the method, the debris flow susceptibility in each cell is calculated by the equations below:

pi =
p f d

i pp
i

8∑
j=1

p f d
j pp

j

p0 (4)

p f d
i =

(tan βi)
x

8∑
j=1

(tan βi)
x

(5)

pp
i = wα(i) (6)

Here, i and j are flow directions. pi and p0 indicate the susceptibility in a cell i and the susceptibility
previously determined in a central cell, respectively. The susceptibility in a rupture starting cell is
set at 1.0 in the calculation. p f d

i and pp
i represent the flow proportion according to the flow direction

algorithm and flow proportion according to the persistence, respectively. tan βi is the slope gradient
between the central cell and the cell in direction i, x is the variable exponent. w and α(i) are the weight
to the direction α(i) and the angle between the previous direction and the direction from the cell to cell
i (0, 45, 90, 135 and 180).

The parameters for Equation (5) and (6) adopted in this study are summarized in Table 3.
The modified version of the Holmgren method [42], introduced in Horton et al. [20], is used in the
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flow direction algorithm. A factor dh (m), is given to the elevation of the central cell during calculating
the gradients to avoid unexpected interruption by local convexity and concavity of the elevations.
The simplified friction limited model characterized by a minimum travel angle is used to calculate the
maximum possible runout distance. The minimum travel angle is set at 7 (degree). The maximum
velocity is set at 15 (m/s), as not to exceed realistic velocities during the propagation analysis as shown
in Table 3. The parameters for flow direction algorithm, travel angle and velocity are determined
because they were commonly used for fine-grained flows in Horton et al. [20].

Table 3. Parameters and criteria used in Flow-R analysis.

Spreading Algorithm
Direction Algorithm Holmgren (1994)

Modified
x 4

dh (m) 2

Persistence Weights, w Default (Uniform weights
1.0 for all directions)

Energy calculation Friction loss function Threshold of travel angle(deg.) 7

Energy limitation Maximum velocity(m/s) 15

The applicability of the parameters were already examined to reproduce the maximum runout
distance and propagation areas of the debris flows in the 2014 event in Hiroshima [43]. The typical
debris flow area and the damaged area in the 2014 event is shown in Figure 8a. Figure 8b shows the
result of the debris flow propagation based on the parameters in Table 3. The extent and maximum
runout distance of the event were slightly overestimated, but almost successfully reproduced by the
criteria. On the other hand, Figure 8c shows the result of the propagation when the flow proportion
weights for persistence, pp

i are changed to the Gamma’s criteria [44] introduced in Horton et al. [20].
As shown in Table 4, the Gamma’s criteria provide larger weight for straightforward propagation
(w0 = 1.5) and do not allow backward propagation (w180 = 0). The results show that the Gamma’s
criteria significantly underestimated the actual debris flow area because the wide spreading in the 2014
event was not reproduced by the criteria.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 18 
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Figure 8. (a) Debris flow area with post-event aerial photograph observed after the 2014 event in
Hiroshima. (b) Debris flow propagation area by Flow-R analysis based on the parameters in Table 3.
(c) Debris flow propagation area by Flow-R analysis based on Gamma’s criteria [44] for weights in
persistence function as shown in Table 4.

Table 4. Comparison of weights for persistence function in spreading algorithm in Equation (6).

w0 w45 w90 w135 w180

Default 1 1 1 1 1

Gamma [2000] 1.5 1 1 1 0
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Two kinds of source areas are provided in the debris flow propagation analysis. One is the manual
source points visually interpreted from the aerial photographs in the actual 2018 events. The other
is automatic source areas automatically detected from the criterion proposed in Horton et al. [20].
Two criterion were proposed for extreme and rare events as shown in Equations (7) and (8), respectively.{

tan βthres = 0.32S−0.2
uca if Suca < 2.5 km2

tan βthres = 0.26 if Suca ≥ 2.5 km2 (7)

{
tan βthres = 0.31S−0.15

uca if Suca < 2.5km2

tan βthres = 0.26 if Suca ≥ 2.5 km2 (8)

Here, tan βthres is the slope threshold, and Suca is the upslope contribution area. Although the
manual source points are expected to reproduce more accurate debris flow propagation areas, the visual
identification of the sources would be time-consuming. If source areas can be automatically and
accurately determined without visual interpretation of aerial photos, rapid debris flow assessment can
be achieved. In order to examine the applicability of the automatically defined sources for assessing
the actual debris flow areas, the debris flow propagation areas are estimated not only by using the
manually defined sources, but also by using two automatically defined source areas. The automatically
defined source areas are determined only by the topographical characteristics in this study, and do
not consider other external factors such as site-dependent rainfall intensities. This implies that all the
potential sources would be simultaneously collapsed in whole the target area.

Figure 9a shows the estimated propagation areas by the manually identified source points.
Compared to the debris flow areas of the 2018 event, the erosion areas are correctly simulated by the
analysis. On the contrary, the deposition areas are mostly overestimated, because the analysis does not
consider the volume in each collapse and the parameters are set to reproduce the maximum runout.
Figure 9b shows the estimated propagation areas by the automatic source areas based on the criteria
for extreme event in Equation (7). Since the source areas determined from this criteria are located
at much lower part of the slopes than the 2018 event, the erosion areas are largely underestimated.
This means that the much more severe criteria is required to reproduce the sources of the 2018 event.
When the criteria for rare events shown in Equation (8) are given for source estimation, source areas
are not detected in this area, indicating that this criteria is far from sufficient to reproduce the debris
flows in this area.
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Figure 9. (a) Debris flow propagation areas by Flow-R analysis using manually identified sources.
(b) Debris flow propagation areas using automatically identified sources based on criteria for extreme
event. (c) Slope gradients with debris flow areas. (d) Cumulative frequency of slopes in erosion and
deposition areas.

Figure 9c shows the distribution of the slope gradients of the DEM. The number of pixels are
aggregating to count the slopes in the erosion and deposition areas. Figure 9d shows the cumulative
frequencies aggregated in the erosion and deposition areas. Since slope for approximately 98% in the
erosion area is higher than 5 (deg.), the threshold value for slope is set at 5 (deg.) in order to eliminate
misdetection in flat zones.

6. Estimation of Debris Flow Volumes

Combining the NDVI-based change detection and the Flow-R-based propagation analysis,
the erosion areas created by debris flows are detected. When the pixels are extracted by the change
detection, estimated by the debris flow propagation analysis and steeper than 5 degree, they are
classified to the erosion areas. Finally, isolated pixels defined as a detected pixel surrounding all by
undetected pixels are eliminated from the results. Figure 10 shows the distribution of the detected
pixels using the manual source points in the Flow-R analysis. Approximately 5% of the detected pixels
are reduced by the elimination in this case. Although some pixels are over-detected in the downstream,
most part of the erosion areas are successfully detected by the fusion analysis. The results based on the
manual source points are mainly discussed in the following analysis. The volumes are estimated by
multiplying the mean value of the erosion depth (0.78 m) to the detected areas. Figure 11 shows the
distribution of the estimated volumes aggregated by 250 m mesh map. Large number of volumes are
estimated in the southern part of Higashi-Hiroshima city, the western part of Kure city, Saka town
and Kumano town. The spatial pattern of volumes generated by the debris flows is clearly identified,
and it would be useful for early-stage debris management planning.
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The Hiroshima prefectural office performed the LiDAR observations over the target area after
the 2018 event [45]. The volumes mobilized by the landslides were evaluated by aggregating the
elevation change between the pre- and post-event LiDAR-derived DEMs in the heavily damaged areas.
In some areas where LiDAR data was not available, they estimated the volumes with the following
procedure: first, they delineated the extents of the debris flow areas and their thalweg lines from
aerial photographs for the whole target area. Second, they examined the relationship between the
length of the thalweg line and volume for each debris flow, and derived mean volume value per unit
length of thalweg line from the LiDAR data. Finally, they estimated the volumes where the LiDAR
data was not available from the identified thalweg line length by multiplying the mean volume per
unit length. The volumes obtained from these observations were summarized for each municipality.
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Since most of the severe debris flows were captured by the LiDAR observations, the result of the
Hiroshima prefectural office is hereafter referred to as LiDAR-derived volumes. Figure 12 shows the
comparison of the volumes in each municipality between the LiDAR observations and the estimation
of this study based on the manual sources in the Flow-R analysis. As shown in Table 5, the total volume
derived from the LiDAR observations was 7.50 million cubic meters. The estimate of the total volume
in this study is 7.35 million cubic meters. Although the estimation of this study is in total slightly
underestimated, the estimated volumes show good agreement with the observed volumes, not only in
total, but also in each municipality as shown in Figure 12 and Table 5, indicating the validity of the
proposed method.
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Figure 12. Comparison of LiDAR-derived volumes and estimated volumes based on manual sources
in Flow-R analysis for each municipality and total.

Table 5. Comparison of volumes in each municipality between LiDAR-observation and estimations of
this study.

ID
Municipality

Volume (Million Cubic Meters, ×106 m3)

Observed Estimated

LiDAR *
Manual Source

Without Flow-R
Automatic Source

Name Area (sq km) with Flow-R Extreme Event Rare Event

1 Hiroshima city 902 0.60 0.65 7.32 1.19 0.76

2 Kure city 352 1.83 1.30 3.48 0.82 0.44

3 Higashi-Hiroshima
city 636 2.77 3.40 10.89 1.47 0.57

4 Takehara city 118 0.60 0.36 1.87 0.22 0.12

5 Mihara city 471 0.81 0.92 4.08 0.30 0.15

6 Edajima city 100 0.19 0.13 0.41 0.08 0.05

7 Kumano town 34 0.24 0.26 0.35 0.10 0.04

8 Saka town 16 0.37 0.25 0.34 0.16 0.11

9 Fuchu town 10 0.05 0.04 0.10 0.02 0.01

10 Kaita town 14 0.04 0.05 0.09 0.04 0.03

Total 2653 7.50 7.35 28.93 4.40 2.28

*: Observed by Hiroshima prefecture [45].

In order to examine the effect of the debris flow propagation analysis by the Flow-R, the volumes
are estimated without using the result of the Flow-R analysis. Figure 13a shows the comparison of the
results with and without the Flow-R analysis. The result without Flow-R analysis largely overestimate
the volumes due to the over-extraction by the NDVI-based change detection. This indicates that
the Flow-R analysis contributes to the accurate identification of the erosion areas. Next in order to
examine the effect of the defined sources in the Flow-R analysis, the volumes are also estimated from
the fusion analysis based on the automatic source areas in Flow-R. Figure 13b shows the estimation
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results by the automatic sources based on the criteria for extreme and rare events. The results by
the automatic sources are significantly smaller than the observation especially by the criteria for rare
event. The results of these estimations are summarized in Table 5. This indicates that the criteria in
Equations (7) and (8) are insufficient for reproducing the debris flows of the 2018 event. These results
show that the identification of the sources in debris flow propagation analysis would be key for accurate
volume estimation. Although the identification of the sources is significantly less time-consuming than
the delineation of the landslide areas, the manual identifications over a wide area such as the 2018
event still requires at least several days [39]. Accurate and automatic estimation of the debris flow
sources, based not only on topographical characteristics but also on site-dependent rainfall intensity,
needs to be developed for more rapid volume estimation.
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Figure 13. (a) Comparison of volume estimations with and without using Flow-R-based propagation
analysis. (b) Comparison of volume estimations based on manual sources and automatic sources in
Flow-R analysis.

7. Conclusions

This study proposes a methodology for fusion analysis of optical satellite images and DEM to
detect the erosion areas by debris flow and to rapidly estimate the volumes. From the analysis of the
pre- and post-event LiDAR-derived DEMs in the affected area by the debris flow events in Hiroshima,
the empirical relationships between the erosion areas and the debris volumes were developed.
The relationship was almost consistent with the previous debris flow studies. The area-independent
mean erosion depth model was derived for estimating volumes from erosion areas. Pixel-based change
detection approach was applied to the optical satellite Sentinel-2 images observed before and after
the event. From the NDVI-based change detection, the vegetation decreased areas were detected
as candidates of the erosion areas by debris flows. The debris flow propagation analysis was also
performed using the pre-event DEM. The erosion areas in the 2018 event were correctly reproduced by
the Flow-R-based propagation analysis using the manually identified source points. Combining the
results, the erosion areas were detected and the volumes were estimated by applying the mean erosion
depth to the detected pixels. The estimated volumes showed good agreement with the volumes
derived from the LiDAR data.

The proposed methodology provides rapid volume estimation for debris flow disaster without
LiDAR observation and manual delineation of debris flow areas. However, visual interpretation of
debris flow sources is still required for accurate estimation. In order for a more rapid estimation,
a methodology for accurate and automatic identification of debris flow sources needs to be developed
in future work.
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