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Abstract: This study introduced a data screening method for comparing the reflectances in middle
latitude forest regions collected by a Geostationary Earth Observing (GEO) satellite and a Low Earth
Orbit (LEO) satellite. This method attempts to reduce the differences between the relative azimuth
angles of the GEO and LEO observations. The method, called relative azimuthal-angle matching
(RAM), takes advantage of the high temporal resolution of the GEO satellites, which enables collection
of a wide range of relative azimuth angles within a day. The performance of the RAM method was
evaluated using data in the visible and near-infrared bands collected by the Himawari-8/Advanced
Himawari Imager (AHI) and the Terra/Moderate Resolution Imaging Spectroradiometer (MODIS).
The consistency of the reflectance pairs of MODIS and AHI selected by the RAM method was
compared with the consistency of the reflectance pairs acquired simultaneously by the two sensors.
The data were matched pixel-by-pixel after applying atmospheric corrections and cloud screening.
The results show that RAM improved the reflectance ratio by approximately 10% for the red and NIR
bands on average relative to the simultaneous observations. Significant improvements in the two
bands were observed (20%), especially among data collected in the fall and winter. Performance of
RAM depends largely on season. Especially in summer, the reflectance pair chosen by RAM showed
less consistency than solar zenith-angle matching (SZM). The results also indicated the relatively
large influence of the spectral response functions on the green and red bands of the two sensors.
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1. Introduction

Geostationary earth observing (GEO) satellites have played a major role in various fields of
study for decades. The primary focus of their contribution historically has been in the atmospheric
and oceanic sciences. In recent years, much attention has been paid to the applications of GEO
satellite to land observation [1–5] because of the enhanced band configuration and calibration
strategy [4,6,7]. These “new generation” GEO satellites, such as the Himawari-8 (2014–) [6], FY-4A [4],
and GOES-16 (2016–) [7], have land monitoring capabilities with high radiometric and temporal
resolutions, in addition to their primary atmosphere and ocean sciences monitoring capabilities.
The enhanced capabilities will bring new observation opportunities, especially in land applications in
which satellite data having such a high temporal resolution do not currently exist.

Limiting our discussion to land monitoring applications [8–14], the use of GEO satellite data
will require us to address issues of data consistency between the established LEO satellite data and
the GEO satellite data. A consistency analysis is expected to be conducted prior to any data analysis
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applications in this context. Yeom et al. [14] used the normalized difference vegetation index (NDVI)
derived from a GEO satellite to estimate paddy productivities in a middle latitude region. In their work,
the first step in the data consistency analysis involved comparing the GEO-based NDVI profiles with
the LEO-based NDVI. Data consistency analysis is complex and particularly difficult when comparing
middle latitude regions because standard techniques, such as ray-matching methods [15,16], cannot
be applied due to differences in the sun-target-sensor geometries of the GEO and LEO observations.
Data observations collected from targets in the middle latitude by the GEO and LEO satellites will not
be collected under identical geometries. The geometric differences induce bidirectional effects on the
observed land surface, causing fluctuations in the observed reflectances. These fundamental issues
must be addressed to improve our understanding of the data collected from GEO satellites.

Considerable effort has been directed toward comparing and inter-calibrating data collected
from multiple LEO satellites. A comprehensive review of reflectance data was assembled by
Chander et al. [17]. Systematic comparative studies on the spectral vegetation index (VI) have also been
conduced by many researchers, as reported recently by Fan and Liu [18]. Comparison techniques and
protocols as well as state-of-the-art inter-calibration standards have been established. One remarkable
technique is the ray-matching method [15,16]. This method imposes tight screening criteria to ensure
the selection of identical sun-target-sensor geometries among sensor pairs. The method has been
widely used and successfully applied in the context of the inter-calibration of LEO-LEO radiances and
reflectances [19] and VI products [20]. Another technique is the simultaneous nadir overpass (SNO)
technique, introduced by Heidinger et al. [21] and Cao et al. [22]. The technique has been applied
successfully to LEO-LEO inter-calibration problems [23,24].

Unlike the LEO-LEO comparisons, comparisons between GEO and LEO satellites [25–27] are
complicated by the fact that LEO and GEO data are seldom acquired under identical viewing and
illumination conditions. This “conditional mismatch” is especially prominent in regions located at
middle to high latitudes. For example, the relative azimuth angles of the GEO and LEO satellite sensors
examined in this study differed by between 3◦ and 41◦ under simultaneous observation conditions in
middle latitudes. This fact suggests that GEO and LEO satellite data comparisons at middle to high
latitudes might suffer from unavoidable biases caused by conditional mismatches. Although these
differences can be rectified by developing a site-specific bidirectional reflectance distribution function
(BRDF) to describe well-characterized targets [27,28], this is not always possible for complex surfaces,
such as mountainous forests.

This study is not intended to discuss GEO and LEO satellite inter-calibration techniques;
the ray-matching condition, for instance, is difficult to satisfy for a target located in middle to high
latitudes. Our intention is straightforward: We addressed the issue of unavoidable differences that a
user may encounter when attempting to compare data from sensors in GEO and LEO satellites
over a region of interest (ROI) located at middle latitudes [29]. Furthermore, we developed a
screening criterion specific for GEO-LEO comparisons that provides an alternative to simultaneous
observation conditions at locations not amenable to sophisticated ray-matching methods. We proposed
to identify GEO and LEO data pairs having identical magnitude solar-to-sensor relative azimuth
angles. This screening criterion may be met by sacrificing the condition of simultaneous observation.
The proposed criterion has both advantages and disadvantages compared to the simultaneous
observation criterion. We demonstrated this approach using the Himawari-8/Advanced Himawari
Imager (AHI) and Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) as representative
GEO-LEO data pairs.

Herein, we first describe our data screening method for comparing GEO-LEO reflectance data
in middle latitude regions (Section 2). Data descriptions (Section 3) and algorithm details (Section 4)
follow the Method Section. The comparison results are presented in Section 5 and discussed in Section 6.
Finally, this work is concluded in Section 7.
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2. Method

GEO-LEO reflectance comparisons in a middle latitude are illustrated in Figure 1. The right polar
plot in Figure 1 shows the angular positions of the MODIS and AHI satellites in one of our ROIs,
a forest in Kochi, Japan. In the polar plot, blue circles (filled or empty) represent combinations of the
view zenith and view azimuth angles in the MODIS data, which cover all sixteen observations within
a single revisit cycle (from 11 May 2016 to 26 May 2016) of the Terra satellite. The view zenith angle of
the MODIS data varies from 0◦ (nadir) to 60◦. The angular position of the AHI observations, depicted
by the red filled circle, remains fixed at one location due to its geostationary orbit. The polar plot
indicates the fact that the two sensors never observe this ROI from the same direction. The geometrical
mismatch between the GEO and LEO satellites makes reflectance comparisons difficult, especially
for targets with an unknown directional dependency (often modeled using the BRDF). For example,
the left figure in Figure 1 shows a scatter plot of the MODIS band-4 reflectance observations acquired
over three consecutive days versus the reflectances of the AHI band-2 simultaneous observations
over the ROI. The figure shows systematic differences, suggesting that the angular mismatch caused
significant biases, even though we selected simultaneous observations as a screening criterion in the
GEO and LEO satellites reflectance comparisons over a middle latitude forest region.

Figure 1. Scatter plot (left) of the TOC reflectances observed by AHI and MODIS, with the
corresponding green bands. The data were extracted from our test site over the Kochi Forest during
the period between 12 and 14 May 2016. The observation pairs over the three days are indicated by
different colors. The data acquisition times of the three groups of reflectance pairs were nearly identical.
(right) A polar plot of the illumination and view angles. Sixteen variations in the MODIS view angles
(11–26 May 2016) are also plotted.

Again, in contrast to the MODIS observations, AHI observes the same target always from a fixed
direction, resulting in fixed view zenith and view azimuth angles for the target. This fact is indicated
by the red filled circle in the polar plot shown in Figure 1. The view zenith and azimuth angles of
AHI for this specific target were 40◦ and 168◦, respectively. Although there is no freedom of choice
regarding the view angles of AHI, the advantage of AHI is its high temporal resolution (10 min for the
full-disk observation mode). Because of this advantage, the illumination direction (pairs of solar zenith
and solar azimuth angles) varies significantly from sunrise to sunset, as indicated by the empty black
circles in the polar plot shown in Figure 1. This temporal high resolution brings a variety of choices in
both the solar zenith and relative azimuth angles for the AHI observations. The wide range of angular
variations suggests the possibility of a better screening criterion than the criterion of simultaneous
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observation in the context of GEO-LEO reflectance comparisons at middle latitudes. One candidate
screening criterion is the selection of AHI observations based on the relative azimuth angle: We always
have a choice of AHI observation with relative azimuth angles that are nearly identical to those of the
MODIS observations. This criterion is referred to here as relative azimuthal-angle matching (RAM).
The selection of simultaneous AHI and MODIS observations is standard practice. Simultaneous
observations yield the same solar zenith angle (and different relative azimuth angle); therefore, we
denote this criterion the solar zenith-angle matching (SZM) criterion in this study.

Differences between the RAM and SZM methods are summarized in Table 1 by focusing on the
angular conditions satisfied and the differences in the atmospheric conditions. During the initial data
screening process for AHI-MODIS comparisons, we can select MODIS observations with a view zenith
angle closest to that of the AHI data (e.g., an angle of 40◦, depicted by filled blue circles in the polar plot
shown in Figure 1). Once this choice is made based on the MODIS view-zenith angle, one has at least
two screening criteria: (a) SZM (choice of AHI data with the solar zenith angle closest to that of the
MODIS observation); and (b) RAM (choice of AHI data with the relative azimuth angle closest to that of
the MODIS observation). Figure 2a shows the angular position of the sun and sensors for an AHI scene
selected using the SZM method. The idea of using simultaneous/near-simultaneous observations
has been used in other intercalibration studies. The directions of the sun relative to the two sensors
are not, in general, identical (clockwise or counter-clockwise) for an ROI, and the relative azimuth
angles between the sensor and the sun are not identical in the AHI and MODIS observations. Figure 2b
shows an example of the RAM method. This method sacrifices consistency in observation time rather
than sacrificing consistency in the relative azimuth angle. Again, it should be noted that the SZM
method involves the choice of nearly simultaneous observations of AHI with MODIS. The SZM method
guarantees identical atmospheric conditions for the GEO and LEO observations, whereas RAM does
not (due to differences in the observation times). In the RAM method, the two sensors observe a target
from different view azimuth angles, although the relative azimuth angle is nearly identical. In other
words, RAM assumes that surface scattering is rotationally symmetric in the azimuthal direction.
Thus, the performance of the RAM method depends on the level of rotational symmetry. Despite
differences in the atmospheric conditions for the two observations and the assumption of rotational
symmetry, our hypothesis is that for targets located at middle latitudes, SZM would not always be the
better pair selection method compared to RAM in the context of GEO-LEO reflectance comparisons.
This study investigated this point to improve our understanding of GEO-LEO inter-comparisons at
middle latitudes.

Table 1. Differences in the geometric and atmospheric conditions of the LEO and GEO observation
pairs selected using the SZM and RAM methods. The mark “o” indicates that the GEO and LEO
observation conditions are nearly identical. The numbers indicate the ranges of absolute differences in
this study. The SZM method corresponds to simultaneous data acquisition; therefore, the atmospheric
conditions will be identical.

Method Solar
Zenith

View
Zenith

View
Azimuth

Relative
Azimuth

Atmospheric
Condition

SZM o o ∼70◦ 0◦ to 50◦ o
RAM 0◦ to 20◦ o same as SZM o 1.5 to 5.5 h
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0130 UTC

0130 UTC

(a) Time and solar zenith matching

0440 UTC

0130 UTC

(b) Relative azimuthal angle and direction matching

Figure 2. Angular conditions of the sun, MODIS, and AHI for the SZM method (a) and RAM method
(b) over the ROI of the Kochi Forest. The observation data for this plot span the period between 1 and
16 March (16 days) 2018. The time difference is minimal in (a) but the relative azimuth angles are not
identical. The relative azimuth angles are almost identical in (b), but the time difference is large.

3. Data Description

To meet our objectives, we set several conditions to be satisfied by selected test sites. The first
condition is the location of the sites. Because the ray-matching method condition in the context of
GEO-LEO comparisons is generally limited to 20◦ north or south of the equator, targets of this study
should be located outside of the latitude range. We set the condition to be even more stringent;
the target must be located in a middle latitude region, preferably beyond 30◦ north or south of the
equator. By setting this restriction, the geometric requirements of the ray-matching method are not
satisfied. The meridian of the Himawari-8, 140.7◦ E, was used as the reference meridian of each test
site. The second condition applied to the surface type. Forest targets, our primary interest, should
be moderately uniform and homogeneous. Moreover, the terrain of the forest targets is preferably
mountainous rather than a flat surface, which would make the conditions more difficult to satisfy using
the RAM method. In addition to the forest targets, we must also select a test site corresponding to a
non-vegetated surface as a reference location near the forest targets. By comparing the results of the
mountainous forest with those obtained from non-vegetated flat targets, the influence of the vegetation
quantity on the GEO-LEO comparison can be evaluated. These considerations and restrictions led us
to select two pairs of forested and urban sites from the northern hemisphere, as described below.

3.1. Test Site

Four regions of interest (ROIs) located in Japan were used as our test sites (Figure 3). The ROIs
include two forest sites: one from Kochi Prefecture on Shikoku Island and one from Aichi Prefecture
on Honshu Island. Both ROIs were 20 km by 20 km. The ROIs of the non-vegetation targets were
chosen from urban areas near the forest sites. The urban site near the Kochi Forest was 3 km by 5 km,
and that near the Aichi Forest was 10 km by 10 km, as summarized in Table 2. The locations of these
ROIs are shown on the map of the MODIS leaf area index (LAI) in Figure 3. The data obtained from
MOD15A2H [30] on 17 May 2017 were used to verify the LAI over the ROIs.

The LAIs and its spatiotemporal variations were analyzed over the two forest sites. The daily
LAI data from MOD15A2H were used by focusing on a one-year period in 2017. We used the data
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that passed all the quality control examination based on the FparLai_QC flags. Especially in this
analysis, the flag was also used to identify pixels with a LAI value retrieved using the radiative transfer
(RT) model algorithm. The yearly average and standard deviation at each site was computed using
the daily data only if more than 25% of all pixels passed the cloud and FparLai_QC flag screening
criteria. After screening, we computed the spatially and temporally averaged LAI over the year 2017
over the two forest ROIs. The average LAIs over the Kochi and Aichi Forests were both 2.3, and the
corresponding standard deviations were 0.38 and 0.46, respectively. These results revealed small
variations in the LAIs over these ROIs. This trend was confirmed from the High-Resolution Land
Use and Land Cover (HRLULC) map data (30 m grid) distributed by JAXA [31]. The land cover map
indicated that the proportions of evergreen needle-leaved forest (ENF) and evergreen broad-leaved
forest (EBF) in the Kochi Forest were 66.5% and 25.7%, respectively. In the Aichi Forest, the proportions
were 83.9% and 4.4%, respectively. Therefore, the two ROIs were mostly composed of ENF and EBF,
yielding spatially homogeneous and temporally stable LAIs over the ROIs.

Table 2. Latitude and longitude ranges of the ROIs.

ROI Range (Latitude/Longitude)

Forest in Kochi (KochiForest) 33.485–33.675◦ N/ 133.985–134.175◦ E
Forest in Aichi (AichiForest) 34.995–35.185◦ N/ 137.285–137.475◦ E
Urban in Kochi (KochiUrban) 33.555–33.575◦ N/ 133.525–133.565◦ E
Urban in Aichi (AichiUrban) 35.095–35.185◦ N/ 136.855–136.945◦ E

Figure 3. Spatial distribution of the LAI in the western part of Japan, based on the MOD15A2H data
collected on 17 May 2017. Four ROIs are indicted by rectangles. LAI values of the non-vegetated
regions, such as the urban and ocean regions, are represented by the white background.

3.2. Satellite Data

Himawari-8 is located at 140.7◦ E longitude and observes regions in East Asia and the Western
Pacific. The standard data providing “Full Disk” coverage were downloaded from the National
Institute of Information and Communications Technology (NICT) Science Cloud. The temporal
resolution of the Full Disk observation is 10 min. We compared four visible and near-infrared bands
(band 1–4) of the AHI with the corresponding MODIS bands in this study. The central wavelengths
of the four AHI bands were 460 nm, 510 nm, 640 nm, and 860 nm. The spatial resolution was 1 km
at the sub-satellite point, except in band 3. The resolution of band 3 was 0.5 km [6]. The data from
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band-3 were averaged over 2 by 2 pixel blocks to match the resolution of the other bands. The scaled
digital counts (called the calibrated reflectances) were then transformed into the actual reflectance
by considering the solar zenith angle and the square of the sun-earth distance using the calibration
coefficients provided.

The Terra satellite is in LEO with a morning overpass time and 16-day revisit cycle. We used
the MODIS Calibrated Radiances, the Daily L1B Swath 1 km (MOD021KM) Collection 6 [32] and
MODIS Geolocation Fields Daily L1A Swath 1 km (MOD03) Collection 6 [33], downloaded from
the Level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive
Center (DAAC). Bands 3, 4, 1, and 2 of the MODIS data corresponded to bands 1–4 of the AHI
data, respectively. The central wavelengths of the MODIS bands were 465.7 nm, 553.7 nm, 646.3 nm,
and 856.5 nm, respectively [34]. The digital counts were also transformed into actual reflectances in the
same manner as was used with the AHI data [35]. The MODIS cloud mask data (MOD35) Collection
6.1 [36] was also used for screening purposes.

In this work, the data acquisition times for both the AHI and MODIS data were represented by
four digits, “HHMM”, derived from the time stamp included in the file name, where “HH” and “MM”
stand for the hour and minute of the day, respectively. The time stamp in the file name indicated the
beginning of the scan for a full AHI disk and the 5-min MODIS granule. Note that the true observation
time for each location was slightly different (1–5 min) from this abbreviated information.

4. Algorithm

The AHI and MODIS reflectances were compared using the algorithm illustrated in Figure 4.
The figure provides an overview of the data processing flow in this study. The entire process was
divided into two parts: (a) geometric condition retrieval; and (b) preprocessing and screening (see
Figure 4). Part (a) involved identifying pairs of data acquisition times in the MODIS and AHI
observations that satisfied the SZM or RAM criteria. The process began with the selection of the
MODIS scenes based on a view zenith angle criterion (Section 4.1). After this selection, data from the
same orbital path were collected so that only MODIS data having a view zenith angle identical to
that of the AHI data were prepared for processing. The outputs from this process were the time of
day for the SZM and RAM data that satisfied the geometric conditions of these screening methods.
Part (b) of the flowchart mainly performed preprocessing and screening, such as data preparation
and compositing for AHI (Section 4.2), atmospheric corrections (Section 4.3), and cloud screening
(Section 4.4). After the second analysis step, two pairs of MODIS and AHI reflectances were obtained
at each pixel (1 km resolution) and in each band; one pair corresponded to the SZM method and the
other to the RAM method (Section 4.5). Finally, the reflectance ratios between the two sensors were
computed (Section 4.6). These processes are explained in detail below.



Remote Sens. 2019, 11, 1095 8 of 28

Sun Position Calculation

Relative Azimuth angle 

(MODIS and Sun)

MODIS data

(MOD021KM, MOD03, MOD35)

RAM SZM

Solar Zenith angle

 (MODIS and Sun)

is cloudy?( using MOD35)
Yes

No

ROI

pick up one cycle (16 days) from whole duration

LEO data Screening (select one from 16)

Time of RAM for 

AHI data

Time of SZM for 

AHI data

(a)

Time based composite

composited 

AHI data for RAM
MODIS data

Atmospheric Correction

Cloud Screening

Pixel-by-Pixel match up

Compute reflectance ratio

Collect the same time AHI data with

before and after 3days (7days)

AHI-MODIS comparison

using RAM

AHI-MODIS comparison

using SZM

Time of RAM for 

AHI data

Time of SZM for 

AHI data

composited 

AHI data for SZM

RAM SZM

paired data

for RAM

paired data

for SZM

(b)

Figure 4. Flow chart describing the algorithm used for GEO-LEO reflectance comparisons (AHI and
MODIS); (a) geometric condition retrieval; and (b) preprocessing, screening, and subsequent processing
for comparison.

4.1. MODIS Scene Selection Based on the AHI View Zenith Angle

Our algorithm began by focusing on a single revisit cycle of Terra. During the duration of
one revisit cycle, MODIS observes an ROI from 16 different orbital paths, resulting in 16 different
combinations of view zenith and view azimuth angles for a given ROI. Among these observations
(MOD02), the view zenith angle varied from 0◦ to nearly 60◦, as shown in Figure 1. This wide range
of variation in the view zenith angle enabled us to select the angle closest to the AHI view zenith
angle. Two choices are available: the west-looking observation and the east-looking observation.
Among these two choices, the choice of the west-looking observations may be advantageous relative
to the other for targets in the northern hemisphere. This constraint arises from the condition applied
using the RAM method. In the RAM method, it is necessary to select an AHI observation having
a relative azimuth angle that is nearly identical to that of the MODIS observation. West-looking
observations result in smaller relative azimuth angles than the east-looking observations. It enables
the RAM method to use data observed at relatively earlier time of the afternoon, which increases
observation chances especially in winter before sunset. Note that the selection of the MODIS view
zenith angle is common to both the SZM and RAM methods. Thus, our first step was to identify
the MOD02 scene (out of 16 observations) having the view zenith angle closest to that of the AHI
observation from among the west-looking observations.

The Himawari-8 is a geostationary satellite; therefore, view zenith and view azimuth angles of
AHI are fixed for each target. These fixed angles can vary depending on the ROI location. Each ROI
requires retrieval of the view zenith and view azimuth angles of the AHI observation prior to selecting
the MODIS data. In summary, MODIS data selection was carried out in the following order: (1) AHI



Remote Sens. 2019, 11, 1095 9 of 28

view zenith angle for the ROI; and (2) selection of the MODIS data from among the 16-day observations
with a view zenith angle closest to the AHI view zenith angle. This process was repeated every 16 days
from 7 July 2015 to 31 August 2018 (three years). After applying these processes, we identified and
selected one MOD02 for each 16-day window.

The next step was to filter out the MODIS data, pixel by pixel, based on the quality assurance
(QA) flags of the MOD35 data. The “unobstructed FOV QA Flag” could be used to identify “confident
clear” pixels. The pixels deemed “confident clear” were counted for all selected MODIS data over
the three years (7 July 2015 to 31 August 2018). By focusing on a single month, three years of scenes
were analyzed. We further selected the best monthly scenes from the three-year collections. The best
scene was determined based on the number of pixels remaining after screening based on the QA flags.
Finally, we selected one MODIS scene for each month, regardless of the year. Table 3 summarizes the
best MODIS scene and the number of pixels remaining after the screening process had sorted pixels by
day of the year (DOY), regardless of the year difference.

Table 3. Selected dates for the top MODIS data evaluated by the number of confident clear pixels over
each ROI. Dates are represented by six characters, “YYMMDD” (Y, M, and D represent the year, month,
and day, respectively). The number in parentheses is the day of the year. The third, fifth, seventh,
and ninth columns show the number of pixels found to be confident clear in each ROI.

KochiForest AichiForest KochiUrban AichiUrban

January 180126 (26) 196 170125 (25) 207 180110 (10) 1 170125 (25) 8
February 170224 (55) 217 160208 (39) 215 170224 (55) 1 160208 (39) 12
March 160325 (85) 232 160327 (87) 210 170328 (87) 4 160311 (71) 7
April 170413 (103) 225 180402 (92) 64 170429 (119) 4 160412 (103) 2
May 160512 (133) 237 180520 (140) 37 160512 (133) 4 180520 (140) 7
June 180603 (154) 125 170602 (153) 8 - - 170602 (153) 13
July 160731 (213) 126 150731 (212) 216 - - 180723 (204) 39
August 180806 (218) 121 180808 (220) 237 180806 (218) 3 180808 (220) 39
September 160901 (245) 231 160903 (247) 217 160901 (245) 3 160903 (247) 2
October 151017 (290) 229 151003 (276) 187 151017 (290) 2 151019 (292) 7
November 171107 (311) 219 171109 (313) 238 171107 (311) 5 171125 (329) 25
December 171209 (343) 246 151222 (356) 231 171209 (343) 4 161208 (343) 27

As outputs of this stage, we retrieved two different times of the day: the MODIS data acquisition
time, which was used to select AHI data in the SZM method, and the time of the AHI observation
that yielded the same relative azimuth angle as the MODIS observation. The latter time could be
retrieved by simulating the dynamics of the solar position over the observation day for each ROI.
We summarized the outputs (times for the SZM and RAM methods) along with the DOY selected in
this study (Table 4). Note that the DOY shown in the table corresponds to the selected MODIS data
summarized in Table 3. The time for SZM remained relatively fixed in each ROI at around 01:30 UTC
(10:30 in local time) throughout the year. On the other hand, the time for RAM varied by both the
geolocation and the DOY, ranging from 03:00 UTC (12:00 in local time) to 06:50 (15:50). The time data
were used as inputs for the next part of the analysis, Part (b), as shown in the flowchart (Figure 4).
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Table 4. UTC time and DOY for the selected AHI data in the SZM and RAM methods.

January February March April May June July August September October November December

DOY: KochiForest 26 55 85 103 133 154 213 218 245 290 311 343

time (SZM) 0130 0130 0130 0130 0130 0135 0130 0135 0130 0130 0130 0130
time (RAM) 0550 0510 0420 0350 0320 0310 0320 0330 0350 0510 0550 0620

DOY: AichiForest 25 39 87 92 140 153 212 220 247 276 313 356

time (SZM) 0120 0120 0120 0120 0120 0120 0120 0120 0120 0120 0120 0120
time (RAM) 0620 0550 0430 0420 0310 0300 0320 0330 0400 0500 0620 0650

DOY: KochiUrban 10 55 87 119 133 - - 218 245 290 311 343

time (SZM) 0130 0130 0130 0130 0130 - - 0135 0130 0130 0130 0130
time (RAM) 0610 0510 0410 0330 0320 - - 0330 0350 0510 0550 0620

DOY: AichiUrban 25 39 71 103 140 153 204 220 247 292 329 343

time (SZM) 0120 0120 0120 0120 0120 0120 0120 0120 0120 0120 0120 0120
time (RAM) 0610 0550 0450 0400 0310 0300 0320 0330 0400 0530 0640 0650
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4.2. AHI Data Selection and Weekly Composites for the SZM and RAM Methods

The first step of Part (b) involved selecting AHI candidate data for comparison. We combined
AHI data over one week periods for each MODIS observation to span three days before and after the
MODIS observation. Although AHI observed the ROIs every 10 min, not all data were used. The data
were screened based on the time information retrieved at the end of the previous analysis section,
Part (a). We only used AHI data having an observation time close to either the SZM or RAM on each
day. At this stage, we selected seven AHI scenes in the SZM and RAM methods, for a total of 14 scenes
at each ROI.

These data were then composited to produce two datasets by targeting a specific time of
observation. One set was for the SZM method and the other was used for the RAM method. For this
selection, the time information obtained from the previous process (Part (a)) were used as the inputs.
The AHI data selected for the SZM and RAM methods are illustrated in Figure 5. These data were
then subjected to a compositing process. For each pixel, a single observation result from among the
seven candidates was selected by comparing the apparent temperatures retrieved from the AHI band
14. This temperature comparison provided an initial cloud screening process. The screening algorithm
is known as the Maximum apparent Temperature (MaT) [37] and can detect and screen observations
influenced by clouds and cloud shadows. This approach provided two composite scenes: one using the
SZM method, and the other using the RAM method. The rest of the process (described in the following
sections) was performed only on the MODIS and AHI data listed in Tables 3 and 4 for each ROI.
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Figure 5. Overview of the AHI data composite. AHI data collected over seven consecutive days
were used to create a single image for each of the SZM and RAM methods (for a total of two images).
The SZM and RAM images differed with respect to the data acquisition time. The central date of the
AHI observation period is the same as that designated for the MODIS data.

4.3. Atmospheric Corrections

Atmospheric corrections were performed to address molecular scattering and ozone absorption
effects [29]. We decided to process the atmospheric corrections conservatively according to the methods



Remote Sens. 2019, 11, 1095 12 of 28

of Chang et al. [27] to avoid introducing artificial differences with over-corrections of the atmospheric
influences. This study applied one algorithm to both the MODIS and AHI images in exactly the same
way [29] to avoid introducing differences into the sensor data. Our correction scheme is relatively
conservative compared to full atmospheric corrections that account for gaseous absorption and aerosol
scattering. Note that these influences remained present in the compared data, denoted top-of-canopy
(TOC) reflectances in this study. Differences arising from atmospheric corrections were effectively
avoided by applying a common algorithm to the top-of-atmosphere (TOA) reflectances obtained
from the MODIS and AHI sensors. The atmospheric corrections applied to the two sensors differed
only with respect to the sensor-specific Spectral Response Functions (SRFs) used to compute look-up
tables (LUTs) of the scattering and absorption cross-sections (wavelength-dependent optical depths).
A series of particle transport simulations [38] was performed assuming spatially one-dimensional
conditions (plane parallel) and two angular parameters, the S40 approximation [39]. We obtained
the path radiance, bi-hemispherical reflectance, and transmittance as a function of the viewing and
illumination angles, and the optical depth. These simulation results were then stored in LUTs as a
function of those parameters [40]. The optical depth of the Rayleigh scattering was determined by
the elevation of each pixel, which was interpolated from the digital elevation model of the Earth
topography 5-min grid (ETOPO5) [41]. The ozone absorption correction was implemented using the
absorption cross-sections stored in the 6S code [42] based on the values observed by the Aura/Ozone
Monitoring Instrument (OMI) sensor [43]. In summary, Rayleigh scattering effects were corrected
using the LUTs developed based on the pixel elevations interpolated from the ETOPO5. The ozone
absorption effects were corrected based on the observation data reported by Aura/OMI.

4.4. Precise Cloud Screening

The pixels contaminated by clouds remained present in the composited AHI scenes.
These artifacts were identified finally by visual inspection during the study. Prior to the visual
inspection, cloud influences were removed from our comparison by conducting precise cloud screening
based on the brightness temperature and reflectance data according to the methods reported by Ishida
and Nakajima, and Shang et al. [44,45]. The AHI observation results were considered to be cloudy if at
least either one of the conditions described in Equation (1) or (2) holds,

Tb14 − Tb7 ≤ Tt, (1)

v ≤ vt, (2)

where Tb7 and Tb14 are the brightness temperature of the AHI bands 7 and 14, respectively. v represents
the NDVI computed from the TOC reflectances of the AHI. Tt and vt are the thresholds of the brightness
temperature and NDVI, respectively. Note that we chose different values of Tt and vt for the forest
and urban areas. The cloud screening process using the brightness temperature was not applied to the
urban areas. The land cover-dependent thresholds are summarized in Table 5. The pixels assumed to
be cloudy were labeled for elimination from the AHI data. Furthermore, an additional cloud detection
process was conducted over the remaining pixels (with no label). For this purpose, we computed
the average and standard deviations of the red reflectances over the ROI. If at least one of the red
reflectances in the AHI or MODIS data exceeded the average value over the ROI by twice the standard
deviation, the observation was considered to be influenced by clouds.

Table 5. Thresholds (Tt and vt) for the forest and urban ROIs.

Tt vt

Forest −6.5 0.470
Urban - −0.037
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In summary, we performed cloud screening multiple times in different ways. For the MODIS data,
we used the MOD35 QA flag (confident clear). For the AHI data, the MaT algorithm was employed as
the initial screening process. Finally, algorithms based on the temperature and NDVI [44,45] and the
red band thresholding were used to further filter out the cloud influence. Recall that red reflectance
thresholding was used for both the MODIS and AHI data. Only the pairs of pixels remaining after the
screening processes were compared in this study.

4.5. AHI-MODIS Data Match-Up

All pixels in the MODIS data within the ROIs were paired with the collocated pixels of the AHI
data based on the nearest neighbor algorithm over the geographic coordinates. Pixel pairs containing
cloudy pixels either or both the AHI and MODIS observations, as determined in the previous analysis
step, were not used in the subsequent processes. Table 6 lists the number of pixels remaining after the
AHI-MODIS data match-up over each ROI and using each pair selection method (SZM or RAM).

Note that the geolocation accuracy of the Terra MODIS was better than 45 m [46], whereas the
AHI data were reported to be 150 m (north–south) × 500 m (east–west) for band 3 (approximately
0.3 × 1.0 pixels, 500 m resolution) in the Japan Area product [47]. The geolocation errors in the satellite
products influenced the reflectance comparisons to a lesser degree because at the image data spatial
resolution (1 km), the ROIs of the two forest sites were considered to be homogeneous. By contrast,
the urban areas used as reference sites for each forest ROI were not assumed to be homogeneous.
The results introduced in subsequent sections support this assumption to some extent.

Table 6. Number of pixels paired for comparison after all screening processes had been applied. Dates
are represented by six digits: “YYMMDD”.

KochiF SZM RAM AichiF SZM RAM KochiU SZM RAM AichiU SZM RAM

180126 135 176 170125 190 178 180110 1 1 170125 8 8
170224 204 174 160208 186 194 170224 1 1 160208 10 11
160325 215 210 160327 200 191 170328 4 4 160311 7 7
170413 200 208 180402 39 46 170429 4 4 160412 2 2
160512 226 212 180520 32 32 160512 4 4 180520 7 7
180603 116 98 170602 8 8 - - - 170602 13 13
160731 107 10 150731 174 137 - - - 180723 37 36
180806 102 15 180808 192 125 180806 0 0 180808 38 36
160901 212 154 160903 188 197 160901 3 3 160903 2 2
151017 211 213 151003 178 180 151017 2 2 151019 6 7
171107 199 204 171109 119 225 171107 5 5 171125 23 22
171209 234 190 151222 173 76 171209 4 4 161208 25 17

4.6. Evaluation Method

As an indicator of the reflectance comparison, we employed the reflectance ratio between the
corresponding bands of the two sensors. This ratio has been used in many studies, especially
in time-trend analysis [48]. Because our comparisons were performed as a function of the DOY,
we followed this standard approach for the comparison. The reflectance ratio (ri,j) was defined by

ri,j =
ρM,i,j

ρA,i,j
, (3)

where the subscript i indicates the MODIS/AHI scene pixel number, and j is used to identify the date
of data acquisition (scene identifier in this study). The subscripts M and A indicate the MODIS and
AHI origin of the data, respectively. The arithmetic mean of ri,j is represented by rj and is computed
using all available pixels remaining after applying the cloud screenings process to the jth scene.
The area-averaged reflectances, rj, are considered to be “consistent” when rj is close to unity. Finally,
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the consistency between the sensors in the paired jth scene is evaluated based on the difference from
unity, Ej, defined by

Ej = |1− rj|. (4)

Inconsistencies between the sensors arise from a variety of factors. Among these factors,
differences in the geometric conditions, such as the solar zenith and relative azimuth angles, are central
to determining the consistency in this study. We analyzed the results based on differences in the
geometric conditions. We denoted the differences in the solar zenith angles between the MODIS and
AHI as dθj . Similarly, differences in the relative azimuth angle are denoted by dφj . These variables are
defined as

dθj = θM,j − θA,j, (5)

dφj = φM,j − φA,j, (6)

where θ and φ represent differences in the solar zenith and relative azimuth angles, respectively.
The area-averaged values of θ and φ are also defined by θ and φ, respectively.

The reflectance ratio ri,j is used for not only actual data but also simulation data. Numerical
simulations were performed to quantitatively examine the influences of the SRF differences between
the MODIS and AHI data. A radiative transfer model, PROSAIL [49], was employed. The spectral
reflectances of the AHI and MODIS were simulated by spectrally convolving the reflectances of the
vegetation canopy with the SRFs for each band as a function of two parameters, namely, LAI and
“psoil”, which is a blending coefficient of two distinctive soil spectra: dry and wet soil.

5. Results

The results of the AHI and MODIS reflectance comparisons are presented in Section 5.1.
We conducted numerical simulations using a radiative transfer model of the vegetation canopy.
This simulation evaluated the effects of the differences in the SRFs across the sensors: The SRF
differences are especially significant in the green bands. We investigated the influence of the SRFs
thoroughly to validate our results in Section 5.2.

5.1. Comparison Results Based on the Actual Data

Figure 6a,b show the reflectance ratios obtained using the SZM and RAM methods applied to the
forests in Kochi, respectively. The ratios were plotted as a function of the DOY so that their seasonal
variations could be observed in the figures. The circles represent the area-averaged ratios (rj) for four
bands. The error bars indicate the standard deviation of the ratio (ri,j). The error bars in Figure 6a,b
for a DOY of 154 are larger than the error bars obtained on other DOYs. These results suggest the
presence of a factor rendering the data unreliable. The influence of cloud cover was suspected, and
visual inspection confirmed that cloud influence was indeed present in the MODIS screened data.
Thus, special caution was needed to interpret the data for this specific DOY.

The SZM results shown in Figure 6a reveal that the average ratio rj varied from 0.5 to 1.8. The ratio
tended to exceed unity over the period between DOYs 133 and 218 and tended to be lower than unity
in other periods. This trend was investigated by plotting the differences between the sensor geometric
conditions. In these figures, the empty square indicates differences in the solar zenith angles (dθj ),
and the empty triangle indicates differences in the relative azimuth angles (dφj ). Recall that differences
in the solar zenith angles (empty circles) were nearly zero for the SZM method. Differences in the
relative azimuth angles varied significantly. The differences became especially large during the winter
season. Thus, ratios far from unity for dφj became large. This correlation raised questions about the
screening strategy for the geometric conditions in the GEO-LEO comparison. These results suggest
that the differences between the relative azimuth angles of the sensors was most likely a major factor
in producing reflectance inconsistencies. This can be inferred from the RAM results, as shown in
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Figure 6b. A comparison of Figure 6a,b reveals that the value of rj was closer to unity for the RAM
method. This improvement was obtained by adjusting the relative azimuth angle in the RAM method.

(a) Kochi Forest, SZM (b) Kochi Forest, RAM

(c) Aichi Forest, SZM (d) Aichi Forest, RAM

Figure 6. Area-averaged reflectance ratios (MODIS/AHI) in the four bands, by month. The upper two
plots correspond to the Kochi Forest, SZM (a) and RAM (b). The lower two plots correspond to the
Aichi Forest, SZM (c) and RAM (d). The differences between the MODIS and AHI solar zenith and
relative azimuth angle observations are plotted on the secondary y-axis.

The reflectance inconsistencies displayed another notable trend in the green band variations.
The ratios of the green bands were larger than the ratios of the other three bands, especially for DOYs
133–245. This was attributed to differences in the MODIS and AHI SRFs, which were numerically
validated using an RT model (Section 5.2). By contrast, the smallest value of rj was the red band.
The value mostly fell below 1.0, suggesting that the red band was also influenced by the SRF differences.
This point is addressed in the following subsection.
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The SZM and RAM results obtained in the Aichi Forest ROI (Figure 6c,d), showing trends in rj
similar to those from Kochi. This means that, compared to the SZM method, the RAM method tends to
select more consistent pair of reflectances between the two sensors.

We also compared the results of the SZM and RAM methods for the urban areas in Kochi and
Aichi, as shown in Figure 7a,b, respectively. The value of rj obtained from the SZM method varied from
0.6 to 1.2, whereas the value obtained from the RAM method was closer to unity (0.8–1.3), except over
certain dates (DOYs 119–245). Similar improvements were seen in the results obtained from the Aichi
Urban ROI (Figure 7c,d). Interestingly, the band dependencies of the rj were much smaller, except in
the blue band, than were observed over the forest targets. This result was attributed to the relatively
flatter spectra of the urban surfaces compared to those of the forests. This trend was prominent in the
green bands. The ratio of the green band did not exceed that of other bands during the summer season
because less vegetation cover was present in the urban ROIs.

(a) Kochi Urban, SZM (b) Kochi Urban, RAM

(c) Aichi Urban, SZM (d) Aichi Urban, RAM

Figure 7. Area-averaged reflectance ratio (MODIS/AHI) for the urban ROIs. The upper two plots
correspond to the Kochi Urban, SZM (a) and RAM (b). The lower two plots correspond to the Aichi
Urban, SZM (c) and RAM (d).
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Figure 8 shows the cumulative errors defined by the sum of Ej over the four bands for the SZM
and RAM methods. The cumulative errors of the SZM and RAM methods are plotted side by side in
the figure. Differences in the geometrical conditions (differences in the angles between the two sensors)
are plotted on the secondary axis (right axis) as a function of the DOY. In these figures, a smaller
absolute value indicates better agreement between the sensor reflectances or geometric conditions.
The left bar with the solid lines shows the results obtained using the SZM method, and the right bar
with the dashed lines shows the results obtained using the RAM method. The cumulative errors
in the RAM method were smaller than those obtained in the SZM method, with a few exceptions
(Figure 8a,b). This trend can also be seen in the urban ROI results (Figure 8c,d). These results indicate
better consistency in the RAM results than in the SZM results. We compared the cumulative errors
for the red and NIR bands in Figure 9. This comparison is mainly used for vegetation monitoring,
and the red and NIR bands are used most frequently. These results confirmed that the selection of the
reflectance pairs by the RAM method provided better consistency than selection by the SZM method.

As a summary of this subsection, we tabulated the results of our comparisons to confirm the trends
described above. The SZM and RAM performance differences in Ej, defined by |1− rjRAM | − |1− rjSZM |,
are summarized in Tables 7 and 8. The differences are tabulated based on band, month, and ROI.
Note that the negative value in the tables indicates cases in which RAM provides better results (more
consistent results) than SZM. In the table, the negative values are highlighted by color. A negative
value occurred over 81% of the Kochi Forest, 69% of the Aichi Forest, 67% of the Kochi Urban Area,
and 88% of the Aichi Urban Area. The results in October and November show especially large
negative values, indicating greater improvement of the RAM method compared to the SZM method.
Although positive cases occurred in a fair fraction of cases, the magnitudes of the positive values were
smaller than the magnitudes of the negative values, except in the green band. These results suggest
that the RAM method selected more consistent pairs of reflectances in most cases. The green band
provided relatively large positive values, especially in the spring and summer seasons over the forest
ROIs. This observation was attributed to SRF differences between the MODIS and AHI, as discussed in
our previous study [29]. Special caution is needed when using green bands interchangeably. This point
is further addressed in the following subsection.



Remote Sens. 2019, 11, 1095 18 of 28

Table 7. Summary of |1− rjRAM | − |1− rjSZM | for the two forest ROIs. Negative values indicate a better performance of the RAM method than the SZM method.

KochiForest AichiForest
Doy\Band Blue Green Red NIR Doy\Band Blue Green Red NIR

January 180126 (26) −0.291 −0.294 −0.339 −0.188 170125 (25) −0.091 −0.106 −0.153 −0.268
February 170224 (55) −0.111 −0.123 −0.137 −0.207 160208 (39) −0.073 −0.078 −0.103 −0.190
March 160325 (85) −0.044 0.048 −0.091 −0.124 160327 (87) 0.023 0.026 0.007 −0.073
April 170413 (103) −0.072 −0.077 −0.051 −0.024 180402 (92) 0.093 0.132 0.040 −0.036
May 160512 (133) 0.115 0.118 0.048 0.023 180520 (140) 0.011 −0.020 −0.077 −0.009
June 180603 (154) −0.016 −0.011 −0.133 −0.003 170602 (153) −0.023 −0.041 −0.103 −0.028
July 160731 (213) 0.060 0.036 −0.022 −0.012 150731 (212) 0.007 −0.007 0.040 −0.048
August 180806 (218) −0.053 −0.051 −0.108 0.004 180808 (220) 0.074 −0.098 0.114 −0.024
September 160901 (245) −0.033 −0.037 0.051 −0.046 160903 (247) −0.042 0.160 −0.121 −0.042
October 151017 (290) −0.169 −0.225 −0.263 −0.324 151003 (276) −0.128 −0.173 −0.186 −0.207
November 171107 (311) −0.204 −0.269 −0.357 −0.279 171109 (313) −0.066 −0.121 −0.202 −0.283
December 171209 (343) −0.059 −0.086 −0.140 −0.319 151222 (356) 0.066 0.074 0.046 −0.087

Average −0.073 −0.081 −0.129 −0.125 Average −0.012 −0.021 −0.058 −0.108
Avg. (April–September) 0.000 −0.004 −0.036 −0.010 Avg. (April–September) 0.020 0.021 −0.018 −0.031
Avg. (Other) −0.146 −0.158 −0.221 −0.240 Avg. (Other) −0.045 −0.063 −0.099 −0.185

Table 8. Summary of |1− rjRAM | − |1− rjSZM | for the two urban ROIs. Negative values indicate that the RAM method performed better than the SZM method.

KochiUrban AichiUrban
Doy\Band Blue Green Red NIR Doy\Band Blue Green Red NIR

January 180110 (10) −0.128 −0.111 −0.122 −0.149 170125 (25) −0.131 −0.137 −0.179 −0.220
February 170224 (55) −0.055 −0.096 −0.057 −0.067 160208 (39) −0.143 −0.147 −0.208 −0.217
March 170328 (87) −0.008 0.008 0.026 0.034 160311 (71) −0.096 −0.095 −0.093 −0.097
April 170429 (119) 0.072 0.043 −0.011 −0.038 160412 (103) 0.068 0.048 0.033 −0.013
May 160512 (133) 0.059 0.035 −0.003 0.005 180520 (140) −0.009 −0.025 −0.045 −0.013
June - - - - - 170602 (153) −0.027 −0.038 −0.056 −0.065
July - - - - - 180723 (204) −0.056 −0.068 −0.073 −0.047
August - - - - - 180808 (220) −0.017 −0.017 −0.033 −0.025
September 160901 (245) 0.107 0.093 0.035 0.077 160903 (247) 0.109 0.105 0.055 −0.022
October 151017 (290) −0.196 −0.194 −0.178 −0.192 151019 (292) −0.087 −0.103 −0.170 −0.251
November 171107 (311) −0.218 −0.250 −0.285 −0.220 171125 (329) −0.053 −0.068 −0.128 −0.252
December 171209 (343) −0.133 −0.160 −0.193 −0.241 161208 (343) −0.012 −0.015 −0.113 −0.216

Average −0.056 −0.070 −0.088 −0.088 Average −0.038 −0.047 −0.084 −0.120
Avg. (April–September) 0.079 0.057 0.007 0.015 Avg. (April–September) 0.011 0.001 −0.020 −0.031
Avg. (Other) −0.123 −0.134 −0.135 −0.139 Avg. (Other) −0.087 −0.094 −0.149 −0.209
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(a) Kochi Forest (b) Aichi Forest

Figure 8. Cont.

(c) Kochi Urban (d) Aichi Urban

Figure 8. Integrated values of Ej = |1− rj| over the four bands, obtained using the SZM and RAM
methods. Differences in the MODIS and AHI relative azimuth angles and solar zenith angles are plotted
on the secondary y-axis: (a) Kochi Forest; (b) Aichi Forest; (c) Kochi Urban; and (d) Aichi Urban.
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(a) Kochi Forest (b) Aichi Forest

Figure 9. Cont.

(c) Kochi Urban (d) Aichi Urban

Figure 9. Same plot (Ej) as shown in Figure 8, but only over the red and NIR bands: (a) Kochi Forest;
(b) Aichi Forest; (c) Kochi Urban; and (d) Aichi Urban.

5.2. Simulation Results by an RT Model

Figure 10 shows the SRFs of the two sensors and simulated reflectances of each band on the
vegetation. The input parameters of the model assumed in this study are summarized in Table 9. In the
figure, note that the SRFs of the green bands differ to a greater extent than the SRFs of the other three
bands. The SRF of the AHI green band is located below the green spectral peak of the canopy spectrum.
By contrast, the SRF of the MODIS green band is located on the green peak. This SRF difference could
be the cause of the effects observed in the previous subsection.

The simulated reflectance ratios are shown as contour plots in Figure 11. The ratios were close to
1.0 in the blue and NIR bands (Figure 11a,d). The ratio in the red band reached 0.9, larger than the
value, 1.0, obtained in the blue and NIR bands. By contrast, the ratio of the green band (Figure 11b) was
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far higher than 1.0: The maximum value even reached 2.0 in the simulation. Note that the green band
ratio increased as the LAI increased. This suggested that the green band ratio for the forest ROI tended
to be higher than for the urban ROI. This also suggested that the ratio tended to be highest during
the summer. This trend corresponded very well to the results obtained from the data comparisons.
As mentioned in the previous subsection, relatively large values of the green band ratios (1.1–1.8)
were observed over the forest ROIs (Figure 6) during the spring through the fall. This effect was
observed especially during the summer. Thus, the simulation confirmed our interpretation of the
results. In addition to the green band trend, a similar trend was observed in the red band ratio. The low
value of the red band ratio (0.9–1.0) in the simulation (Figure 11c) corresponded well with the trends
shown in the previous subsection (e.g., Figure 6a,b). In those figures, the red band ratio tended to
be lower than that of the other bands. These results indicated that the red band consistency was
influenced by the SRF differences, to a certain extent.

Figure 10. SRFs for the AHI and MODIS, and spectral reflectances of the vegetation canopy simulated
using PROSAIL. The values of LAI and psoil were assumed to be 2.5 and 0.0, respectively. Circles
indicate the spectrally convoluted reflectances using SRFs. In the green bands, reflectance differences
between AHI and MODIS were greater than in the other bands.

Table 9. Input parameters for the PROSAIL algorithm used in the numerical simulations. The LIDF
is the leaf inclination distribution function. The parameter psoil was used to describe the
moisture-induced reflectance changes in the soil surface (from wet to dry).

Canopy

LAI 0.0 (1.0 ×10−9) to 5.0 with 0.5 increment
LIDF (ID4LIDF) Planophile
Hotspot size parameter (hspot) 0.01
Leaf structure parameter (N) 1.5
Chlorophyll content (Cab) 40 µg/cm2

Carotenoid content (Car) 8 µg/cm2

Brown pigment content (Cbrown) 0.0 (unitless, fraction)

Geometry

Equivalent water thickness (Cw) 0.01 cm
Dry matter content (Cm) 0.009 g/cm2

psoil 0.0–1.0 with 0.1 increment
Solar zenith angle (tts) 30.0 deg
Viewing zenith angle (tto) 40.0 deg
Relative azimuth angle (psi) 36.0 deg
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Figure 11. Contour plots of the simulated MODIS to AHI reflectance ratios for (a) blue, (b) green, (c)
red, and (d) NIR bands as a function of LAI and soil moisture surface effects. Ratios were close to 1.0 in
the blue and NIR bands, whereas ratios were much higher than 1.0 in the green band and were smaller
than 1.0 in the red band.

6. Discussion

The results obtained from the data comparisons (Section 5.1) indicate that the ratio in the green
band was higher than the ratios in the other bands, especially during the spring and summer seasons.
Interestingly, this trend was not observed during other periods. This effect must be strongly related
to both the photosynthetic activities of the vegetation canopy, i.e., the coniferous forests [50], and to
differences in the SRFs of the green band. This trend suggests that the reflectance consistency depends
on the land cover. A similar dependence could be seen in the red band. The reflectance ratio of the red
band tended to be lower than that of the other bands. These trends agreed well with the numerical
simulation results, suggesting that a reduction in these influences could require prior knowledge of
the vegetation quantity. This perspective raises another question to be addressed in the future.
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The RAM method did not always provide more consistent comparisons than the SZM method.
This could be seen during the summer. In this season, the solar zenith angle was small (close to its
nadir). When the solar zenith angle becomes small, the influence of the relative azimuth angle tends to
be small. Thus, adjustments to the relative azimuth angle using the RAM method are less significant.
By contrast, the RAM method selected AHI data acquired at different times than the MODIS data,
which introduced differences in the solar zenith angles of the MODIS and AHI data. During the
summer, differences (in the solar zenith angle) reached 10◦ from May to August, resulting in an even
worse performance by the RAM method than by the SZM method.

Moreover, the performance loss of the RAM method was caused by the relatively early sunset
around the winter solstice. The RAM method selected AHI data observed at later hours of the day
during the winter. The observation time of RAM for the latest case reached 06:50 UTC (15:50 local
time), as shown in Table 4. The time to sunset (Table 10) was only 1 h from the data acquisition
time (07:45 UTC). Because the illumination conditions were shifted toward twilight, the atmosphere
exerted a greater influence on the data. For these reasons, the RAM method was limited around the
winter solstice.

Around the winter solstice, the illumination conditions selected by the SZM and RAM methods
were largely different. This result was confirmed by plotting the reflectance ratios as a function of time
over the entire day time. Figure 12a,b show the results of the reflectance ratios rj obtained from the
Aichi Forest on 9 November 2017 and 22 December 2015, respectively. The times selected using the
SZM and RAM methods are indicated by a solid line and a dashed line, respectively. The ratio of the
data selected using the RAM method approached unity on 9 November 2017 (Figure 12a), whereas the
influence of the illumination conditions was observed on 22 December 2015 (Figure 12b).

(a) (b)

Figure 12. The rj values for four bands along the UTC time, from sunrise to sunset, calculated using
composite data collected using the algorithm described in Section 4.2: (a) AichiForest on 9 November
2017; and (b) AichiForest on 22 December 2015. Rectangles depicted by the solid and dashed lines
indicate the times selected using the SZM and RAM methods, respectively.

The RAM method tended to perform better than the SZM method during winter, except around
the winter solstice. This was attributed to the relatively significant influence of the relative azimuth
angle compared to the solar zenith angle. During winter, the solar zenith angle was so large that the
influence caused by the difference in the relative azimuth angle became significant. Thus, the choice of
the relative azimuth angle became more important than the choice of the solar zenith angle. This could
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explain the significant improvement in the SZM performance compared to the RAM performance
during winter.

In addition to the influences of the geometric conditions and biophysical parameters, several other
factors may have influenced the reflectance ratios: terrain and shadow effects, atmospheric conditions,
BRDF, and rotational asymmetry. These factors may degrade the performance of the RAM method
compared to the SZM method. Although thorough investigations are needed to identify the influences
of each factor, such investigations may have trouble evaluating these influences independently. These
influences are mutually related in a complex manner and differ from region to region. For instance,
terrain effects are induced by differences in the solar zenith angle, view zenith, azimuth angle, and
relative azimuth angle. Therefore, investigations into the evaluation methodology itself could be useful
for GEO-LEO inter-comparisons of middle latitude regions.

Considering the measurement of the relative azimuth angle in the RAM method, two choices of
rotational direction are available, namely, clockwise and counter-clockwise from the position of the
AHI. In this study, we chose the clockwise measure for the relative azimuth angle to make the rotational
direction identical to the one used for the MODIS observation. Selection of the counter-clockwise
direction would have selected AHI data collected before sunrise during the winter. Thus, the choice of
the clockwise angle was a requisite. Another advantage of this choice is that the number of available
datasets is greater than for the counter-clockwise alternative, within the ROIs used in this study.
The maximum value of the azimuth angle relative to the illumination angle at sunset is larger than the
maximum value relative to the illumination angle at sunrise. For instance, over the ROI of Kochi city,
51 datasets are available on the summer solstice if we choose the clockwise angle. By contrast, only
33 datasets are available for the alternative choice (counter-clockwise). Similar trends were observed
over all of the ROIs on the summer and winter solstices, as summarized in Table 10. Finally, the better
choice of rotational direction for the relative azimuth angle depended on the geolocation and overpass
time of a LEO satellite. Further investigations are needed to address this issue.

Table 10. Sunrise and Sunset times in the ROIs during the summer and winter solstices [51]. Dates are
represented by six digits: “YYMMDD”.

Sunrise Time Sunset Time

Aichi (Nagoya) 180621 180620 19:38 UTC (180621 4:38 JST) 180621 10:10 UTC (180621 19:10 JST)
Aichi (Nagoya) 171222 171221 21:57 UTC (171222 6:57 JST) 171222 07:45 UTC (171222 16:45 JST)
Kochi (Kochi) 180621 180620 19:56 UTC (180621 4:56 JST) 180621 10:19 UTC (180621 19:19 JST)
Kochi (Kochi) 171222 171221 22:06 UTC (171222 7:06 JST) 171222 08:02 UTC (171222 17:02 JST)

7. Conclusions

This study proposed a data screening method, the Relative Azimuthal-angle Matching (RAM)
method. The RAM method is a straightforward but unique technique for comparing GEO-LEO
reflectances over forest targets located in middle latitude regions. The performance of the RAM
method was validated by comparing the RAM results with those derived using the Solar Zenith-angle
Matching (SZM) method. Data collected over three years were compared after processing using the
RAM and SZM algorithms. The experimental results show that, in general, RAM was better than SZM
throughout the year, except for the summer and a short period around the winter solstice. Especially
in the autumn and winter, RAM outperformed SZM. These results were attributed to improvements in
the relative azimuth angle by the RAM. The initial screening step used for GEO-LEO comparisons
benefitted when the RAM method selected reflectance pairs with a smaller bias than the SZM method.
This conclusion contradicts the intuition that simultaneous observations (SZM) would select better
observation pairs. This study raises questions about the choice of screening criteria for middle latitude
targets in the context of GEO-LEO comparison frameworks. Since our target ROIs were two similar
mountainous forests with urban ROIs residing in each forest ROI, it was unrealistic to reach a definitive
conclusion from the limited number of samples. Further studies will be needed to draw general
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conclusions on the advantage of RAM over SZM. Further studies are needed to clarify the limitations
of the RAM method as a function of the data acquisition time, geolocation of the targets, and sensor
pairs. Moreover, extending the discussion to higher level of data products such as spectral vegetation
indices and biophysical parameters will also be needed to further examine the differences between
RAM and SZM in the context of GEO-LEO inter-comparison.

Differences between the SRFs of the MODIS and AHI datasets were investigated using numerical
simulations. The green band ratio was large compared to the results obtained in the other bands. We
concluded that this result arose from differences in the SRFs of the two sensors. Furthermore, the red
ratio was influenced to some extent by SRF differences. These influences depended on the value of
the LAI, suggesting at the reflectance comparison depended on land cover and seasonal variations.
This dependence should be corrected by accounting for the LAI level. This issue should be addressed
thoroughly in the future.
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GEO Geostationary Earth Observing
LEO Low Earth Orbit
RAM Relative Azimuthal-angle Matching
SZM Solar Zenith-angle Matching
NDVI Normalized Difference Vegetation Index
LAI Leaf Area Index
ROI Region Of Interest
MaT Maximum apparent Temperature
DOY Day Of Year
TOC Top Of Canopy
TOA Top Of Atmosphere
AHI Advanced Himawari Imager
MODIS Moderate Resolution Imaging Spectroradiometer
SRF Spectral Response Function
ETOPO5 Earth topography 5-min grid
OMI Ozone Monitoring Instrument
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