
remote sensing  

Article

Urban Building Change Detection in SAR Images
Using Combined Differential Image and Residual
U-Net Network

Lu Li 1,2 , Chao Wang 1,2 , Hong Zhang 1,* , Bo Zhang 1 and Fan Wu 1

1 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences, Beijing 100094, China; lilushhf@sina.com (L.L.);
wangchao@radi.ac.cn (C.W.); zhangbo@radi.ac.cn (B.Z.); wufan@radi.ac.cn (F.W.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: zhanghong@radi.ac.cn; Tel.: +86-010-8217-8186

Received: 10 April 2019; Accepted: 4 May 2019; Published: 7 May 2019
����������
�������

Abstract: With the rapid development of urbanization in China, monitoring urban changes is of great
significance to city management, urban planning, and cadastral map updating. Spaceborne synthetic
aperture radar (SAR) sensors can capture a large area of radar images quickly with fine spatiotemporal
resolution and are not affected by weather conditions, making multi-temporal SAR images suitable for
change detection. In this paper, a new urban building change detection method based on an improved
difference image and residual U-Net network is proposed. In order to overcome the intensity compression
problem of the traditional log-ratio method, the spatial distance and intensity similarity are combined to
generate a weighting function to obtain a weighted difference image. By fusing the weighted difference
image and the bitemporal original images, the three-channel color difference image is generated for
building change detection. Due to the complexity of urban environments and the small scale of building
changes, the residual U-Net network is used instead of fixed statistical models and the construction and
classifier of the network are modified to distinguish between different building changes. Three scenes of
Sentinel-1 interferometric wide swath data are used to validate the proposed method. The experimental
results and comparative analysis show that our proposed method is effective for urban building change
detection and is superior to the original U-Net and SVM method.

Keywords: weighted function; color difference image; urban building change detection; synthetic
aperture radar (SAR); residual U-Net

1. Introduction

Urban change detection is an essential remote sensing application that analyzes two or more
remote sensing images that have been acquired over the same geographical area at different times to
find changes that may have occurred between their acquisition dates [1]. According to the latest report
provided by United Nations World Urbanization Prospects in 2014, 54% of the world’s population
resides in urban areas and this percentage is expected to increase to 66% by 2050 [2]. Building change
is one of the most obvious landcover changes in the urbanization process; the evaluation of changes
in buildings and reliable urban change information acquisition have become an urgent need in
government management, economic construction, sociological research, and so on.

Recently, with the development of synthetic aperture radar (SAR) technology and short repeat-pass
cycle, it has gradually become an effective approach for change detection. At present, many methods
have been proposed for SAR image change detection [3–7]. As mentioned in reference [3], the procedure
of change detection in SAR images can be divided into three steps: (i) Image processing; (ii) difference
image (DI) generation; (iii) analysis of DI. Among these steps, difference image generation was a key

Remote Sens. 2019, 11, 1091; doi:10.3390/rs11091091 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-1398-7196
https://orcid.org/0000-0003-4887-923X
https://orcid.org/0000-0002-0088-8148
https://orcid.org/0000-0002-9280-8378
http://dx.doi.org/10.3390/rs11091091
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/9/1091?type=check_update&version=3


Remote Sens. 2019, 11, 1091 2 of 19

step for SAR change detection, and the simplest method was to play subtraction operation on the
two SAR images. However, this method led to many fake changed pixels due to the speckle noise
and then increased the false alarm rate in the following detection procedure. As references [8–10]
mentioned, log-ratio operation was a better DI generation method due to its ability to transform
multiplicative noise into additive noise and the fact that it is less sensitive to radiometric errors.
But the disadvantage was that log-ratio operation could compress the changed pixels in high-level
intensity [11], especially for building objects. To improve the description ability and noise robustness
of DI, many neighbor-based and combination methods were proposed. Most acquired improved DI
were mean-ratio DI [8], neighbor-based ratio (NR) DI [12], and improved neighborhood-based ratio
DI [13]. By using the local spatial information and mean operation, these DIs improved the change
detection accuracy. However, the common disadvantage of them was that the optimal window size of
the neighborhood was difficult to determine, since there was no reference map or prior knowledge
about the image. To solve this problem, Zhuang et al. [14] employed heterogeneity to adaptively
select the spatial homogeneity neighborhood and used the temporal adaptive strategy to determine
multi-temporal neighborhood windows. This way, the new DI could both suppress the negative
influence of noise and preserve edge details. Meanwhile, Zhang et al. [15] proposed a linear weighted
function to solve the high-level intensity compression in log-ratio operations. By using the logarithmic
function in a dark changed area and saliency extraction in a bright changed area, the changed area
could be well described. Bovolo et al. [1] combined multiscale image information to preserve change
details by using wavelet decomposition under log-ratio images. Therefore, it can be concluded from
the above-mentioned improvement methods that combining different DIs or using neighborhood
information could help to improve change detection performance.

Change detection methods based on DI are mainly divided into three categories:
(i) Threshold-based methods; (ii) unsupervised clustering methods; (iii) supervised learning methods.
For thresholding methods, statistical model design and the thresholding estimation were important.
K&I, as a minimum error thresholding method, has been used in change detection. For example,
Bazi et al. [16] proposed an automatic change detection approach based on the generalized Gaussian
model and a modified K&I criterion. Ghanbari et al. [17] proposed a statistical approach to obtain an
image by measuring the similarity of two covariance matrices of the bitemporal polarimetric SAR and
then applied the generalized K&I to the obtained image for change detection. The latter two methods
are the most popular in current research [18–22]. Their core idea consists of two parts, namely, feature
extraction and pixel-wise classification. Gao et al. [7] utilized semi-nonnegative matrix factorization of
the SAR images to generate pixelwise feature vectors. Then, they detected the changed and unchanged
regions based on a two-layer singular value decomposition (SVD) classifier. Celik et al. [22] used
principal component analysis to get each pixel’s features and then classified them using k-means
clustering. Gong et al. [23] proposed an MRF-FCM unsupervised clustering method to improve
the classification accuracy. By enhancing the spatial correlation with Markov Random Field (MRF),
the consistency of detection results was improved. However, due to the limitation of useful information,
clustering methods could only achieve binary change detection (change or unchanged detection).

In recent years, deep learning networks have been introduced into SAR change detection.
Gong et al. [24] used LR difference image and both fuzzy C-means (FCM) and convolutional neural
network (CNN) to achieve ternary change detection (positive change, negative change, and unchanged).
The deep believe network (DBN) [25] and stacked autoencoder (SAE) [26,27] were used as feature
extraction and speckle denoising in SAR change detection. However, the methods based on CNN or
DBN were time-consuming. In 2014, full convolution network (FCN) [28] was successfully applied to
optical image end-to-end semantics segmentation. The FCN could extract more hierarchical features
at different convolution layers due to its skip connection operation, which could combine low-level
details features (like line, edge, and texture features) with high-level semantic features (class or context
information). In addition, this network was more effective than the traditional CNN or DBN network
in remote sensing classification [29–31] or change detection [32,33]. Its up-sampling layer could output
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a mapping result which had the same size as the input data. In 2015, inspired by the idea of FCN,
Ronneberger et al. [34] proposed U-Net, which was proved to have a better semantic segmentation
performance than FCN [30,35,36]. Once the network was trained well, an image patch could be put
at the input layer with a classified or segmented map appearing at the output layer immediately.
The U-shape construction and the concatenation operator enabled U-Net to combine the low-level
details provided by the bitemporal SAR images and high-level semantic information provided by the
difference image. However, the drawback of U-Net was that it could only predict on one scale and could
not deal with multi-scale segmentation problems well. Thus, Zhang [37] introduced residual block
into U-Net and proposed residual U-Net to extract road in optical remote sensing images. By using
identity mapping of the residual block, the next convolutional unit obtained information of two scales.
In addition, the residual unit simplified network training and promoted information propagation
without degradation.

The above-mentioned deep learning methods or networks improved the accuracy of classification
or change detection, but if we still used a common DI (as a subtraction image or log-ratio image),
it was still impossible to detect changes in specific objects or land cover. The main reason for this
was that those DIs did not provide the class information of the objects. Therefore, the goal of this
paper was to generate a new DI which included an object’s class information, which not only better
distinguishes changed and unchanged areas, but also divides the urban building change into positive
and negative changes. By introducing spatial and intensity information into DIs, we propose a
new combination method based on the idea of NR difference image [12] and weighting function in
reference [14]. Considering the complexity of urban environment and the small scale of building
changes, the construction and classifier of the residual U-Net network are modified to distinguish
between different building changes. The following content is organized as follows: Section 2 gives
a detailed presentation of the proposed method. The study area and the test site are described in
Section 3. Then, experiments and a detailed analysis are given in Section 4. Lastly, the discussion and
conclusions are presented in Sections 5 and 6, respectively.

2. Methodology

Built-up areas in SAR images appear heterogeneous, with alternating brightness and darkness
due to the double bounce reflection of buildings, the shadow effect, and multiple reflections [38,39].
As far as building change detection is concerned, it is necessary to add more information to DI and
then apply image enhancement to enlarge differences between different building changes (e.g., water
to buildings, land to buildings, buildings to land, buildings to water, and so on).

Based on the above analysis, the proposed urban building change detection method mainly
includes the following two parts: (i) Difference map generation based on multiple DI fusion and
(ii) change semantics segmentation with the residual U-Net network. A brief flowchart of the
proposed method is given below in Figure 1. First, all of the SAR images were preprocessed by
radiometric calibration, co-registration, enhanced frost filtering, and geocoding using ENVI SARscape
software. Then, a neighborhood-constraint (NC) difference image was proposed by merging the
traditional subtraction-based (SD) difference image and neighbor-based log-ratio difference image (NR)
under a proposed weighted function (see Section 2.1). Next, a three-channel color difference image
was generated by stacking NC with the original bitemporal SAR images. In this difference image,
different change classes could be identified easily by their colors. After that, a residual U-Net was
constructed, and the color difference image was sent to the input layer to train the network under
supervision. Finally, after several iterative trainings, a change map was obtained at the output layer of
the residual U-Net.
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Figure 1. The flowchart of the proposed urban building change detection method. The areas enclosed
by the red-dashed lines are the innovations of this paper.

2.1. Neighborhood-Constraint-Based Difference Image Generation

Considering that the subtraction-based difference image (SD) preserves high-order change and
NR reduces the influence of speckle, we merged the two difference images to generate a new difference
image. The new difference image not only had a good description in the high-order change area,
but also had a strong robustness to speckle noise. In order to preserve the texture and spatial structure
of the object in the new difference image, each pixel in the two images was merged with its adjacent
pixels under the constraints of Euclidean distance and the local intensity value. The mathematic
expression of the method is as follows:

Suppose that pi is a pixel in the NC, and that its m2 neighbor (the length of square neighborhood)
pixels are pi =

{
pi,1, pi,2, . . . , pi,m2

}
; then, the Euclidean distance of each neighbor pixel is expressed by

Equation (1):

disi, j =

√
(pxi, j − pxi)

2 + (py
i, j − py

i)
2, j = 1, 2, . . . , m2 (1)

Then, the distance constraint in pi is presented by a weight matrix Wi
dis:

Wi
dis =

exp
−di,1
2σ2 , exp

−di,2
2σ2 , . . . , exp

−di,m2

2σ2

 (2)

In Equation (2), the adjacent pixels far away from the center pixel pi have little influence on the
results. Here, the exponential form is inspired by the expression of the Gaussian-weighted Euclidian
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distance and the value of σ is 1 for the normal Gauss distribution. Then, the intensity constraint is
expressed by the intensity similarity, which consists of Equations (3) and (4):

Si, j =

√
(ISD

i, j − ISD
i )

2, (3)

Wi
int =

{
exp

−si,1
2σ2 , exp

−si,2
2σ2 , . . . , exp

−si,m2

2σ2

}
. (4)

In Equation (3), ISD
i, j and ISD

i are the intensity values of pi, j and pi in the SD, respectively. SD is
used for the similarity constraint because the difference value in SD can describe the change degree
in any intensity level without intensity compression. In Equation (4), speckle noise that has a small
similarity with the center pixel pi will have a small impact on the result, but pixels, which are similar to
pi, will bring a greater contribution to the result. Thus, Wi

int can be robust to speckle noise and give
a good description at any intensity level. So, Wi

dis and Wi
int were both computed from the SD in a

neighborhood region.
Then, in the new generated difference image NC, the intensity of pi was computed by weighting the

corresponding neighbor pixels’ intensity values of NR with the above two weights, as Equation (5) depicts:

NCi =
〈
Wi

dis �Wi
int, INR

i

〉
(5)

Here, the NCi is a pixel in NC which has the same position as pi. � means the Hadamard
product of two matrices and 〈 〉 means the dot product of two vectorized matrices. The variable
INR
i is a matrix formed by neighborhood pixels and its size was the same as the dimensions of the

Hadamard product results. Lastly, to keep pixels of NC in a consistent range, a normalizing processing
by the sum of the weights was used to the output of Equation (5); the mathematical expression is
NCi = NCi/

∑(
Wi

dis �Wi
int

)
. In order to observe the results of the method intuitively, we also give an

example of above SD, NR, and NC in the following Section 4.2.

2.2. Three-Channel Difference Image Generation

Although the NC difference image can give a better description of the urban building changed
area, it is still hard to use for identification of the building change from other changes, which also have
bright or dark intensity values. As we know, the original SAR image has distinctive information for
different land covers. Thus, the original image information should be introduced and combined with
NC difference images to generate a new three-channel color DI, named TC (triple-channel color DI).
In TC, both the original class information and the change information can be acquired simultaneously.
The specific operational approach is to stack the three images (bitemporal original images and a NC
image) layer by layer.

It should be noted that the stacking order of each layer is not strictly restricted. Here, we used
the post-temporal image as the first layer, the pre-temporal image as the second layer, and the NC
difference image as the last layer. Based on this stacking order, one can easily distinguish the different
changes of buildings visually according to the RGB color distribution. Section 4.2 shows an example of
the generated three-channel color DI.

2.3. Residual U-Net Construction

The residual U-Net combines the strengths of residual learning and U-Net. The skip connections
within the residual units and between the encoding and decoding paths of the network facilitate
information propagations both in forward and backward computations [37]. Considering that building
change areas are multi-scale in the SAR image, we employed the residual U-Net to achieve urban
building change detection. However, the original residual U-Net is not suitable to directly use on
building change detection. Because the building targets usually occupy a small proportion of the whole
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SAR image, if image patches are sent to the deep residual U-Net directly, position and detail information
of the small building target will be blurred or even lost significantly after several convolution and
pooling operation [37]. In addition, the original network can only receive a grayscale image and output
a binary segmentation image. So, it cannot be directly used for building change-type identification.

To solve this problem, we modified the original residual U network, which is shown in Figure 2.
In this figure, the network consists of one input layer, five convolutional blocks, and one output layer.
Four major layer types (convolutional layer, batch normalization layer, ReLU layer, and addition
layer) are displayed in different colors. The image down-sampling or up-sampling processing is
represented by the maxpooling operation or the up-sampling operation. The output information of
each convolutional block is noted at the side and the convolutional blocks (1), (2), (4), and (5) have a
residual block respectively, as shown in the right box. The components highlighted in red represent
the modifications we made. Firstly, the number of channels in the input layer was changed to three
and the number of layers of the third convolution block was reduced. The purpose of this was to
reduce the loss of position and detail information. Next, the binary cross-entropy loss function was
replaced by the category cross-entropy loss function. This loss function is always used when the
number of samples in the difference classes is unbalanced. Generally, the number of positive building
changes was not equal to that of negative building change and the unchanged. Therefore, the use of
the category cross-entropy loss function in our network would be more suitable for the actual situation.
Finally, because the results are divided into three classes, the sigmoid classifier of raw network was
replaced by softmax for multiple classification.
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3. Study Areas and Data

3.1. Nanjing City

The study area of this paper is located in Nanjing City, in the southwest part of Jiangsu Province,
China, as shown in Figure 3a. Nanjing city is a fast-developing provincial city which plans to expand
the building construction area to 652 km2 by 2020, according to the statistical data provided by
Nanjing government [40] in 2017. Seen from this blueprint, Nanjing City mainly consists of three parts:
(i) Central district in red; (ii) metropolitan district in orange; (iii) city proper in green. From 2017 to
the present, the construction of residential and commercial buildings are the main activities in the
Pukou and Jiangning Districts and Chunxi Town. Pukou and Jiangning Districts are main developing
living areas of the Central district, which mainly plans to construct office and residential buildings.
Chunxi Town, as a new planned town in the south of Nanjing, will develop fast in the following several
years. Therefore, we tested the proposed method by detecting the construction of new buildings and
the changes in building removal in these areas.
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Figure 3. The study area: (a) The administrative map of Nanjing City, Jiangsu Province, China. (b) The
Sentinel-1 SAR image. The blue contour area was used as the test site and the red outline areas were
used as the training samples.

3.2. Experimental Data

Sentinel-1 satellite produced C-band dual-polarization of the SAR data and its interferometric
wide swath (IW) mode provided an SAR image with 250 km coverage range and 10 m sampling space.
We chose Sentinel-1 IW images in 2017 and 2018 to perform the experiments. Table 1 lists the basic
information of the images in the following experiments.

Table 1. Basic information on the experimental data.

No. Date Satellite Polarization Data Type Image Size

s1 2017/3/16 S1A VH GRD 18,434 × 11,991
s2 2018/1/22 S1A VH GRD 18,436 × 11,992
s3 2018/12/24 S1A VH GRD 18,433 × 11,991

As shown in Figure 3b, Nanjing City was selected as the test data, while the other three cities,
Changzhou City, Wuxi City, and Yixing City, were selected for the training data. As the major cities of
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Jiangsu Province, these cities have developed fast in recent years and their natural environments are
similar to that of Nanjing. The specific information on the training and test data are listed in Table 2.
In Table 2, ‘positive pixels’ means the number of pixels where buildings were constructed and ‘negative
pixels’ indicates the number of pixels where the buildings were removed. The ‘number of patches’
counts the number and the shape (length and width) of the image patches. These patches were used as
input data of the residual U-Net network. Since the proposed TC was a three-channel color image,
each patch in the input layer was 224 × 224 × 3.

Table 2. Specific information on the training and test samples.

Sample Type City Positive Pixels Negative Pixels Acres
(Positive/Negative) Number of Patches

Training
samples

Changzhou 30,550 7310 2152/511 1288
Yixing 5500 3150 385/220 416
Wuxi 27,047 4939 1893/346 545

Test samples Nanjing 28,711 8892 2009/622 1656

In addition, the ground truth of both training and test data were made by manual interpretation
of optical images with similar imaging times of the SAR images on Google Earth. Figure 4 shows
an example of building changes using optical and SAR images in Jiangning District. Figure 4a,b
show the optical images of 6 March 2017 and 8 February 2018, respectively. Figure 4c,d are SAR VH
images of 16 March 2017 and 22 January 2018, respectively. The green box marked A1 indicates the site
where some buildings were demolished in 2018. This change represents a negative building change.
Another three red boxes labeled A2–A4 shows the location of new buildings in 2018, which represent
positive building changes.
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4. Experimental Results

4.1. Parameter Setting

In the proposed difference image NC, the neighbor size m and σ are the two main parameters
that would influence the final TC difference image’s quality. The value m determines the number of
neighbor pixels participating in the calculation of the spatial weight matrix Wi

dis and the intensity of
the similar degree weight Wi

int. As we know, the large neighbor window leads to more pixels, resulting
in an ambiguity border of the change region, while the small neighbor window is less effective on
reducing the influence of speckle noise. Generally, the 3 × 3, 5 × 5, and 7 × 7 neighbor windows
perform well and there is little difference between 3 × 3 and 5 × 5. Here, we selected 3 × 3 as the
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preset parameter value for building change detection. σ is a variance which influenced the range of the
intensity level. The small (or large) value of σ results in a small (or large) intensity level range, which
worsens the texture or intensity contrast. Thus, we followed the normal distribution with σ = 1 in
our method.

As for the revised residual U-Net, the main parameters used in our experiment are summarized
as follows: The training environment of the network is Ubuntu 16.0.4 with Core i7 CPU and NVIDIA
GTX 1080Ti 12G GPU. The total number of samples in Table 2 is 2249. For each sample in Table 2,
we obtained another nine new augmented samples by performing data augmentation (rotation with
random angle, flip, wrap). Thus, we had 22,490 samples in the final training dataset. The learning rate,
epoch, and batch size were 0.0005, 30, and 5, respectively.

Since the input of the network was 224 × 224 × 3, we clipped the whole images into patches of the
same size to input data format. In the training stage, we used a non-overlapping 224 × 224 sliding
window to segment the whole training image into patches. The remaining boundary regions less than
224 × 224 were discarded. This method had no adverse effect on the training process. In the test stage,
we divided the image into patches by half overlapping, which avoided changed areas to be separated
into different patches. The results of the two adjacent image patches were processed by joint operation
to ensure that the changed area and its true boundary remained unchanged as much as possible.

4.2. Result of the Proposed Difference Images

Figure 5 is an example of the four types of difference images. Seen from Figure 5, in SD and
NR maps, the intensity contrast between the changing and unchanged area was low so that some
of the changed buildings in the figure are blurred, which makes it difficult to distinguish building
changes from the unchanged background. In order to see the difference among the four difference
images clearly, we list two examples in the right two columns. By comparing the four difference image
patches, we find that although NR had less speckle noise, it had a worse description on the changed
areas, shown in Figure 5a,e. This is because that the log-ratio operation reduces the detection rate
of high-level change areas. In the SD image, some changed pixels were submerged in noise which
makes the shape of changed areas still incomplete. However, this drawback was improved in the
proposed NC difference image. As shown in Figure 5c,g, both positive and negative changes were better
described than the first two DIs, especially when the edges were well detected. However, in NC, it was
still difficult to distinguish the different building change classes (unchanged, positive, and negative
changes) from DI. Fortunately, this problem has been well addressed in the proposed TC, as shown in
Figure 5d,h. Red areas represent positive building changes, while light green areas represent negative
building changes. Compared with the previous three DIs, the last one more easily distinguished
between building change areas and unchanged backgrounds.



Remote Sens. 2019, 11, 1091 10 of 19

Remote Sens. 2019, 11, 10 of 19 

 

 
Figure 5. The illustration of the four difference images by using bitemporal SAR image patches in 
Jiangning District. The two right columns show details of these difference images; (e–f) correspond 
to (a–d). 

4.3. Validation of the Proposed Difference Images 

To further verify the effectiveness of the proposed difference images NC and TC, we 
performed two validation experiments in this section. Firstly, to test if the training samples 
extracted from TC can separate positive and negative changes from other unchanged colored 
backgrounds, we introduced the Jeffries Matusita (JM) distance to measure the separability among 
the three classes. The JM distance is a distinguishing indicator that widely used in the remote 
sensing field [41–43], and its value ranges from 0 to 2. The larger the value is, the better separability 
is among the different categories. Its mathematical equation can be expressed by Equation (6): 

( )
2

,i j
i j

x xJM C C p p dx
C C

      = −            
 

 

(6) 

where 
i

xp
C

 
 
 

 represents the probability that the pixel i  belongs to the iC  class. Here, the 

probability density function (PDF) of the random selected pixels obeys normal distribution. In order 
to get reliable estimation results quickly, we obtained the PDFs of classes by using the commercial 
software ENVI. Then the JM separation degree was calculated by the following equations: 

( )( )=2 1-expJ B−
 (7) 

Figure 5. The illustration of the four difference images by using bitemporal SAR image patches in Jiangning
District. The two right columns show details of these difference images; (e–f) correspond to (a–d).

4.3. Validation of the Proposed Difference Images

To further verify the effectiveness of the proposed difference images NC and TC, we performed
two validation experiments in this section. Firstly, to test if the training samples extracted from TC can
separate positive and negative changes from other unchanged colored backgrounds, we introduced the
Jeffries Matusita (JM) distance to measure the separability among the three classes. The JM distance is a
distinguishing indicator that widely used in the remote sensing field [41–43], and its value ranges from
0 to 2. The larger the value is, the better separability is among the different categories. Its mathematical
equation can be expressed by Equation (6):
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density function (PDF) of the random selected pixels obeys normal distribution. In order to get reliable
estimation results quickly, we obtained the PDFs of classes by using the commercial software ENVI.
Then the JM separation degree was calculated by the following equations:
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Here, m1 and m2 are mean values of the two classes and σ1 and σ2 are variance values of the two
classes. By using the following two steps, the JM distance of any two classes can be computed.

In Table 3, both the separability value and the number of tested pixels are listed and the numbers
of pixels are under the JM value. Seen from the table, the separative values between the two changed
classes are almost at the maximum, so it is easy to distinguish between them. The JM value of positive
change and the unchanged part is 1.8367, which indicates that the two classes are also easy to separate.
The JM value between the negative change and the unchanged part is slightly lower than the last,
1.7383, which is because the same volume of scattering objects, such as trees and crops, have similar
intensity changes as the negative building change. Although it seems that they are not easy to separate,
the texture information between them is significantly different and the information can be obtained by
the deep convolutional network. Therefore, these classes can be well separated by the proposed TC
and the residual U-Net network.

Table 3. The JM separability among two changed classes and the unchanged class.

Positive Change Negative Change Unchanged

Positive Change — — —

Negative Change 1.9937 — —
(1049, 3758)

Unchanged Part 1.8367
(4078, 3758)

1.7383
(4078, 1094) —

To verify that the proposed NC has a better description on changed and unchanged areas, we used
the OTSU [44] threshold method to detect changed and unchanged pixels in these difference images.
Then, we used ROC to evaluate the performance of them according to the measurement used in
Inglada’s paper [8]. The statistical indices are false alarm rate (FAR) and detection rate (DR) and are
used to make the ROC curve line. The definitions of FAR and DR are shown as

DR = PC/AC (9)

FAR = (FU + FC)/(AC + AU) (10)

Here, positive changed (PC) pixels means the number of correctly detected changed pixels in
the difference image. All changed (AC) pixels means the total number of true changed pixels in the
difference image. All unchanged (AU) pixels is the total number of true unchanged pixels in the
difference image. False unchanged (FU) pixels is the number of incorrectly detected unchanged pixels;
these are actually changed pixels. False changed (FC) pixels is contrary to FU. Using this method, a DI
will have zero DR and FAR values when the detection threshold is 1 because all pixels are detected as
unchanged. When the detection threshold is set to 0 all changed pixels are detected, but plenty of false
changed pixels are also detected, so the FAR goes to 1. For performance evaluation, the larger coverage
area of ROC curve under the first quadrant of coordinate axis, the better the description performance
of this method.

The statistical ROC result is shown in Figure 6. It can be seen that our proposed NC outperformed
the other two difference images. NR was better than SD, although it had a low detection rate when the
threshold was large. This is because some high-level changed pixels are compressed by the log-ratio
operation, so their intensity values are less than the threshold. However, with the threshold reduction,
the false alarm rate was lower than SD when it had the same detection rate as SD.
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rate (FAR) indices by using the OTSU thresholding segmentation method.

4.4. Results of Urban Building Change in Nanjing City

In this section, Nanjing city was taken as the test site to validate the effectiveness of the proposed
method in two groups of experiments. Pukou District and Chunxi Town were selected as the first
test sites and Jiangning District, shown in Figure 4, was selected as another test site to compare the
performance of our method with U-Net and SVM results. The confusion matrix, overall accuracy
(OA), and the Kappa coefficient were used to illustrate the accuracy of the building change detection
results. All accuracy evaluation results were calculated by counting pixels in the detected results and
the corresponding ground truth images. Since the number of unchanged pixels was much higher than
that of the positive and negative changes, it was better to have a comparable number of control pixels
for positive, negative, and unchanged pixels. In the following accuracy assessment, we randomly
selected the same number of pixels for each class.

The building change results at Pukou District and Chunxi Town from 16 March 2017 to 22 January
2018 are shown in Figure 7. In the figure, the first two rows display the two pairs of bitemporal SAR
images, detection results, and corresponding reference images. We also have six main change examples
in the next six columns and show the specific change area by drawing the outline in each patch.
Since the outlines were drawn by visual interpretation, they are just used to help readers to quickly
find the location of the changed area in the image. For the first result (shown in the first column),
many positive building changes occurred and few small-scale negative building changes happened.
The detection results of our method roughly extracted the main changed areas and their change classes.
For the second result (shown in the second column), the proposed method also detected main building
changes well. However, there were also some omission errors on the result map compared with its
reference image and most of the errors came from the negative change. The negative change in this
area was mainly caused by small factory buildings or residential buildings, which were easily ignored
due to the limitation of the image resolution. In fact, there were many small-scale building changes
such as this in Nanjing City, which could have gone undetected on the result map; a performance
evaluation would be influenced by these omission errors. Therefore, in order to eliminate the influence
of resolution, we set a scale threshold to remove the tiny pieces belonging to the changed pixels.
The threshold was set to 25 pixels, namely when a changed area was less than 25 pixels or the region is
smaller than 5 × 5, it would be removed and regarded as speckle noise. In addition, these tiny pieces
in the reference image were also ignored, so we only focused on verifying the detection performance of
the selected change area.
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Figure 7. The building change results at Pukou District and Chunxi Town from 16 March 2017 to
22 January 2018. Pixels in red indicate newly constructed buildings and pixels in blue indicate
removed buildings.

Table 4 shows the accuracy evaluation of change detection results in Pukou District and Chunxi
Town by using the confusion matrices. In this test, we randomly selected 550 pixels for each class in the
image patches (both results and references shown in Figure 7). According to the confusion matrices,
we found that most of the building changes were correctly detected in both areas. There was no error
in pixel classification between positive and negative changes. The OA values of the two sites were
about 0.8518 and 0.83, respectively. According to the Kappa value, the first site had a better detection
result than the second one. However, compared with the result of the second test site, it had a lower
omission error. The high omission error in the Chunxi Town result was mainly caused by the small
change areas, since this place is a new, developing town where small residential buildings or houses
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are constructed. Therefore, we can assume that the proposed method was able to perform better in the
large-scale change area with a low commission and omission error.

Table 4. Accuracy assessment of the results in Figure 7.

Prediction

G
ro

un
d

Tr
ut

h

Pukou District

Class Positive Change Negative Change Unchanged Total

Positive Change 479 0 71 550
Negative Change 0 458 92 550

Unchanged 24 40 486 550
Total 503 498 649 1650

Kappa 0.8021 OA 0.8624

G
ro

un
d

Tr
ut

h

Chunxi Town

Class Positive Change Negative Change Unchanged Total

Positive Change 471 0 79 550
Negative Change 0 442 124 550

Unchanged 31 34 485 550
Total 502 476 672 1650

Kappa 0.7933 OA 0.8473

Figure 8 shows comparison results of our method and the other two approaches in Jiangning
District from 16 March 2017 to 22 January 2018. In the figure, the first two columns display the optical
images from Google Earth and the third and fourth columns display the corresponding SAR images.
The first result (A1–A7) is an example of the negative building change and the next three results show
positive building changes where different buildings were built during this period. It is obvious that all
compared methods performed well at the large-scale residential building change shown by D1–D7 and
the proposed method performed best. This is because the buildings in this area presented a large
bright patch by the high-density building distribution in SAR images. It is noted that SVM showed a
comparable detection performance at the large-scale building change area, but it also generated many
incorrect classification results (A7–D7). The reason is that SVM only used single-pixel information to
classify the building change, while the spatial construction or texture information of the buildings were
not involved. In contrast, U-Net had a lower commission error than SVM (A6–D6 and A7–D7) though
it did not perform well at the border of the building change area. This indicates that the deep neural
network could effectively reduce the probability of incorrect classification. Secondly, in comparing the
results (A6–D6) of U-Net and the results (A5–D5) of our revised residual U-Net, we found that the
latter method had a better detection border than the previous method. This was because the residual
block shown in Figure 2 preserved more useful spatial information during multiple convolutional
operations and provided more information for the final building change map-generation procedure.

In order to evaluate the three methods accurately, we used the area of Nanjing city in Figure 2
as the test data to detect the urban building changes during the period from 22 January 2018 to
24 December 2018. Since most of the building changes occurred in urban areas, we randomly selected
10,000 pixels for each class in the urban areas of Nanjing City and then used these pixels to evaluate
the accuracy. Table 5 lists the overall accuracy evaluation results of all the methods and Table 6 lists
the statistical results of the proposed method. Seen from Table 5, the optimal OA of the proposed
method was close to 0.87, while SVM had the lowest OA. The differences in OA and Kappa between
the three methods were close to 15% and 20%, respectively. Although the OA of U-Net was nearly up
to 0.8, its kappa coefficient was only 0.7233, which means that the consistency between the detected
result and the reference was low. From the ‘commission’ and ‘omission’ results, it can be seen that the
detection error of SVM was more than 37%, mainly due to the poor classification ability of the linear
classifier. When determining the class type of a pixel, it only used the vector information of a single
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pixel, ignoring the important spatial neighborhood information. Compared with SVM, U-Net had
better OA and Kappa values, but still had poor performance in negative building change detection.
This was because negative changes always accounted for a very small proportion in the image and,
because of the lack of residual blocks, it was difficult to obtain the negative change information in
deeper layers.
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Figure 8. Detailed results of different methods at the test site in Jiangning District. All positive change
results and ground truths are masked in red and the negative results are masked in blue. The eight
columns respectively show Google Earth images from 16 March 2017 (A1–D1) to 22 January 2018
(A2–D2), SAR images (A3–D3 and A4–D4), detection results of our method (A5–D5), U-Net (A6–D6),
SVM (A7–D7), and ground truth maps (A8–D8).

Table 5. Accuracy assessment of the urban building change detection results.

Class
SVM U-Net Residual U-Net

Commission (%) Omission (%) Commission (%) Omission (%) Commission (%) Omission (%)

Positive
Change 25.44 16.60 14.65 22.84 5.49 9.74

Negative
Change 37.30 42.19 11.75 23.70 7.24 12.20

Unchanged 29.13 16.23 35.33 14.80 19.97 12.10
OA 0.7041 0.7955 0.8865

Kappa 0.6011 0.7233 0.8298

In Table 6, about 974 positive changed and 1220 negative changed pixels were erroneously
detected as unchanged types. This was because many small-scale building changes scattered in
urban areas usually looked like small blocks in the image. These pixels could easily be classified
as unchanged. In January 2018, some rough bare land areas had a near high backscatter coefficient,
but dropped to a lower level in December. Therefore, some pseudo-negative changed pixels were
detected. Additionally, we can observe three other findings from the confusion matrix in Table 6:
(i) The omission error of positive change was caused by the misclassification of unchanged pixels;
(ii) the commission error of unchanged class was caused by the misclassification of negative changed
pixels; (iii) the number of false detected pixels between positive and negative changes is zero.
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Table 6. Confusion matrix of the detection results of the proposed method in Nanjing City.

Prediction
G

ro
un

d
tr

ut
h Class Positive Change Negative Change Unchanged Total

Positive Change 9026 0 974 10,000
Negative Change 0 8780 1220 10,000

Unchanged 524 686 8790 10,000
Total 9350 9166 11,484 30,000

5. Discussion

From the experimental results in Sections 4.2–4.4, it can be seen that the proposed difference image
generation method not only had a better description of building change areas than the traditional
difference images, but also better distinguished the building changes from other land object changes.
This was mainly due to the following reasons: (i) The proposed NC effectively enhanced the contrast
between the homogeneous region (changes happened) and the heterogeneous region (noise dominated).
Meanwhile, it had a denoising effect on the foreground target and better preserved the details of the
building edge. The advantage of NC lies mainly in the proposed neighbor-based weighting function in
Section 2.1. The spatial constraint of the function played an important role in contrast enhancement,
while the neighbor intensity constraint preserved the texture information and the difference degree of
the building change area. (ii) The proposed three-channel color difference image contained the original
SAR image information and building changes information simultaneously. Due to dihedral angle
scattering characteristics, buildings had brighter spatial textures and structural intensities which made
them easily identifiable. Thus, the proposed approach can distinguish the urban building changes
from unchanged areas.

The experimental results show that the method can be further improved in the following two
aspects. Firstly, as shown by the experimental results in Figure 7, the performance of this method
in small-scale building change detection needs to be further improved. The maxpooling layer used
in the network may lose the position information in small changed areas. Thus, it is necessary to
design a better pooling layer to preserve the position information of small changed areas. What is
more, the proposed NC has a denoising effect on the foreground target (namely changed regions),
which only seems to enhance the contrast between unchanged and changed areas. Thus, the weighting
function we proposed can be further improved to compress the intensity level of unchanged pixels.
Secondly, for the moment, this proposed method cannot be used for multiclass change detection.
The proposed differential image can only be used to divide building changes into positive and negative
changes from dual-time SAR images. Specific land cover change types cannot be well identified, which
could explain what land types or objects have been changed into buildings. To this end, we plan
to study the improvement scheme of multi-class classifier for multi-class labeled samples to realize
multi-class land cover change detection.

6. Conclusions

In this paper, a neighbor-based color difference image and an improved residual U-Net were
used to detect urban building changes in SAR images. Compared with the traditional subtraction or
log-ratio difference image, the proposed difference image generated by the newly proposed weighting
function better described the building change areas. The stacked color image effectively separated
building changes from the unchanged areas. By reducing the depth of the original residual U-Net
and employing the softmax classifier and the category cross-entropy loss function, it was apparent
that this network was more suitable for urban building change detection. The experimental results in
Nanjing City verified the validity and robustness of the proposed method. This method still needs
some improvement for application in the small-scale building change areas, which is also the focus of
our next work.
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