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Abstract: The spatio-temporal random effect (STRE) model, a type of spatio-temporal Kalman filter
model, can be used for the fusion of the Global Navigation Satellite System (GNSS) and Interferometric
Synthetic Aperture Radar (InSAR) data to generate high spatio-temporal resolution deformation
series, assuming that the land deformation is spatially homogeneous in the monitoring area. However,
when there are multiple deformation sources in the monitoring area, complex spatial heterogeneity
will appear. To improve the fusion accuracy, we propose an enhanced STRE fusion method (eSTRE) by
taking spatial heterogeneity into consideration. This new method integrates the spatial heterogeneity
constraints in the STRE model by constructing extra-constrained spatial bases for the heterogeneous
area. The effectiveness of this method is verified by using simulated data and real land surface
deformation data. The results show that eSTRE can reduce the root mean square (RMS) of InSAR
interpolation results by 14% and 23% on average for a simulation experiment and Los Angeles
experiment, respectively, indicating that the new proposed method (eSTRE) is substantially better
than the previous STRE fusion model.

Keywords: land surface deformation; spatial heterogeneity; spatio-temporal random effect model;
data fusion; GNSS and InSAR

1. Introduction

Geological disasters, such as landslides, debris flows, and land subsidence, seriously threaten
people’s lives and properties, which have become important factors restricting the sustainable
development of society and the economy [1]. In order to reduce the loss caused by geological disasters,
it is essential to monitor, analyze and predict surface deformations [2,3]. GNSS techniques, such
as GPS, can provide high temporal resolution 3-dimensional (3-D) deformation observations with
millimeter accuracy but low spatial resolution due to high installation cost. The best spatial resolution
currently achieved is about 10–25 km for the Southern California Integrated GPS Network (SCIGN)
in some areas of southern California. Another surface deformation monitoring technique known as
InSAR, can provide large scale surface deformation monitoring data with centimeter-level and even
potentially millimeter-level accuracy, but low temporal resolution restricted by the revisit interval [4].
The better temporal resolution of 15 days for TerraSAR-X and COSMO-SkyMed is still too long for some
deformation monitoring applications. Neither individual technology can provide high spatio-temporal
resolution measurements that are necessary for deriving finer deformation evolution and performing
the mechanism analysis of geological/ anthropogenic disasters.
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Several attempts have been published to combine GNSS data and InSAR data for deformation
measurements. Several authors use GNSS data to correct InSAR errors, such as DEM errors [5],
atmospheric errors [6–8] and orbit errors [9]. Other authors combined GNSS data and InSAR data to
obtain high spatial resolution three-dimensional (3-D) deformations [10–13]. However, a small amount
of research has focused on combining GNSS data and InSAR data to obtain high spatio-temporal
resolution data.

To the best of our knowledge, the first method for fusing GNSS and InSAR data to generate
high spatio-temporal resolution data was the double interpolation and double prediction (DIDP)
approach [14,15], which integrates GPS data and InSAR data in spatial and temporal domains,
separately. The DIDP method has three main steps: firstly, the GNSS data are interpolated into the
InSAR grid points in the spatial domain; secondly, the data obtained by interpolation on the grid points
are interpolated in time-domain; finally, the data of all grid points are estimated using Kalman filtering
to obtain high spatio-temporal resolution data. Furthermore, Xu et al. [16] discussed the models and
algorithms for integrating GPS data and InSAR data, using a method similar to DIDP with geophysical
information incorporated. Both of these methods do not take spatio-temporal correlation of the surface
deformation into consideration and they are only theoretical conjecture rather than an operational
algorithm. Liu et al. [17] firstly proposed a feasible fusion algorithm based on spatio-temporal random
effect (STRE) model and applied it in the Los Angeles area. The STRE method first uses InSAR data to
establish the spatial field with homogeneous spatial bases, and it secondly uses GNSS data to modify
the established spatial field based on Kalman filtering to establish a dynamic model to correct the
spatial field in the temporal domain, then finally high spatio-temporal resolution data can be generated.
This STRE method can obtain fast solutions and consider spatio-temporal correlation of the surface
deformation. However, the STRE method is less effective for the cases of multiple deformation sources,
e.g., multiple coal mining areas or multiple pumping wells within the monitoring area. The multiple
deformation sources result in complex spatial heterogeneity, and the homogeneous spatial bases cannot
completely capture the local anomalies caused by such multiple deformation sources.

Given the above background, this study intends to propose a spatially heterogeneous land surface
deformation data fusion method based on an enhanced STRE model (called eSTRE) to improve the
STRE fusion accuracy for heterogeneous land surface deformation. For the local heterogeneous region,
we integrate the spatially heterogeneous constraints with an extra constrained spatial base in the STRE
model. The selection of local spatial base functions can be determined based on the range of the
deformation source or the InSAR image containing the most complicated deformation.

2. Methods

In this paper, we establish two types of spatial bases, one for the global region and the other one
for the local heterogeneous region, and then the unknown parameters are estimated jointly.

2.1. Spatio-Temporal Random Effects Model

Spatio-Temporal Random Effect Model (STRE) are proposed to quickly process massive
spatio-temporal data, e.g., aerosol optical depth, CO2, stratospheric temperature [18–21] and the model
is as follows [18]:

Zt(s, t) = µt(s) + ν(s, t) + ξt(s, t) + ε(s, t)
µt(s) = ft(s)βt

(1)

where s is monitoring position, t is monitoring time, Zt(s, t) is the observed value, µt(s) is the global
spatio-temporal trend, which can be fitted by polynomial fitting. ft(s) is the chosen trend field, and βt

is the corresponding polynomial coefficient. ξt(s, t) is the fine-scale spatial variation, ε(s, t) is the
observed noise, and ν(s, t) means local spatial variation locally correlated in the spatial domain and
strongly temporal-dependent, which can be expressed by:

ν(s, t) = St(s)
′αt (2)
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where St(s) = [S1,t(s), S2,t(s), . . . Sr,t(s)]
′ are the chosen r rank base functions and (∗)′ is transposition

operator. The spatial base functions are generally selected from multiple scales like quadtree, which
can capture the spatial variability at different scales [22]. However, the premise of this method is that
the time series has to be free from any major temporal offset (caused by an earthquake for example).
In cases where co-seismic offsets exist, they have to be corrected first. The base functions can be chosen
from many types, such as wavelet bases [23], spline bases [24] and radial base functions [25]. αt are the
state vectors, which evolve according to the state transition equation: αt = Φαt−1 + ηt. Where Φ is the
state transition matrix, ηt is the state innovation vector.

Therefore, the STRE model can be expressed as:

Zt(s, t) = µt(s) + St(s)
′αt + ξt(s, t) + ε(s, t)

αt = Φαt−1 + ηt
(3)

2.2. Enhanced Spatio-Temporal Random Effects Model

As an enhanced method of STRE, the basic principle of eSTRE is similar to STRE. But, by contrast,
eSTRE is designed for heterogeneous surface deformation rather than homogeneous surface deformation
in STRE. In Liu’s work [17], spatial bases in Equation (2) are spatially homogeneous in the whole study
area from different space scales. For the surface deformation affected by a single deformation source,
the base functions can be selected homogeneously. However, when there are multiple deformation
sources, the deformation is heterogeneous, and the homogeneous spatial base cannot capture the
deformation of local heterogeneous area. The enhanced spatio-temporal random effect model is:

Zt(s, t) = µt(s) + St_c(s)
′αt_c + ξt_c(s, t) + ε(s, t) (4)

St_c(s) =
[

St_w(s)
St_l(s)

]
(5)

where St_c(s) are the constrained spatial bases, and St_w(s) are the global spatial base functions
without taking the spatial heterogeneity into consideration, which can reflect the whole deformation
characteristics of the monitoring area. St_w(s) are similar to the spatial base functions used in Liu’s
work [17]. St_l(s) are the local spatial base functions, which take into account the spatial heterogeneity,
mainly reflecting the land surface deformation caused by local deformation sources. St_l(s) are selected
from different space scales for heterogeneous surface deformation regions and St_l(s) are the major
improvement compared to STRE. When the spatial base functions are determined, the time-varying
state quantities αt_c and fine-scale variations ξt_c(s, t) are obtained by expectation-maximization (EM)
estimation [17,26].

The selection of local spatial base functions St_l(s) with the constraints of spatial heterogeneity
can be determined in two ways: (1) when the range of the deformation source is known (for example,
the mining range of the mine is known, or the groundwater extraction position is known), we can select
the local spatial base functions according to the influence range of the deformation source; (2) if the
range of the deformation source is unknown, the range of the local deformation source is determined
according to the InSAR image containing the most complicated deformation, and then the local spatial
base functions are selected, which is simple and effective solution. Therefore, the second method is
used to select the base functions with the constraints of spatial heterogeneity in this paper. The specific
steps for selecting spatial base will be described in detail in Section 4.

2.3. The Fusion Steps

The method for the fusion of GNSS data and InSAR data to generate high spatio-temporal
resolution data is similar to Liu’s work [17], and the fusion steps is only briefly described in this paper
(see Figure 1). The STRE fusion method with the constraints of spatial heterogeneity mainly involves
5 steps: (1) unify GNSS and InSAR coordinate frameworks [27]; (2) establish the spatial model with the
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constraints of spatial heterogeneity: firstly, remove the trend; secondly, select the spatial base functions
according to the method in Section 2.2 and establish the spatial model with the constraints of spatial
heterogeneity using high spatial resolution InSAR data; thirdly, estimate InSAR noise variance by
semi-variogram; (3) estimate the observation variance of GNSS by variance components estimation [11];
(4) estimate the STRE parameters using EM estimation [28]; and (5) generate high spatio-temporal
resolution deformation series using the established model.
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Figure 1. The flow chart of spatially heterogeneous land surface deformation data fusion method
(eSTRE) based on STRE model.

3. Data Sets

3.1. Simulated Data

In order to validate the effectiveness of heterogeneous land surface deformation data fusion
method based on STRE model, we simulate the deformation sequence with two local deformation
sources. The simulation process is as follows:

(1) Construct the spatial base functions S(s)

In the domain D =
{
(x, y)

∣∣∣0 km < x < 450 km, 0 km < y < 450 km
}
, the spatial base functions in

bi-square function are established at three different scales. In the first scale, we set homogeneous
spatial bases in the whole study area to simulate the whole spatially homogeneous deformation.
In the second and third scale, we set heterogeneous spatial bases in two local areas to spatially
simulate heterogeneous land surface deformation. The centers for the first, second and third scales
are

{
x1 = 200 km, 400 km y1 = 200 km, 400 km

}
, {x2 = 30 km + 45 km ∗ k y2 = 300 km,+45 km ∗ k,

k = 1, . . . 6} and
{
x3 = 300 km+ 40 km ∗ k y3 = 300 km,+40 km ∗ k, k = 1, . . . 6

}
, respectively (the asterisk

in this sentence indicates multiplication sign).

(2) Construct the initial state quantity αt

We construct a spatial covariance matrix K obeying exponential distribution (exp
{
−‖si − s j‖/θ

}
, [18])

and take Cholesky decomposition of K, e.g., K = LL′. Then the state quantity represents α1 = Lε,
ε ∼ N

(
0 mm, 1 mm2

)
.
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(3) Generate deformation values for each day

In the random walk model, let αt = αt−1 + ηt, ηt ∼ N
(
0 mm, 9 mm2

)
, with t = 2, 3 . . . , 700.

The high spatio-temporal deformation data can be obtained using Zt(s) = S(s)′αt.

(4) Simulate quasi-real InSAR data

We select 24 real deformation fields from high spatio-temporal resolution deformation data with a
time interval of 30 days as the quasi-real InSAR data.

(5) Simulate quasi-real GNSS data

We select 58 sparse GNSS monitoring sites from high spatio-temporal resolution deformation
data and take the reserve deformation value in the temporal domain as the quasi-real values for high
temporal resolution GNSS data.

(6) Add noise

We add Gaussian white noise with standard deviation of 10 mm to the quasi-real InSAR data and
standard deviation of 5 mm to the quasi-real GNSS data.

The simulated GNSS and InSAR data are shown in Figures 2 and 3, respectively. As shown in
Figure 2, the influence range of two local deformation sources in the simulated area gradually expanded.
The two deformation sources cause different surface deformations: the upper left deformation source
causes the ground to sink, and the lower right deformation source causes the ground to rise.
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Figure 2. Simulated InSAR data. The blue points in the first InSAR image are the selected 58 GNSS
stations, and the number at the bottom right of each image is the InSAR monitoring day.

The blue line in Figure 3 represents the simulated GNSS time series, and the red circles indicate
the closest InSAR pixel time series to the GNSS site. The red circles almost entirely coincide with the
blue line, indicating that the simulated GNSS data coincide well with the InSAR data.
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Figure 3. Simulated GNSS data of 24 random GNSS stations. The blue line is the GNSS time series and
the red circles are the closest InSAR pixel time series to the GNSS sites.

3.2. Los Angeles Data

In order to compare the eSTRE and the STRE methods, we use the same real experiment data used
by Liu et al. [17]. 15 ENVISAT ASAR descending orbit images covering the whole Los Angeles area
from 27 September 2003 to 7 December 2009 were selected, which are processed using the small-baseline
subset (SBAS) method based on GAMMA software. GPS time series in this area are downloaded from
the SOPAC website (ftp://sopac-ftp.ucsd.edu/pub/timeseries/). The range of InSAR and the selected
GPS sites are shown in Figure 4.
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Data Processing

Since the InSAR data processed by GAMMA software are only the relative deformation in the
line of sight (LOS) direction and GPS time series from the SOPAC website are absolute 3-dimensional
deformation. We convert GPS 3-dimensional results into LOS direction [29] and InSAR data are
converted to absolute deformation using the InSAR data closed to SNHS reference station. The InSAR
and GPS measurements after using a unifying coordinate framework are shown in Figures 5 and 6.

ftp://sopac-ftp.ucsd.edu/pub/timeseries/
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4. Simulation Experiment Results and Analysis

In order to test the validity of the eSTRE model, two methods are used to fuse GNSS data and
InSAR data simulated in Section 3.1: (STRE) establish an homogeneous spatial model without taking
the spatially heterogeneity into consideration; (eSTRE) establish a unified spatial model with the
constraints of local spatial heterogeneity.

The selection of spatial base functions will directly affect the accuracy of the spatial model. Too few
spatial base functions cannot capture all the spatial variability. However, too many spatial base
functions cost a lot of computer time and are also prone to causing the over-fitting phenomenon.
As is shown in Figure 2, the deformation field is always subsidence or uplift and the last InSAR image
contains all the deformation information in the monitoring area. Therefore, we select the spatial base
functions based on the last InSAR image to capture all the spatial variability. The spatial bases are
setting from different scales until the spatial residuals (Equation (6)) fitted by least square are stable.
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Where Zt is the observed value, µt is the global spatio-temporal trend, S are the chosen r rank base
functions, and (∗)′ is the transposition operator.

V = (Zt − µt) − S((S′S)−1S′(Zt − µt)) (6)

The first modeling method selects the whole spatial base functions based on the above principles
and establishes a spatially homogeneous model without the constraints of spatial heterogeneity. For the
second modeling method, the local spatial base functions are selected according to the influence
range of the local deformation sources to fit the spatially heterogeneous land surface deformation
caused by local deformation sources, which are added to the model established in the first modeling
method. The second method in Section 2.2 is used to select the local spatial base functions. Firstly,
the influence range of the local deformation source is determined based on the last InSAR image
(Figure 7). As shown in Figure 7, the upper left deformation source results the ground to sink, and the
lower right deformation source results the ground to rise. Therefore, we select the two regions as the
heterogeneous surface deformation regions. Secondly, the local spatial base functions are selected
based on Equation (6) using bi-square spatial bases (Equation (7), where cl is the position of the lth
scale spatial basis, gl is the lth scale spatial variation range.) for the heterogeneous surface deformation
regions. We adjust the position and number of spatial bases for each of the two heterogeneous surface
deformation regions, to make the spatial residuals (Equation (6)) fitted by least square are stable. This
results in rlocal = 105 bi-square spatial bases with 63 for the upper left regions and 42 for the lower
right regions. Center positions for spatial bases are uniformly distributed in the heterogeneous surface
deformation regions (Figure 4).

Sl(s) =

{1− (‖s− cl‖/gl)
2
}
2
‖s− cl‖ < gl

0 otherwise
(7)
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Figure 7. The distribution of the spatial bases. Blue circles are the first scale spatial bases with the
x-to-y interval 110 km. Red circles are the second scale spatial bases with the x-to-y interval 60 km.
Black circles are the third scale spatial bases with the x-to-y interval 30 km.

The distribution of the spatial bases selected by the two methods is shown in Figure 7. The left
panel in Figure 7 shows the homogeneous spatial bases without the constraints of spatial heterogeneity,
and the right panel in Figure 7 shows the heterogeneity spatial bases with the constraints of spatial
heterogeneity. The red and blue circles represent the whole spatial bases, and the black “+” represents
the local spatial bases.

The residuals of InSAR data fitted by the spatial bases are analyzed to test the validity of both
methods. Due to the limited layout, we only select the last phase InSAR residuals (Figure 8) for the
analysis in this paper. We can see from Figure 8 that the fitted residuals of eSTRE (RMS = 10.26 mm) are
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more stable than that of STRE (RMS = 11.71 mm), showing that the spatial model with the constraints
of spatial heterogeneity has a better accuracy than that without the constraints of spatial heterogeneity.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 20 
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In order to further test the validity of eSTRE, the residuals between the smoothing values and true
values are compared, and the last 12 phases of residuals are shown in Figure 9.
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As Figure 9 shows, we can see that the residuals obtained from eSTRE are more stable than those
obtained from STRE. In order to quantitatively analyze the advantages of eSTRE, the statistic RMS
value of residuals of merged results for last 12 phases InSAR data are calculated in Table 1. As can be
seen from Table 1, the accuracy of eSTRE is better than that of STRE, and the average improvement
rate is 17.5%.
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Table 1. The RMS values of residuals of smoothing results for the last 12 phases of InSAR data (unit: mm).

Date (Day) STRE eSTRE Improvement (%)

361 9.83 8.48 13.7
391 9.77 8.70 11.0
421 9.83 8.75 11.0
451 9.87 8.48 14.1
481 9.71 8.40 13.5
511 9.72 8.15 16.2
541 9.74 7.80 19.9
571 9.69 7.92 18.3
601 9.55 7.48 21.7
631 9.54 7.40 22.4
661 9.56 7.21 24.6
691 9.49 7.12 25.0

Average 9.70 8.00 17.5

In order to comprehensively analyze the effectiveness of eSTRE, we select six GNSS stations
within and outside the range of each deformation source for analysis. The selected GNSS stations are
shown in Figure 10.
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Figure 10. The locations of the selected GNSS stations marked with asterisk ‘*’ and triangle.

Similar to the analysis of InSAR data, the residuals of smoothing result of the six GNSS stations are
drawn in Figure 11. As we can see from Figure 11, the smoothing residuals (the red lines) obtained by
eSTRE are more stable than those (the blue lines) obtained by STRE. The RMS statistics of the residuals
show that the accuracy of eSTRE is better than that of STRE, and the average improvement rate is
27.4% for the GNSS results. In addition, we also can see from Table 2 that the improvement rates of the
GNSS stations (No.1, 2, 3 and 4) in and around the deformation sources are more significant than those
far away (No.5 and 6) from the deformation sources, which further confirms the validity of eSTRE.

The above analysis indeed confirms that smoothing result of the proposed spatially heterogeneous
land surface deformation data fusion method (eSTRE) can provide better accuracy than the previous
proposed fusion method (STRE) used by Liu et al. [17]. In order to verify the reliability of the improved
fusion method, its interpolation accuracy for missing GNSS data and InSAR data was tested.

To do so, we randomly choose data of 8 days in the temporal domain to evaluate the fusion
accuracy in the spatial domain (Figure 12). As is shown in Figure 12, we can visually remark that the
residuals obtained by eSTRE are more accurate and stable than those obtained by STRE. In order to
quantitatively analyze the effect of improvement, the RMS values of residuals are presented in Table 3.
Table 3 shows that the interpolation accuracy of eSTRE for missing InSAR data is better than that of
STRE, and the average improvement is 13.6%.
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Table 3. The RMS values of residuals for the selected InSAR data in the temporal domain (unit: mm).

Date (Day) STRE eSTRE Improvement (%)

33 4.44 3.74 15.8
66 4.96 4.51 9.1
99 6.03 5.58 7.5
132 6.44 5.93 7.9
165 7.21 6.11 15.3
198 8.35 7.43 11.0
231 7.48 5.49 26.6
264 6.98 5.89 15.6

Average 6.49 5.59 13.6

We also randomly choose 6 points in the spatial domain to evaluate the fusion accuracy in the
temporal domain (Figure 13). As is shown in Figure 13, the residuals obtained by eSTRE are more stable
than those obtained by STRE for the missing GNSS data. The quantitative analysis of interpolation
residuals shows that the interpolation accuracy of eSTRE for missing GNSS data is better than that of
STRE, and the average improvement is 51.5%. Figure 13 and Table 4 also show that the improvement
effect for the GNSS stations (No.1, 2, 3 and 4) near the deformation sources is better than those stations
(No.5 and 6) far away from the deformation sources, indicating that the GNSS stations far away from
the deformation sources are less affected by the spatial heterogeneity.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 20 
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Table 4. The RMS values of residuals for the selected GNSS station data in the spatial domain (unit: mm).

No STRE eSTRE Improvement (%)

1 13.85 4.31 68.9
2 26.39 14.59 44.7
3 23.44 7.75 66.9
4 12.61 6.86 45.6
5 11.84 7.05 40.4
6 9.91 7.01 29.3

Average 16.34 7.93 51.5

In summary, the simulation experiment shows that the fusion method with the constraints of spatial
heterogeneity based eSTRE model is more compatible with the heterogeneity surface deformation
caused by the multi-deformation source, and the fusion accuracy is higher than that without the
constraints of spatial heterogeneity.
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5. Los Angeles Experiment Results and Analysis

In Figure 5, we can find that there is a spatially heterogeneous area in the middle of the study area,
and the subsidence speed of this area is slower than that in the surrounding area. We infer that there is
a difference in geological structure between this area and its surrounding area. In order to eliminate
the differences caused by spatial heterogeneity, the spatial bases in the spatially heterogeneous area are
established separately. Since we do not know the specific range of the spatially heterogeneous area, we
add the local spatial bases of the spatially heterogeneous area based on the last phase InSAR image
with the most complicated deformation according to the eSTRE method. The selected spatial bases are
shown in Figure 14.
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Figure 14. The selected spatial bases of the whole monitoring area. The left panel represents the selected
spatial bases according to the STRE method used in Liu et al. [17], and the right panel represents the
selected spatial bases according to the eSTRE method described in Section 2.2. The red and black circles
and the red asterisks represent the whole spatial bases, and the blue circles and “+” represents the local
spatial bases.

We can see from Figure 14 that we choose 3 layers of spatial bases (the red asterisks ‘*’, the black
circles and the red circles) for the STRE method. We add two scales of spatial bases (the blue plus ‘+’
and the blue circles) to the spatially heterogeneous area for eSTRE. Since the range of the spatially
heterogeneous area is too small, the spatially heterogeneous area is extracted for analysis, which is
shown in Figure 15. As can be seen in the left panel of Figure 15, the number of spatial bases selected
by STRE in the spatially heterogeneous area is small, while that selected by eSTRE are uniformly
distributed in the spatially heterogeneous area, which can better capture the local variation in the
spatially heterogeneous area.

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 20 

 

Figure 14. The selected spatial bases of the whole monitoring area. The left panel represents the 
selected spatial bases according to the STRE method used in Liu et al. [17], and the right panel 
represents the selected spatial bases according to the eSTRE method described in Section 2.2. The red 
and black circles and the red asterisks represent the whole spatial bases, and the blue circles and “+” 
represents the local spatial bases. 

 
Figure 15. Zoom-in of Figure 14 for the selected spatial bases in the spatially heterogeneous area. The 
left panel represents the selected spatial bases in the spatially heterogeneous area according to the 
STRE method and the right panel represents the selected spatial bases in the spatially heterogeneous 
area according to the eSTRE method. 

We can see from Figure 14 that we choose 3 layers of spatial bases (the red asterisks ‘*’, the black 
circles and the red circles) for the STRE method. We add two scales of spatial bases (the blue plus ‘+’ 
and the blue circles) to the spatially heterogeneous area for eSTRE. Since the range of the spatially 
heterogeneous area is too small, the spatially heterogeneous area is extracted for analysis, which is 
shown in Figure 15. As can be seen in the left panel of Figure 15, the number of spatial bases selected 
by STRE in the spatially heterogeneous area is small, while that selected by eSTRE are uniformly 
distributed in the spatially heterogeneous area, which can better capture the local variation in the 
spatially heterogeneous area. 

Similar to the simulated experiment, the smoothing results and the cross-validation results of 
InSAR and GPS are analyzed. Since the range of the spatially heterogeneous area is small, the 
influence range of the spatially heterogeneous area is also small, meaning there is only a slight 
difference in smoothing residuals of InSAR data for both methods, which cannot be discerned 
visually from the residual graph. Therefore, the smoothing residuals graphs for both methods are 
not shown here, and only the statistics of the residuals (Table 5) are analyzed. In Table 5, we see that 
eSTRE has better modeling accuracy for the whole monitoring area and the local spatially 
heterogeneous area than that in STRE. The average improvement rate of the entire monitoring area 
is 11.4%, while that of the local spatially heterogeneous area is 33.3%. 
  

Figure 15. Zoom-in of Figure 14 for the selected spatial bases in the spatially heterogeneous area.
The left panel represents the selected spatial bases in the spatially heterogeneous area according to the
STRE method and the right panel represents the selected spatial bases in the spatially heterogeneous
area according to the eSTRE method.
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Similar to the simulated experiment, the smoothing results and the cross-validation results of
InSAR and GPS are analyzed. Since the range of the spatially heterogeneous area is small, the influence
range of the spatially heterogeneous area is also small, meaning there is only a slight difference in
smoothing residuals of InSAR data for both methods, which cannot be discerned visually from the
residual graph. Therefore, the smoothing residuals graphs for both methods are not shown here,
and only the statistics of the residuals (Table 5) are analyzed. In Table 5, we see that eSTRE has better
modeling accuracy for the whole monitoring area and the local spatially heterogeneous area than that
in STRE. The average improvement rate of the entire monitoring area is 11.4%, while that of the local
spatially heterogeneous area is 33.3%.

Table 5. The RMS statistics of InSAR data for both methods (unit: mm).

Whole Residuals Local Residuals

Date STRE eSTRE Improvement (%) STRE eSTRE Improvement (%)

2003-09-27 0.01 0.01 0.0 0.01 0.01 0.0
2004-08-07 0.18 0.16 11.1 0.20 0.15 25.0
2005-06-18 0.11 0.09 18.2 0.11 0.08 27.3
2005-10-10 0.13 0.12 7.7 0.11 0.08 27.3
2006-03-25 0.11 0.09 18.2 0.10 0.06 40.0
2006-04-29 0.10 0.09 10.0 0.09 0.06 33.3
2006-10-30 0.10 0.09 10.0 0.10 0.07 30.0
2007-03-10 0.10 0.09 10.0 0.10 0.06 40.0
2007-04-14 0.10 0.08 20.0 0.09 0.06 33.3
2007-05-19 0.12 0.11 8.3 0.12 0.07 41.7
2007-06-23 0.13 0.12 7.7 0.13 0.09 30.8
2007-10-06 0.09 0.08 11.1 0.10 0.06 40.0
2007-11-10 0.10 0.09 10.0 0.11 0.07 36.4
2008-07-12 0.10 0.09 10.0 0.11 0.07 36.4
2009-01-03 0.10 0.09 10.0 0.11 0.07 36.4

Average 0.11 0.09 11.4 0.11 0.07 33.3

In order to analyze the improvement of eSTRE for the smoothing results, three GPS monitoring
stations (one station (BKMS) is close to the spatially heterogeneous area, and the other two stations
(MHMS and LBCH) are away from the spatially heterogeneous area) are selected for detailed analysis.
The selected three GPS stations are shown in Figure 16 and their smoothing (misfit reduction) results are
shown in Figure 17. As can be seen from Figure 17, the two modeling methods have better smoothing
accuracy for GPS data, and the smoothing precision of eSTRE is slightly better than that of STRE.
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The above analysis verifies the modeling method with the constraints of spatial heterogeneity
can improve the smoothing accuracy of InSAR data and GPS data. In order to further verify the
effectiveness of the method, we use cross-validation method to compare the interpolation accuracy
for missing InSAR data and GPS data. The cross-validation residuals of InSAR data are shown in
Figures 18 and 19. We can see from Figures 18 and 19 that similar to the smoothing results of the
simulated experiment, the cross-validation accuracy of eSTRE for the whole monitoring area is a
slightly better than that of STRE, while that of eSTRE for the spatially heterogeneous area is significantly
better than that of STRE. The RMS statistics of the cross-validation residuals for InSAR data (Table 6)
show that the average improvement rate of the whole monitoring area is 6.0%, while that of the local
spatially heterogeneous area is 22.6%.

Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 20 

 

 
Figure 17. Smoothing results of the selected GPS data. Green lines are the source GPS time series, 
blue lines are the smoothing results obtained by STRE, red lines are the smoothing results obtained 
by eSTRE and black asterisks are time series of the InSAR pixel closest to GPS site. 

The above analysis verifies the modeling method with the constraints of spatial heterogeneity 
can improve the smoothing accuracy of InSAR data and GPS data. In order to further verify the 
effectiveness of the method, we use cross-validation method to compare the interpolation accuracy 
for missing InSAR data and GPS data. The cross-validation residuals of InSAR data are shown in 
Figure 18 and Figure 19. We can see from Figure 18 and Figure 19 that similar to the smoothing 
results of the simulated experiment, the cross-validation accuracy of eSTRE for the whole 
monitoring area is a slightly better than that of STRE, while that of eSTRE for the spatially 
heterogeneous area is significantly better than that of STRE. The RMS statistics of the 
cross-validation residuals for InSAR data (Table 6) show that the average improvement rate of the 
whole monitoring area is 6.0%, while that of the local spatially heterogeneous area is 22.6%. 

 
Figure 18. The cross-validation residuals of InSAR data for the whole monitoring area, sampled on 
the dates given in Table 6. The left panel and right panel of each pair represents the residuals of 
STRE and eSTRE. 

Figure 18. The cross-validation residuals of InSAR data for the whole monitoring area, sampled on the
dates given in Table 6. The left panel and right panel of each pair represents the residuals of STRE
and eSTRE.



Remote Sens. 2019, 11, 1084 16 of 19
Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 20 

 

 
Figure 19. The cross-validation residuals of InSAR data for the local heterogeneous area, sampled on 
the dates given in Table 6. The left panel and right panel of each pair represents the residuals of 
STRE and eSTRE. 

Table 6 The cross-validation residuals statistics of InSAR data for both methods (unit: mm). 

 Whole Residuals Local Residuals 

Date STRE eSTRE 
Improvement 

(%) 
STRE eSTRE 

Improvement 
(%) 

2003-09-27 5.22 5.11 2.0 5.01 3.79 24.4 
2004-08-07 6.72 5.95 11.5 10.26 7.22 29.6 
2005-06-18 7.75 7.59 2.1 8.21 8.02 2.4 
2005-10-10 5.81 5.48 5.6 4.17 3.47 16.7 
2006-03-25 5.17 4.91 5.0 6.48 5.61 13.5 
2006-04-29 5.48 5.07 7.5 3.12 2.44 21.9 
2006-10-30 5.42 4.68 13.6 3.92 1.73 55.7 
2007-03-10 5.50 5.35 2.7 5.02 2.92 41.9 
2007-04-14 6.15 6.03 2.0 4.96 4.54 8.4 
2007-05-19 3.94 3.72 5.6 4.04 3.06 24.4 
2007-06-23 4.46 3.99 10.6 4.85 2.64 45.5 
2007-10-06 4.92 4.39 10.7 6.43 4.93 23.3 
2007-11-10 7.62 7.30 4.2 9.73 8.19 15.9 
2008-07-12 5.73 5.53 3.5 10.57 8.83 16.5 
2009-01-03 7.18 6.84 4.6 6.24 4.87 21.9 
Average 5.81 5.46 6.0 6.20 4.82 22.6 

Through the cross-validation experiment, it is proved that the spatially heterogeneous land 
surface deformation data fusion method (eSTRE) can effectively improve the interpolation accuracy 
of the missing InSAR data.  

We further use cross-validation method to test the effect of eSTRE on missing GPS data, and the 
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Figure 19. The cross-validation residuals of InSAR data for the local heterogeneous area, sampled on
the dates given in Table 6. The left panel and right panel of each pair represents the residuals of STRE
and eSTRE.

Table 6. The cross-validation residuals statistics of InSAR data for both methods (unit: mm).

Whole Residuals Local Residuals

Date STRE eSTRE Improvement (%) STRE eSTRE Improvement (%)

2003-09-27 5.22 5.11 2.0 5.01 3.79 24.4
2004-08-07 6.72 5.95 11.5 10.26 7.22 29.6
2005-06-18 7.75 7.59 2.1 8.21 8.02 2.4
2005-10-10 5.81 5.48 5.6 4.17 3.47 16.7
2006-03-25 5.17 4.91 5.0 6.48 5.61 13.5
2006-04-29 5.48 5.07 7.5 3.12 2.44 21.9
2006-10-30 5.42 4.68 13.6 3.92 1.73 55.7
2007-03-10 5.50 5.35 2.7 5.02 2.92 41.9
2007-04-14 6.15 6.03 2.0 4.96 4.54 8.4
2007-05-19 3.94 3.72 5.6 4.04 3.06 24.4
2007-06-23 4.46 3.99 10.6 4.85 2.64 45.5
2007-10-06 4.92 4.39 10.7 6.43 4.93 23.3
2007-11-10 7.62 7.30 4.2 9.73 8.19 15.9
2008-07-12 5.73 5.53 3.5 10.57 8.83 16.5
2009-01-03 7.18 6.84 4.6 6.24 4.87 21.9

Average 5.81 5.46 6.0 6.20 4.82 22.6

Through the cross-validation experiment, it is proved that the spatially heterogeneous land surface
deformation data fusion method (eSTRE) can effectively improve the interpolation accuracy of the
missing InSAR data.

We further use cross-validation method to test the effect of eSTRE on missing GPS data, and the
selected three GPS stations are shown in Figure 16. The interpolation results of GPS data by both
methods are shown in Figure 20. In Figure 20, we can see that the results obtained by eSTRE are
more stable than those obtained by STRE for the GPS station (BKMS) which is close to the spatially
heterogeneous area with an average improvement of 14.4%, while the GPS interpolation results
obtained by both methods are similar for GPS stations far away from the spatially heterogeneous area
(MHMS and LBCH), and their RMS values are almost equal. The cross-validation experiments of GPS
data further confirm that the eSTRE method with the constraints of spatial heterogeneity can achieve
better fusion accuracy.
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6. Discussion

Fusing InSAR and GNSS measurements to obtain high spatio-temporal resolution data is a
research hotspot in land surface deformation. Existing fusion methods usually use the DIDP approach
without sufficiently considering certain complicated temporal and spatial characteristics of the surface
deformation. The dynamic filtering fusion model proposed by Liu et al. [17] ignores that weakness
and is only able to obtain high precision fusion results for the homogeneous surface deformation.
However, their method does not consider the spatial heterogeneity and is not appropriate for the
heterogeneous surface deformation. In this study, we integrate the spatial heterogeneous constraints
into a spatio-temporal Kalman model to improve the fusion precision. The experiment results show
that the better accuracies are achieved for eSTRE than for the previous STRE fusion model.

As a future outlook, the eSTRE method presented in this paper can be applied to generate high
spatio-temporal resolution data for heterogeneous land surface deformation, e.g., the land surface
deformation caused by coal mining, groundwater exploitation, oil exploitation and so on. The high
spatio-temporal resolution data obtained by eSTRE can help us to better understand the mechanism of
heterogeneous land surface deformation, and then, we can use the method to establish spatio-temporal
forecasting models for geological disasters or invert parameters of subsidence for heterogeneous land
surface deformation, such as coal mining, groundwater exploitation, oil exploitation and so on.

However, both STRE and eSTRE method have a strong dependence on the selection of the spatial
bases. Moreover, the spatial bases selected in this paper need to be refined in order to find the better
ones based on some experience. Few spatial base functions cannot capture all the spatial variability.
However, too many spatial base functions cost a lot of computer time and are also prone to causing the
over-fitting phenomenon. Moreover, if the deformation field or a sub field is progressing from even to
subsidence then to uplift then to even, the method of selecting spatial base used in this paper will fail.
Therefore, developing a method that can select the optimal spatial bases adaptively will be our future
research work. Otherwise, the eSTRE method proposed in this paper was tested only using ENVISAT
ASAR data, meaning more InSAR data and deformation data should be used to test the improved
performance of eSTRE.
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7. Conclusions

For monitoring spatially heterogeneous land surface deformation, this paper proposes an enhanced
fusion method with the constraints of spatial heterogeneity based on an STRE model called eSTRE.
This new method takes into account the impact of spatially heterogeneous sources on the deformation
results by establishing the extra spatial bases for the spatially heterogeneous area. When the range of
the spatially heterogeneous deformation sources is known, we can construct corresponding spatial
bases within the influence of spatially heterogeneous deformation sources. When the distribution
range of spatially heterogeneous deformation sources is unknown, we can set spatial bases according to
the InSAR images containing the most complicated deformation. In this paper, simulation experiments
and real experiments in Los Angeles area prove that the new eSTRE model with the constraints of
spatial heterogeneity can consider the spatial heterogeneity in different areas, and the results show
that the eSTRE method can reduce the root mean square (RMS) of InSAR interpolation results by 14%
and 23% on average for a simulation experiment and Los Angeles experiment, respectively, indicating
that the new proposed method (eSTRE) is substantially better than the previous STRE fusion model
and that the eSTRE method can provide more invaluable information for space geodesy, especially in
regards to heterogeneous land surface deformation monitoring.
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