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Abstract: Radar, as one of the sensors for human activity recognition (HAR), has unique characteristics
such as privacy protection and contactless sensing. Radar-based HAR has been applied in many
fields such as human–computer interaction, smart surveillance and health assessment. Conventional
machine learning approaches rely on heuristic hand-crafted feature extraction, and their generalization
capability is limited. Additionally, extracting features manually is time–consuming and inefficient.
Deep learning acts as a hierarchical approach to learn high-level features automatically and has
achieved superior performance for HAR. This paper surveys deep learning based HAR in radar
from three aspects: deep learning techniques, radar systems, and deep learning for radar-based
HAR. Especially, we elaborate deep learning approaches designed for activity recognition in radar
according to the dimension of radar returns (i.e., 1D, 2D and 3D echoes). Due to the difference of
echo forms, corresponding deep learning approaches are different to fully exploit motion information.
Experimental results have demonstrated the feasibility of applying deep learning for radar-based
HAR in 1D, 2D and 3D echoes. Finally, we address some current research considerations and
future opportunities.

Keywords: human activity recognition; radar; deep learning; human backscattering echoes

1. Introduction

Research on human activity recognition (HAR) has made significant progress over the past decade.
Successful HAR applications include surveillance [1], smart home [2], video analytics [3], autopilot [4]
and human–computer interaction [5]. The purpose of HAR is to identify a user’s behavior so as
to allow computing systems to proactively provide assistance for the user [6]. There are two main
categories of HAR [7]: vision-based and sensor-based. Taking advantage of the high resolution of
optical sensors and the rapidly evolving computer vision (CV) techniques, vision-based HAR has
yielded fruitful results [8–12]. Despite the superiority of vision-based HAR, there are still many open
issues, such as illumination, occlusion, privacy leakage, etc. [13–15]. With the rapid development
of sensor technology, sensor-based methods have set off a new wave in HAR [16–19]. Sensor-based
activity recognition acquires data from accelerometer, gyroscope, radar, acoustic sensor and so on,
and seeks the profound high-level information of human behaviors from multitudes of low-level
sensor readings.

As one of the sensor-based methods, radar-based HAR [20–23] has drawn much attention due
to the following reasons. Firstly, radar is robust to light and weather conditions so it is able to be
applied in harsh environments. Secondly, radar could protect visual privacy. Instead of capturing the
visual shape of the target, the returned signals modulated by the target carry abundant time–varying
range and velocity information of activities [24]. Thirdly, radar is able to detect human through walls,
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which makes radar-based HAR applicable to more scenarios. Lastly, radar systems do not need any
tag attached to the human body, which makes it more user-friendly. Consequently, radar has been
adopted more and more for recognizing human activities recently.

In the past, radar-based HAR systems often adopt conventional machine learning (ML)
techniques [25–29]. These traditional algorithms are built on theoretical foundations so they are
explicable and could be optimized theoretically. Compared with deep learning models, their complexity
is often lower so the computation burden is lighter. Support vector machine (SVM) [30], dynamic time
warping (DTW) [31], random forest classifier [27] are the most used conventional ML algorithms for
radar-based HAR. Y. Kim et al. [30] used SVM to recognize human activities based on micro-Doppler
signatures. Features were extracted manually from the time–Doppler spectrograms, as illustrated in
Figure 1. By employing a decision-tree structure, the system that consists of six SVMs succeeded to
classify 12 different human activities. In [27], a gesture recognition system using a 60 GHz mm-wave
radar was built. A random forest classifier was employed in this system to perform real-time gesture
recognition. In [31], an improved DTW algorithm was proposed for hand gesture recognition with a
terahertz radar. Experiments showed that the improved DTW algorithm was capable of fully exploring
the properties of range profiles and Doppler signatures.

Figure 1. Illustration of features extracted from a time–Doppler map. Adopted from [30].

Although widely used for radar-based activity recognition, traditional ML solutions have several
drawbacks that hinder the further improvement of robustness and generalization. Firstly, features are
extracted heuristically and manually, which highly relies on human experience and domain knowledge.
Secondly, hand-crafted features often refer to some low-level statistical information including mean,
variance, frequency and amplitude [32], which are task-specific. When a model trained with shallow
hand-crafted features is applied to a new dataset, the performance is always not as good as in the
original dataset. Thirdly, traditional ML methods mainly learn on small-scale static data. However,
in the real world, activity data are coming in a stream and changeable. Conventional ML approaches
are not competent to train a robust model in this circumstance. Deep learning (DL), a rapidly evolving
technology, tends to break through these restrictions. As a new branch of ML, DL came into sight
and has emerged as a powerful tool in the past few years. DL approaches extract high-level deep
features automatically through hierarchical architectures. Artificial feature extraction using specialized
knowledge is not acquired. Furthermore, with the advent of GPU, it is capable of fast computing with
huge amounts of data. DL algorithms can take full advantage of parallel computing to achieve fast
processing. With its excellent feature learning ability from massive data, DL has not only promoted
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the development of visual object recognition, speech processing, natural language processing, etc. [33],
but also made HAR more intelligent and versatile.

To the best of our knowledge, currently there is no survey that addresses DL-based HAR progress
in radar, and this is the first article to present the recent advance of this area. We hope it provides a
comprehensive summary and motivates more inspirations for relevant future research.

The remainder of the paper is organized as follows: In Section 2, we compactly overview DL
techniques. Section 3 reviews examples of radar systems adopted to recognize human activities.
Section 4 presents DL approaches for radar-based HAR in detail. We divide existing literature into
three parts according to the dimension of radar echoes, and then DL techniques applied to the three
parts are discussed respectively. Future research considerations and directions are discussed in
Section 5. Finally, the paper is concluded in Section 6.

2. Deep Learning Techniques

With the emergence of deep learning algorithms, the development of many fields such as speech
recognition, visual object recognition and even drug discovery has been accelerated [34]. A deep
learning model has multiple processing layers to learn high-level representations automatically. Heavy
feature engineering and domain knowledge are not required for DL. Furthermore, with so many deep
transformations, very complex functions could be learned and difficult classification and recognition
problems could be solved [35,36]. As a result, deep learning has advanced the development of many
fields, including HAR. In this section, we investigate several deep learning models and analyze their
unique advantages for HAR tasks. Table 1 describes all the models in brief.

Table 1. DL models and advantages for human activity recognition.

Models Descriptions and Advantages

CNN
capturing the spatial relationship by multiple
convolutional layers, often utilized as an excellent
localized feature extractor

RNN exploring the temporal relationship in data, variants are
often utilized, such as LSTM

Auto-encoder a feed-forward neural network that learns deep features
in an unsupervised fashion

Hybrid deep models the combination of some deep models, built on each
model’s own strength to obtain better performance

2.1. Convolutional Neural Network

The convolutional neural network is inspired by the visual cortex structure which is composed
of simple cells and complex cells. It adopts four key ideas: local connections, parameter sharing,
pooling and multi-layers. In CNN, convolution operation replaces the general matrix multiplication in
general neural network. In this way, the complexity of the network is reduced due to the decreased
number of weights. It should be noted that CNN is the first DL architecture with the hierarchical
layers [37]. Multiple convolutional layers enable CNN to extract higher-level spatial features from the
lower-level ones hierarchically, avoiding the manual feature extraction procedure in the conventional
ML algorithms. After convolutional layers, pooling and fully connected layers are usually employed
for classification or regression tasks. Additionally, thanks to the excellent deep feature learning ability,
CNN is often employed as an automatic feature extractor for a variety of tasks [38,39].

When utilized for HAR, CNN has two main advantages [32]: taking nearby signals into
consideration and scale-invariant for different paces or frequencies. The first advantage allows
CNN to extract localized features from the positions which are space-related, rather than from a single
position. The second advantage allows pace or frequency information to be retained in the extracted
features. In [23,40–49], CNNs with different architectures and convolution kernels of various sizes
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were employed as classifiers to recognize human activities with time–Doppler maps, as illustrated in
Figure 2a. In [28,50–52], CNN acts as a spatial feature extractor and extracts high-level representations
of human activities for further identification, as illustrated in Figure 2b.

Figure 2. (a) CNN is performed as a classifier for radar-based HAR. Adopted from [41]. (b) CNN is
adopted as a feature extractor to learn high-level features from the input time–range maps. Adopted
from [28].

2.2. Recurrent Neural Network

With the successful application in NLP and speech recognition, recurrent neural network (RNN)
has caught researchers’ attention in HAR. RNN has shone light on modeling temporal sequences
because of the ability of mining temporal and semantic information. From the perspective of network
structure, RNN remembers the previous information and uses it to influence the output of the following
nodes. However, conventional RNN has its own limit: long-term dependencies. To overcome this
shortcoming, long short term memory (LSTM) (see Figure 3a) came into being [53] and performs better
in many tasks. LSTM owns three special gates: input gate, output gate and forget gate. By using these
memory units especially the forget gate, LSTM is able to access a long-range context of sequential data.
Compared with CNN, which can only process data with a predefined size, the prediction of RNN and
its variants is assumed to increase in accuracy when more data is available. The prediction result is
changing with time. Consequently, RNN is more sensitive to the change of the input data than CNN.

For HAR, RNN and its variants have the superiority of exploiting temporal correlations in an
activity, which is a crucial issue for recognizing human activities. Ref. [28,50,51,54] all utilized RNN
and its variants to model the temporal characteristics in human activities. In [50], the features that
extracted from range–Doppler maps by a CNN are time-correlated, so LSTM was utilized for learning
complex dependencies across time in those features. In this way, both spatial and temporal information
was explored under the cooperation of CNN and LSTM.

Figure 3. A schematic overview of (a) LSTM cell and (b) auto-encoder.
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2.3. Auto-Encoder

Auto-encoder (AE) (see Figure 3b) is a feed-forward neural network that aims to reconstruct
the input under certain constraints [52]. It learns deep feature representations of unlabeled input
via several rounds of encoding–decoding procedures in an unsupervised fashion. Especially when
the input data are highly similar, AE is able to discover nuances in the data itself by the layer-wise
unsupervised pre-training principle. Furthermore, unsupervised pre-training tends to function as a
regularizer, which potentially prevents the network from overfitting [55].

The commonly used variants of AE in HAR are the following kinds: (a) stack auto-encoder (SAE)
that stacks multiple sparse AEs together to acquire more compact feature coding. (b) convolutional
auto-encoder (CAE) that essentially combines CNN and AE, and the encoding-decoding procedures
are accomplished by convolution and deconvolution. (c) de-noising AE and contractive AE that make
the models more generic by adding noise to the input or adding a well-chosen penalty term to the
loss function.

In [52], CAE was employed for unsupervised pre-training, as illustrated in Figure 4. Then the
decoding part of the network was removed, and fully connected layers, as well as a softmax classifier,
were added to the encoder for classification. Taking advantages of unsupervised pre-training and
localized feature learning, CAE outperformed CNN and plain AE for identifying human activities.
In [56], stacked AEs were applied to obtain the most prominent features in radar echoes, and then
softmax classifiers were utilized for recognizing human motions. A similar approach was also adopted
in [57–59].

Figure 4. CAE architecture adopted from [52].

2.4. Hybrid Deep Model

Every model has its own disadvantages and is not competent to all tasks. Hybrid deep models
integrate several networks together and take advantage of all these networks. Such cooperation is
built on each model’s own strength so as to obtain better performance. So far, in HAR, CNN and
RNN are commonly combined as shown in Figure 2b, because they are good at abstracting different
domain features: CNN captures spatial relationships while RNN captures temporal relationships [32].
Ref. [28,50,51] provided good examples for how to combine CNN and RNN. Those work has
demonstrated that combining CNN and RNN tends to reinforce the power of recognizing the activities
that vary in time and space. In addition, AE is often combined with CNN or RNN owing to its ability
of unsupervised extracting high-dimensional features [52].

3. Radar System for Human Activity Recognition

Radar is an active sensing system that transmits radio wave and receives returned signals
modulated by illuminated objects. It has been mostly used in remote sensing systems such as
satellite remote sensing, air and terrestrial traffic control and geophysical monitoring in the past
few decades [60]. Moreover, there has been a recent expansion of short-range radar for HAR tasks.

The radar-based HAR approaches are more robust than vision-based ones because of radar’s
insensitivity to light and weather condition. They can detect human presence and activities directly
without any tag attached to the human body. When a person is moving, the speeds/Doppler
frequencies of body parts are time–varying with respect to the person’s movement. Subsequently,
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the ranges of these parts are not linear with respect to time. The targets’ range, speed and angle
information that radar obtains could be utilized to recognize human activities [61].

Due to its intrinsic advantages such as simple architecture, easy system integration, relatively
low cost, and penetration capability, radar is feasible as a kind of human motion measurement
technology [62]. There are a series of radars used for HAR, such as continuous-wave radar, ultra-wide
band radar and noise radar. While there are many advanced researches of noise radar HAR
systems [63–68], they do not involve ML techniques, and thus are out of scope of this paper. Next, we
introduce several kinds of radar designed for HAR purposes. Table 2 briefly outlines those radars and
their basic characteristics.

Table 2. Radar system and basic characteristics.

CW radar

Doppler radar
sending out single-tone radio waves
able to acquire the Doppler/radial velocity information of targets

FMCW radar
providing range and speed information of targets simultaneously
suitable for scenarios with the presence of multiple targets

Interferometry
radar

obtaining angular velocity of the target regardless of the targets’
moving direction, with the output of two antennas cross-correlated

UWB radar providing fine range resolution
able to distinguish the major scattering centers of the target

3.1. Continuous-Wave (CW) Radar

CW radar transmits a known stable-frequency CW ratio signal and receives the reflected signal
that is modulated by objects on the ratio signal path [60]. It is able to operate on either modulated
mode or unmodulated mode. CW radar has a simple architecture with easy system integration and
low power consumption, which makes CW radar attractive for mobile and portable applications.
Various commercial CW radar chips and systems are available for HAR applications [61], such as
77 GHz AWR1642 and AWR1443 of Texas Instruments (Dallas, TX, USA), 77 GHz TEF8181EN and
TEF8102EN of NXP (Eindhoven, The Netherlands) and 24 GHz BGT24MTR11 of Infineon (Neubiberg,
Germany). Typical CW radar systems for HAR are Doppler radar, frequency-modulated CW Radar
and interferometry radar.

A. Doppler Radar

Doppler radar, as shown in Figure 5a, is one of the most popular radars in HAR [20,41–43,45,52,69].
A Doppler radar sends out single-tone radio waves and no modulation is involved. When the target is
moving, the frequency of the received signals is shifted away from the transmitted ones because of the
Doppler effect. The frequency fr of backscattered signals is shown as follows [62],

fr = ft(1 + v/c)/(1 − v/c), (1)

where ft is the frequency of single tone radio signals sent by the Doppler radar, c is the speed of light,
v is the radial speed of the target. The Doppler frequency shift fd is thus

fd = fr − ft = 2v ft/(c − v) (2)

Doppler radar is used to detect time–varying radial speeds of human motion due to its ability of
capturing Doppler shifts. Owing to the relatively simple signal processing, Doppler radar is capable of
acquiring appreciable performance in motion and displacement measurement [70,71].
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Figure 5. (a) Doppler radar adopted from [72]. (b) IWR1443, which is a 77 GHz FMCW radar produced
by Texas Instruments.

B. Frequency-Modulated Continuous-Wave Radar

Frequency-modulated continuous-wave (FMCW) radar, as shown in Figure 5b, is able to sense
the range and Doppler properties of targets simultaneously. When more than one source of reflection
reaches at radar antennas at the same time, both range and Doppler information are indispensable.
Consequently, FMCW radar is widely employed in various short-range scenarios [28,50,51,57,73,74],
especially scenarios with the presence of multiple targets [75,76].

In an FMCW radar system, a known stable frequency continuous wave that varies up and down
in frequency over a fixed period of time is transmitted, such as a sine wave and sawtooth wave [77].
As illustrated in Figure 6, the backscattered echoes are mixed with transmitted signals to produce beat
signals. By demodulating the beat signals and calculating the frequency delay of the received signals,
range information could be extracted [73]. The range resolution of an FMCW radar that refers to the
minimum separation in range of two objects of an equal cross section, is proportional to c/2B, where B
is modulation bandwidth. So, the larger the bandwidth is, the higher the range resolution is. As for
the Doppler information, it is obtained in the same way of unmodulated CW radar.

Figure 6. Illustration of how an FMCW radar acquires range and Doppler information, taking sawtooth
wave as an example. fd is Doppler shift while τ is time delay. Adopted from [73].

C. Interferometry Radar

One disadvantage of Doppler radar is that the frequency shift highly depends on radial velocity.
As a result, it is hard to recognize noncooperative activities performed along the tangent direction.
In this circumstance, interferometry radar is more helpful. It utilizes an interferometric receiver
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composed of two antennas, and the output of the two antennas are cross-correlated [78]. When a target
moves under the interferometric mode of radar, a signal whose frequency is proportional to the angular
velocity of the target is produced. As a consequence, interferometry radar produces micro-Doppler
signatures regardless of the moving direction of a person.

Interferometry radar has been applied in many fields, such as engineering metrology, remote
sensing and small-displacement measurement [79]. In HAR, interferometry radar is also adopted
thanks to its ability of acquiring tangential motion information [80,81]. In addition, the interferometry
mode is often combined with FMCW mode for indoor precise positioning, versatile life activity
monitoring and vital sign tracking. In [82], time–Doppler maps of a walking person acquired from
an interferometric radar and a Doppler radar were compared. It is seen that the two time–Doppler
maps look similar and both contain micro-Doppler features, which means that it is possible to apply
the classification algorithms of Doppler radar to interferometric radar in a straight-forward manner.

3.2. Ultra-Wide Band Radar

Ultra-wideband (UWB) radar, whose fractional bandwidth of the transmitted signals is
greater than 25%, is another type of radar that is often utilized for human detection and activity
recognition [22,44,46,83–86]. Fractional bandwidth of UWB radar is defined as

FBW =
2( fH − fL)

fH + fL
, (3)

where fH refers to the upper bound of frequency and fL refers to the lower bound frequency. UWB
radar is to transmit pulses with very short durations in nanosecond range or even less. Due to the
wideband, UWB radar has the capacity of anti-interference, penetrability, fine range resolution and
short range detection. Thus, UWB radar is able to distinguish the major scattering centers of the target
and identify short-range human activities [87,88]. Despite the contradiction between range resolution
and Doppler resolution, UWB radar is able to acquire the Doppler information of each scattering center
of the human body when compromising the range resolution and the Doppler resolution. Additionally,
it has low power consumption, which makes it more applicable for portable HAR devices with limited
computational capabilities. The transmitted pulse signal of UWB radar has a certain bandwidth,
and theoretically has the ability for multi-target activity recognition. However, there is no related work
at present, which is mainly due to the high complexity of the algorithms for separating targets and
identifying individual activities.

4. Deep Learning Approaches for Human Activity Recognition in Radar

In Section 2, we have discussed several common DL models and their advantages for HAR. As for
radar, since radar echoes contain time, range and Doppler information, it is desirable that the DL
algorithms are designed specifically for radar echoes. Motivated by this, in this section, we describe
deep learning approaches for human activity recognition in radar according to the dimension of radar
returns. Table 3 lists all the surveyed work in this section.
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Table 3. Summation of existing works on DL based human activity recognition in radar.

Echo Form Literature Radar Type Central Frequency Deep Model

3D echoes time–range–Doppler maps [50,51] FMCW radar 60 GHz CNN + LSTM

2D echoes

time–Doppler maps

[89] CW radar 4 GHz CNN

[45] CW radar 8 GHz CNN

[48] CW radar 24 GHz CNN

[54] CW radar 8 GHz LSTM

[56] CW radar 6 GHz SAE

[52] CW radar 4 GHz CAE

[41] Doppler radar 2.4 GHz CNN

[90] Doppler radar 7.3GHz CNN

[47] Doppler radar 24 GHz CNN

[49] Doppler radar 5.8 GHz CNN

[69] Doppler radar 25 GHz LSTM

[20] Doppler radar 24 GHz SAE

[42] pulse Doppler radar 5.8 GHz CNN

[43] pulse Doppler radar 5.8 GHz CNN

[84] UWB radar 4 GHz CNN

[85] UWB radar 4.3 GHz CNN

[83] UWB radar 7.3GHz CNN

[46] UWB radar 4 GHz CNN

[44] UWB radar 4 GHz CNN

[91] FMCW radar 24 GHz CNN

[21] FMCW radar 5.8 GHz CNN

time–range maps [22] UWB radar 3.9GHz CNN

[28] FMCW radar 24 GHz 3D CNN + LSTM

range–Doppler maps [74] FMCW radar 24 GHz 3D CNN

time–Doppler maps and
time–range maps [58] FMCW radar 25 GHz SAE

time–Doppler maps,
time–range maps and
range–Doppler maps

[57] FMCW radar 24 GHz SAE

Radar signals are transformed into 3D time–range–Doppler data cube by range–Doppler (RD)
processing [92], which uses Doppler effect to determine the radial component of target’s velocity. In this
way, multiple components of a target are resolved not only in range but also in Doppler. The 3D RD
’video’ describes the slow-time evolution of the target’s activity, as shown in Figure 7a. Radar signals
can also be represented in 2D, namely time–Doppler map (Figure 7b), time–range map (Figure 7c) and
rang–Doppler map (Figure 7d). In order to make full use of the information in echoes, deep learning
methods should be designed more carefully for different forms of echoes.
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Figure 7. 1D, 2D and 3D radar echoes: (a) 3D time–range–Doppler data cube, (b) 2D time–Doppler
map, (c) 2D time–range map, (d) 2D range–Doppler map.

4.1. Deep Learning Approaches in 3D Radar Echo

range–Doppler frames reveal moving properties, as well as micro-Doppler properties of
targets [61]. Consisting of N time-sampled 2D range–Doppler frames, the 3D RD video sequence
demonstrates both spatial and temporal characteristics. Range and Doppler information consists in
every RD frame while time information exists between frames. Compared with 1D and 2D echoes,
the joint time–range–Doppler echoes contain almost all the activity information that radar receives.
Models that are able to extract both temporal and spatial information are required. Since it is difficult
to design features manually from 3D echoes, DL methods are more feasible and preferable for 3D
echo-based HAR, thanks to its capability of automatically extracting deep features. Furthermore,
the advent of GPU makes it possible for DL models to process 3D data quickly and efficiently.
Although there are few DL algorithms proposed for 3D radar echoes till now, DL approaches on
3D echoes are promising for HAR.

3D CNN is one of the most used models for processing 3D data recently [4,93,94]. It extends the
spatial CNN into a spatio—temporal model, and spatial–temporal features are learned automatically.
Z. Zhang et al. [28] proposed a recurrent 3-D CNN model for continuous dynamic gesture recognition
using an FMCW radar. 3D CNN was used for extracting short temporal-spatial features in continuous
time–range maps and then an LSTM was adopted for global temporal feature learning. Experiment
showed that when 3D CNN was substituted with a traditional 2D-CNN, the recognition was reduced
by around 5%, which demonstrated that compared with 2D CNN, 3D CNN was able to learn better
representations of hand gestures. Though the input of 3D CNN is time–range maps, this approach
is also suitable for a 3D data cube because the cube contains almost all the activity information in
continuous time–range maps.

A representative example using 3D radar echoes for HAR is GoogleSoli, as shown in Figure 8.
GoogleSoli is the first gesture recognition system capable of recognizing a rich set of dynamic gestures
based on short-range FMCW radar [50,51]. It is based on an end-to-end trained combination of
deep convolutional and recurrent neural networks, and the dataset is comprised of 3D radar echoes.
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Combining CNN and LSTM could enhance the ability to recognize different activities that have varied
time span and spatial distributions. It was shown that the approach with 3D range–Doppler videos
was better than the frame-level classification approaches, and the end-to-end ‘CNN + LSTM’ method
was able to explore the gesture information more fully than the single CNN or LSTM models. With the
advent of GoogleSoli, other DL architectures have been proposed based on it [28,31,94].

Figure 8. Deep learning architecture of Google Soli, a hybrid model that consists of CNN and LSTM.
Adopted from [50].

4.2. Deep Learning Approaches in 2D Radar Echo

Containing plentiful information of human activity, 3D human backscattering echoes are still
complicated to process. 2D radar echoes, which are mainly referred as time–Doppler map, time–range
map and range–Doppler map, also carry sufficient human activity information. Generally, 2D
echoes are treated as images, so along with the line of computer vision, CNN has become the most
commonly utilized model for 2D echoes. Thus, 2D echo-based HAR is often transformed into an image
classification task.

(1) time–Doppler map (also referred to as micro-Doppler signatures) includes sufficient time–varying
Doppler information that is pivotal for radar-based HAR [95]. When a human target is moving, the main
Doppler shift is caused by torso while micro-Doppler is produced by rotating or vibrating parts, such
as legs, feet and hands. The range and velocities of every body parts are often different, as shown in
Figure 9. When the target acts differently, the time–Doppler maps corresponding to these activities are
various. time–Doppler maps are easy to obtain by transforming raw echoes with STFT [96] and other joint
time–frequency analysis methods. A simple CW radar with one transmitter and one receiver could be
employed for identifying basic human activities with time–Doppler maps. In addition, time–Doppler maps
are intuitive and explicable. As a consequence, compared with other 2D radar echoes, the time–Doppler
maps are most commonly used for radar-based HAR up to now [20,41–43,45,48,49,54,56,69].

R.P. Trommel et al. [45] applied a 14-layer deep CNN (DCNN) on time–Doppler maps to classify
human gaits. The experimental result showed that the DCNN architecture was able to extract effective
micro-Doppler features of human gaits even at lower frequencies or low SNR levels, which exceeded
the performance of SVM and the artificial neural network. M.S. Seyfioglu et al. [52] employed a CAE
architecture to discriminate 12 indoor human activities involving aided and unaided human motions,
which often resulted in highly similar micro-Doppler signatures. The CAE model is composed of 3
convolutional layers and three deconvolutional layers, as illustrated in Figure 4. It is able to learn nuances in
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the micro-Doppler signatures and obtains a good recognition performance of 94.2%. This HAR method
shows the potential of radar-based health monitoring systems for assisted living. In [42], a DCNN-based
hand gesture recognition system using time–Doppler maps was proposed. There were three convolutional
layers and a fully connected layer in the model. In addition, how the DCNN effectively recognizing hand
gestures in uncontrolled environments was investigated. Results showed that micro-Doppler signatures
varied with aspect angle and distance to the radar, and recognition performance of the model under different
scenarios. Ref. [47] proposed a DCNN architecture composed of cascaded convolutional network layers
to classify human activities with time–Doppler maps, as shown in Figure 10. The Bayesian optimization
with Gaussian prior process was utilized to optimize the network. Experimental results showed that the
performance of this method was better than three existing feature-based methods.

Figure 9. Moving trajectories of different body parts when a human target is walking: (a) Range of
different parts. (b) Radial velocity of different parts. Adopted from [97].

Figure 10. Cascaded DCNN optimized by Bayesian learning technique. Adopted from [47].

(2) Time–range map is composed of multiple pulses along time (see Figure 7c). It contains
time-varying range information between the target and the radar. When a person is moving, different
components of the human body have different relative distances from the radar, as illustrated in
Figure 9a. As a result, although time–range maps neglect Doppler information, the time–varying range
information of the human body is still able to be used for recognizing human activities [28].

In [98], time–range maps were utilized to detect falling in assisted living. By providing range
information, the false alarms caused by fall-like activities such as sitting were reduced. In [22],
Y. Shao et al. employed a three-layer DCNN to classify six human motions such as walking, running
and boxing. It was shown that the time–range maps were more robust than the time–Doppler
maps, especially when the radial velocity was low. Additionally, when increasing the incident angle,
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the recognition accuracy was maintained at a stable value, because the range information did not
change significantly with the signal to noise ratio.

(3) range–Doppler map (see Figure 7d) illustrates range and Doppler information of a moving
target at a specific time. It has the ability to separate different components of the moving human body
parts and locate the target accurately. In addition, range–Doppler maps are able to track multiple targets
simultaneously, which is promising for multiple human activity recognition. P. Molchanov et al. [73]
utilized a short-range monopulse FMCW radar with one Tx and three Rx to sense dynamic hand
gestures. A 4D vector representing spatial coordinates and radial velocity of the hand was estimated
with range–Doppler maps from three antennas. Similarly, in [74], a 4D vector obtained from three
range–Doppler maps was combined with a mask from a depth image. Then a resulting velocity layer
was fed into a 3D CNN to identify dynamic car-driver hand gestures. The 3D CNN is able to extract
the spatial–temporal features, which is indispensable for recognizing dynamic hand gestures of short
durations. In [57], two sparse AEs were stacked to learn sparse representation from range–Doppler
maps gradually, and a Softmax layer was employed for classification. In [58], a stack AE was utilized
to extract features from range–Doppler maps, and logistic regression was applied for identifying
fall/non-fall. Ref. [57,58] gave examples of applying DL methods on range–Doppler maps for HAR.

(4) Hybrid 2D maps Up to now, most HAR systems based on 2D radar echoes only utilize one of
the above three kinds of maps. However, sometimes it is observed that activities which could be easily
distinguished with one map may not be correctly identified with another map. This motivates the use
of multiple maps aiming at reducing false alarms. Ref. [99] utilized time–Doppler map, time–range
map and range–Doppler map for falling detection. By extracting range and Doppler information
from the three maps, the false alarm rate of fall detection was reduced. In [57], three stack AEs and
three Softmax classifiers were employed to classify four human motions (falling, sitting, bending
and walking), as described in Figure 11. In this method, time–Doppler maps, time–range maps and
range–Doppler maps were all applied in order to fully explore the motion information that radar
echoes contained. Then three classification results were combined to deliver the final result by voting
strategy. Experiments showed that the performance was better than the one that only used one kind of
maps. In [58], fall detection procedure was divided into two stages: using a stacked AE composed
of two sparse AEs to distinguish fall/walk from sit/bend with time–range maps and using another
stacked AE with the same structure to distinguish fall from walk with time–Doppler maps. Detection
accuracy of 97.1% was achieved.

Figure 11. The scheme for hybrid 2D maps based recognition. Adopted from [57].

4.3. Deep Learning Approaches in 1D Radar Echo

Projecting the time–range–Doppler data cube on range dimension results in 1D radar echoes,
namely high resolution range profile (HRRP), as shown in Figure 12. Though HRRP is not as intuitive
as 2D and 3D radar echoes, it carries enough information for identifying human activities likewise.
Ref. [100] applied HRRP to analyze human target gaits with an ultra-wideband radar. Ref. [101]
combined HRRP and micro-Doppler signatures to classify human gaits. Z. Zhou et al. adopted
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multi-modal signals, including HRRPs and Doppler signatures acquired from a terahertz radar system
to recognize dynamic gestures and the recognition rate reached more than 91% [31].

Figure 12. High resolution range profiles of a hand at a different time. Adopted from [31]. Each
sub-figure illustrates the HRRP at a specific time.

1D radar echoes are essentially time-series, and similar to the data obtained from sensors like
accelerometer and gyroscope. Thus, many approaches used for time series could be adopted to 1D
echo-based HAR. RNN is often utilized for 1D data due to advantages of modeling sequential data.
For instance, A. Graves et al. proposed a speech recognition architecture composed of LSTM and
Connectionist Temporal Classification (CTC) algorithm that is suitable to label unsegmented sequence
data [102]. This provides us insights on how to recognize continuous activities without annotating
manually in advance. A. Hamid et al. [103] applied 1D CNN to hybrid NN-HMM model for speech
recognition and proposed partial weight sharing for the first time. Although there are few DL-related
studies for 1D radar echoes, DL approaches have the potential to extract sequential features and deliver
good classification results for 1D radar echoes.

5. Future Directions

Despite radar-based HAR with DL algorithms has made noteworthy progress, there is a way to
go before it matures. As a tool for feature extraction and activity identification, it is essential for the
designed DL architectures to be capable of exploring activity information in radar echoes as much as
possible. A few future research considerations are listed below.

A. Complex human activity recognition.

Complex human activity, such as drinking coffee and cooking, is composed of several simple
activities that are simultaneous. Compared with simple human activities such as walking, running
and sitting, complex activities, which is more reflective of people’s intentions, are worth studying. Due
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to the complicated semantic and context information, complex activities, are harder to be recognized
than the simple activities.

(1) Hybrid deep model design. In Table 3, most work adopts single and basic DL models, such
as CNN and AE. However, as described in Section 2, each type of DL models has its own unique
characteristics for HAR task. In order to fully take advantage of the semantic and context information
for identification, it is far from enough to purely use a single DL model. Motivated by this, designing
hybrid DL models for recognizing complex activities is imperative.

(2) Multiple forms of echoes. Table 3 shows that compared with 2D radar echoes, there is less
work based on 1D and 3D echoes so far. It is mainly because that the current radar-based HAR tasks
mostly focus on identifying simple activities. In this case, the information in 2D echoes is enough
to obtain good recognition performance. In addition, 2D echoes are intuitive and explicable, which
makes it more acceptable. Generally speaking, there is a loss of information during the radar signal
transformation process, no matter the signals are converted into 1D, 2D or 3D. However, in order
to make radar-based HAR systems more robust and generic for complex scenarios, more activity
information in radar echoes should be utilized. To this end, different types of radar echoes could be
employed for information extraction. Consequently, it is necessary to cooperate with multiple forms of
echoes for HAR.

(3) Aspect angle sensitivity. In HAR task, Doppler shift is caused by the radial velocity of moving
targets, and the radial velocity changes with the relative position between the target and radar. When
the motion directions are different, radar backscattered signals produced by a subject differ a lot [104].
In this regard, the designed model should be robust to the aspect angle changes. Since there is a little
research on this issue [22,42], it still needs to be investigated more.

B. Radar-based human activity recognition in real-world scenarios.

So far, most of the recent radar-based HAR approaches are only applicable in the controllable
environments, where a human target acts several discontinuous and assigned activities with little
interference. In addition, the real-time processing capability of the model is not taken into account.
However, in order to make radar-based HAR applied in real-world scenarios, several issues should be
considered carefully.

(1) Light-weight deep model design. Training a DL model often requires lots of computing
resources, which makes it often be executed off-line with a limited amount of data. However,
in reality, activity data often come in a stream and require robust online and incremental learning.
Though capable of processing and classifying data in real-time, huge feature engineering and hand-craft
feature extraction hinder the use of traditional ML approaches for real-world HAR. Consequently, it is
necessary to design light-weight DL models for radar-based HAR. There are two ideas available for
investigation: combining hand-crafted features with deep features, and cooperating DL models with
conventional ML algorithms.

(2) Continuous activity segmentation and recognition. In real-world scenarios, a person always
acts continuously and freely, not merely performing assigned activities. Accurate segmentation
and recognition of the interested activities is crucial. Recently, there is a trend of addressing
segmentation and recognition jointly. For example, in [28], a Connectionist Temporal Classification
(CTC) algorithm [105] was employed to recognize continuous dynamic hand gestures. CTC enables
gesture recognition without explicit pre-segmentation and addresses segmentation and recognition
simultaneously. In further research, more algorithms aiming at jointly segmenting and recognizing a
series of activities are desired.

(3) Multi-target activity recognition. How to identify multiple targets’ activities or separate
the target from a group is worth studying. In [45,54], multi-target human gait recognition with DL
approaches was studied. In [75], an FMCW radar was utilized to separate and recognize several
assigned hand gestures in the presence of multiple targets. However, those solutions often work in
less disturbing scenarios, such as the scenario where the human target is making gestures, and another
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person is walking toward the radar meanwhile. When it comes to the circumstances where the
radar echoes are modulated by multiple moving targets, applying DL models to learn high-level
features are of great significance. More elaborate DL models should be designed for multi-target
activity recognition.

C. Unsupervised activity recognition in radar.

DL models require large-scale labeled data to prevent overfitting and obtain good generalization.
In radar applications, however, acquiring a mass of measured labeled data is challenging due to
constraints on manpower, cost, and other resources. As a result, unsupervised HAR in radar is urgent.

(1) Deep Transfer learning. Transfer learning generally refers to transferring the knowledge
or models learned from a certain task to another related, but different task. Up to now, transfer
learning for radar-based HAR mainly includes two perspectives: transferring the models trained with
large-scale natural image datasets, such as ImageNet [84,89,90] and transferring the models trained
with simulated radar image dataset [83,85]. How to elaborate a DL model that is capable of adequately
learning the relatedness between source domain and target domain is an open issue in radar-based
HAR area.

(2) Cross-modal knowledge distillation. For the activity recognition task, it is verified that the
shared representations exist in different types of sensory data. In addition, the shared representations
could be utilized as supervision for training a radar-based DL model. Only synchronized but unlabeled
data are employed during the cross-modal knowledge distillation process. Ref. [106] demonstrates
that training a model by cross-modal knowledge distillation not only reduces the amount of required
labeled data but also speeds up the training process. For radar-based HAR, cross-modal knowledge
distillation is also effective and large-scale labeled data are no longer necessary.

6. Conclusions

Human activity recognition is one of the interesting research topics in human–computer
interaction and smart surveillance. As an active system for human activity recognition, radar has many
unique advantages and has attracted the attention of researchers gradually. Deep learning is able to
extract deep hierarchical features automatically and has achieved desirable classification performance.
In this paper, we first survey several state-of-the-art deep learning models. Those models have different
characteristics for identifying human activities and there is a trend of combining multiple models
to better learn the features of human activities. Then, radar systems that are mostly employed for
HAR are described. Doppler radar is able to obtain Doppler information for HAR while FMCW radar
provides both range and Doppler information. UWB radar has a high range resolution and is capable
of distinguishing the scattering centers of the human body. Interferometry radar provides Doppler
information regardless of the directions of human movement. Furthermore, by classifying radar
echoes into three different forms: 1D, 2D and 3D, we discuss the development of deep learning based
HAR in radar. Various deep learning techniques designed specially for 1D/2D/3D radar echoes have
been discussed, and the experiment results demonstrate the feasibility of such techniques. 2D radar
echoes, especially time–Doppler maps, are more commonly used for radar-based HAR because they
are more intuitive and contain sufficient activity information. 3D echoes contain more information,
but they are also more difficult to process than 2D and 1D echoes. Because of the simple form of 1D
echoes, the activity information contained in them is still waiting to be fully mined. Thanks to the
ability of feature learning, DL techniques shows potential for radar-based HAR. Finally, several future
research directions for radar-based HAR is presented. Though the adoption of radar for HAR is still
lagging behind vision-based technologies, we should be optimistic about the potential of radar-based
HAR techniques because of radar’s unique advantages such as environment-insensitivity and better
privacy protection.
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