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Abstract: There is inconsistency between the existing remote sensing cropland products, whose
accuracy of estimated cropland area and spatial positioning needs to be improved. The existing
generalized methods of generating synergy cropland products for improving the accuracy of existing
products do not consider the overall consistency difference between the different products in each
grid cell in the fusion process. To reduce the impact of the abnormal estimated cropland areas
of the individual cropland products on the results, this paper proposes a method of generating a
synergy cropland product by fusing the multiple existing cropland products, based on the overall
consistency difference. In the proposed method, the process of fusing the multiple existing cropland
products is based on the overall consistency difference of the estimated cropland area of all the
cropland products in each grid cell. The synergy cropland product is then generated after determining
the best combination level with the cropland statistics. In this study, we set 2010 as the base year,
and used the proposed method to conduct experiments with four remote sensing cropland products:
GlobCover 2009, MODIS Cropland, MCD12Q1, and FROM-GLC within China, and national cropland
statistics. The results show that the synergy cropland product generated by the proposed method has
a higher accuracy of cropland area estimation and spatial positioning than the results obtained by the
generalized model, as well as the original products.

Keywords: remote sensing; cropland product; multi-source data fusion; overall consistency difference

1. Introduction

Accurate cropland distribution information is very important for food security and environmental
sustainability [1]. Satellite remote sensing imagery provides us with an efficient data source, from
which large-area cropland distribution information can be obtained, along with its spatial and temporal
variations [2]. In recent decades, a number of global and intercontinental remote sensing land-cover
products that include cropland categories have been released, many of which are available to the
public free of charge. The early land-cover products have a low spatial resolution, usually 1 km,
as in IGBP-DISCover [3], UMD LandCover [4], and GLC2000 [5]. With the improvement of satellite
technology and classification methods, the spatial resolution of the land-cover products has been
improved to 500 m, as in MODIS Collection 5 [6,7], and then 300 m, as in GlobCover 2009 [8]. Nowadays,
several cropland products with a resolution of 30 m are available, such as GlobeLand30 [9,10] and

Remote Sens. 2019, 11, 1065; doi:10.3390/rs11091065 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-9446-5850
https://orcid.org/0000-0002-1531-7399
https://orcid.org/0000-0002-0493-3954
http://dx.doi.org/10.3390/rs11091065
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/11/9/1065?type=check_update&version=2


Remote Sens. 2019, 11, 1065 2 of 18

FROM-GLC [11]. However, there is considerable inconsistency between the cropland categories
extracted from the different remote sensing land-cover products. In addition, the estimated cropland
areas of these products are quite different from the official statistics, and the spatial positioning accuracy
is poor as it is limited by mixed pixels [12,13].

There have been several studies focusing on improving the accuracy of the existing remote sensing
products through multi-source data fusion. Some studies have employed locational information and
smoothing techniques and predicted the distribution of cropland by using geographic regression
analysis between geographic data as training samples and the existing remote sensing products [14–19].
Other studies have used multi-source data fusion methods such as Dempster–Shafer evidence
theory [18], fuzzy set theory [20], and Bayesian theory [21,22]. The methods mentioned above have
improved the accuracy of land-cover products and cropland products, to a certain extent, but a lot of
hard-to-obtain prior knowledge is needed. Some studies have established fusion decision rules to fuse
multi-source data by analyzing the consistency between them, but they have ignored their quality
differences [23–27]. Fritz et al. [28], Lu et al. [29], and Chen et al. [19] ranked the input multi-source
data by their accuracy assessment and assign different weights accordingly, to generate synergy
cropland products, and provided a feasible scheme to solve the above problems [12]. Nevertheless,
the existing generalized methods used in the previous studies do not consider the overall consistency
difference between the different products in each grid cell in the process of fusing cropland products
for generating a synergy cropland product, and are thus greatly affected by the low-quality products
with abnormal cropland areas, resulting in a large difference between the estimated results and the
actual cropland areas.

In this paper, to reduce the impact of the abnormal estimated cropland areas of individual products
on the results, we propose a new method for generating a synergy cropland product by fusing the
multiple existing products based on the overall consistency difference. In the proposed method, we first
create a fusion combination level table, where the overall consistency difference of the estimated
cropland area of all the products in each grid cell is considered as the basis of the fusion. The synergy
cropland product is finally generated after determining the best combination level with the cropland
statistics. The proposed method can quickly and efficiently obtain the cropland distribution result of
the study area, i.e., the synergy cropland product, with a high accuracy of cropland area estimation,
as well as spatial positioning, without relying on training samples. In the experiments conducted in
this study, we set 2010 as the base year, and used the remote sensing cropland products of GlobCover
2009 [8], MODIS Cropland [7], MCD12Q1 [6], and FROM-GLC [11], along with national cropland
statistics from the Geographical Information Monitoring Cloud Platform, to generate a new synergy
cropland product for China. The synergy cropland product is an improvement on every original
product and the result generated by the existing method based on a generalized model, in both the
accuracy of the cropland area estimation and the accuracy of the spatial positioning.

The rest of this paper is organized as follows. In Section 2, we describe the four cropland products
used in this paper and the generalized model. In Section 3, we introduce the model proposed in
this paper for generating the synergy cropland product. In Section 4, we describe the experiments
conducted with the proposed method and carry out a quality assessment of the synergy cropland
product. We then compare the synergy cropland product with the results obtained by the generalized
model, as well as the original products, to analyze the experimental results. Finally, a summary and
discussion are provided in Section 5.

2. Background

2.1. Description of the Data Sources for Fusion

In order to generate the best synergy cropland product for China, in the process of fusion,
the national cropland statistics of China for 2010, obtained from the Geographical Information
Monitoring Cloud Platform, were selected as the non-remote sensing data, and four different remote
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sensing cropland products at global or regional scales were selected as the remote sensing data
sources, obtained from four land-cover products: GlobCover 2009, MODIS Cropland, MCD12Q1,
and FROM-GLC. After extracting the cropland type information of each land-cover product, cutting
all the products with a Chinese regional vector map, the obtained cropland parts of all the land-cover
products for China are shown in Figure 1. Table 1 provides detailed information on these remote
sensing cropland products.
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Table 1. The remote sensing cropland products used in the study.

Product GlobCover 2009 MODIS Cropland MCD12Q1 FROM-GLC

Time 2009 2010 2010 2010
Reference ESA & UCL USDA Boston University Tsinghua University
Satellite MERIS MODIS MODIS Landsat

Spatial resolution 300 m 250 m 500 m 30 m

There are differences in the spatial resolutions, data sources, temporal coverage, classification
methods, and accuracy between the remote sensing cropland products. Therefore, these products have
great inconsistencies in spatial distribution.

The GlobCover 2009 product, which is produced by the European Space Agency (ESA) and the
Université Catholique de Louvain (UCL), is mainly based on medium resolution imaging spectrometer
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(MERIS) reflectivity data with a spatial resolution of 300 m. The MODIS Cropland product is based
on 250-m moderate resolution imaging spectroradiometer (MODIS) data from 2000 to 2008. For this
product, the probability of cropland was calculated using a decision tree classifier with the MODIS
metrics. Then, according to the statistical data of the cropland area, a threshold was set to determine the
area of cropland. Boston University developed a new global land-cover product known as MCD12Q1
with a 500-m spatial resolution using MODIS data from 2000 to 2012. The spectral and temporal
features of MODIS bands 1–7 and the enhanced vegetation index were used to implement decision
tree classification. The data from 2010 were used in this study. The FROM-GLC product is the first
comprehensive high-resolution land-cover map of the world, which was created by researchers at
Tsinghua University using Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+)
images. It was produced by integrating many automatic classification algorithms (random forest,
the fast clustering algorithm based on feature space transformation, etc.). Although these input
cropland products are slightly different in temporal coverage, the impact of the inconsistency between
them is much larger than that of the temporal difference on the final synergy product.

2.2. Generalized Model for Generating a Synergy Cropland Product

The basis of our study is the generalized model of multi-source remote sensing data consistency
fusion [28], or named as modified fuzzy agreement scoring (MFAS) [19] or hierarchical optimization
synergy approach (HPSA) [29]. The generalized fusion model for generating a synergy cropland
product based on data consistency involves establishing certain decision rules by analyzing the
consistency differences of the existing remote sensing cropland products, so as to generate a synergy
cropland product [12,19]. This is essentially equivalent to decision-level fusion of the multiple existing
remote sensing classification products.

The general logic of the generalized model is that, after resampling to a certain size grid cell,
a grid cell with greater consistency among the existing remote sensing cropland products is more
likely to truly contain cropland [19,28,29]. Based on this principle, the generalized model can be
divided into the following three steps: (1) Create the fusion combination level table according to the
difference in product quality according to the quality of each cropland product; (2) fuse the multiple
existing products according to the established fusion combination level table based on the direct
arithmetic average method; and (3) determine the best combination level constraint adaptively with
the cropland statistics.

2.2.1. Creation of the Fusion Combination Level Table

As greater consistency between remote sensing cropland products means a greater likelihood
of proximity to actual cropland area, the different consistency levels can be divided according to the
overall consistency difference between all the used remote sensing cropland products. Thus, there are
M consistency levels for M products. The higher the consistency between the products, the higher the
consistency level the grid cell obtains, and the higher the likelihood or probability that cropland exists
at the grid cell.

When there are M different product combinations for certain consistency levels, there are 2M
− 1

different product combinations in total. Therefore, according to the accuracy difference of the different
original products in the estimation of cropland area, we give different weights to the different products,
so that we can sort these different product combinations and make a fusion combination level table for
the generation of the synergy cropland product.

2.2.2. Fusion of Cropland Products Based on the Direct Arithmetic Average Method

The fusion of remote sensing cropland products based on the direct arithmetic average method
involves simply calculating the average cropland proportion of the different products in the grid cell.
The fusion is then conducted according to the fusion combination level table.
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The proportion of cropland area in each grid cell (x, y) after fusion is:

Px,y =

M′∑
α=1

Pαx,y

M′
(1)

where Pαx,y is the cropland proportion of the product α, and M’ is the number of products with a
proportion of cropland area greater than 0 in the grid cell; that is, the agreement level is determined
according to the product consistency.

2.2.3. Determination of the Best Combination Level with Cropland Statistics

After the hierarchical integration of each grid cell according to the different fusion levels, the fusion
results at the different levels are obtained, which means that the different grid cells are fused at their
corresponding fusion levels. When the fusion according to the different fusion levels is completed, the
results of the fusion are accumulated in different combination levels until the results are the closest to
the statistics of the cropland area, and the optimal combination level is obtained. The synergy cropland
product can then be generated.

Through the attempts of many researchers, the generalized model can be used to generate a
synergy cropland product with a higher accuracy of cropland area estimation and spatial positioning
than the original products, to a certain extent. However, as the fused cropland proportions of the
grid cells at different combination levels are calculated based on the average cropland proportion
of different products, the generalized model is only suitable for use in grid cells with a high overall
consistency. It is thus greatly affected by the proportion of cropland area of an abnormal product,
which may result in a large difference between the calculation result and the actual cropland area.

3. Model for Generating the Synergy Cropland Product by Fusing the Cropland Products Based
on the Overall Consistency Difference

In order to reduce the impact of the individual abnormal product on the overall proportion of
cropland area, we have improved the fusion algorithm based on direct arithmetic average in the
generalized model, and innovatively propose a model for generating a synergy product through fusion
of the cropland products based on the overall consistency difference.

As the principle used in the generalized model is that a grid cell with greater consistency in
the existing products is more likely to contain cropland, this model first needs to create the fusion
combination level table. This is followed by the fusion of the original cropland products based on the
overall consistency difference. The synergy cropland product is then generated after determining the
best combination level with the cropland statistics.

It is necessary to verify the accuracy of the synergy cropland product generated by the model and
to compare it with the result of the generalized model, as well as the original products, in order to
evaluate the model. The specific flowchart of the proposed model is shown in Figure 2.
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3.1. Preprocessing of Cropland Products

Before the fusion of the different remote sensing cropland products, all the products were unified
into the same geographical coordinate system (WGS-1984), and all the products were registered
geographically. In addition, the original cropland products needed to be standardized and resampled
to the minimum resolution of all the original cropland products, according to the practice of the
generalized method [28,29]. After resampling all the products to a 500 × 500 m grid cell, the value
inside each grid cell is the proportion of the original cropland product area to the grid cell area, which
is used to generate the hybrid percentage map of cropland.

3.2. Creation of the Fusion Combination Level Table

The fusion combination level table can be created according to the principle of greater consistency
between original products meaning a greater likelihood of proximity to real cropland. The number of
the imported products in this paper is four, so there are four different consistency levels, according to
the consistency of the cropland in the different grid cells. The spatial distribution of the consistency
levels is shown in Figure 3.

The quality assessment shows that the accuracy of GlobCover 2009, MODIS Cropland, MOD12Q1,
and FROM-GLC in the estimation of cropland area decreases in turn. The final fusion combination
level table can be created according to the difference in product quality of each product, as shown in
Table 2 (where “0” means non-cropland and “1” means containing cropland).

After completion of this part, each grid cell is then divided and marked with the different
consistency levels and fusion combination levels. The grid cells with high consistency levels are the
focus of this model in the next step.
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Table 2. Fusion combination level table.

Consistency
Level

Combination
Level

GlobCover
2009

MODIS
Cropland MOD12Q1 FROM-GLC

I 1 1 1 1 1

II

2 1 1 1 0

3 1 1 0 1

4 1 0 1 1

5 0 1 1 1

III

6 1 1 0 0

7 1 0 1 0

8 1 0 0 1

9 0 1 1 0

10 0 1 0 1

11 0 0 1 1

IV

12 1 0 0 0

13 0 1 0 0

14 0 0 1 0

15 0 0 0 1
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3.3. Fusion of Remote Sensing Cropland Products Based on the Overall Consistency Difference

For grid cells with a high consistency level, which means that most of the cropland products
within the grid cells have values, their cropland area proportions can differ widely. Specifically, a grid
cell (x, y) belongs to {“i”}(i = 1, 2, · · · , 5), where {“i”} represents a set of grid cells with combination
level i. Therefore, the differences in overall consistency within the grid cell of the different products
need to be considered, to reduce the impact of individual low-quality products.

Therefore, in the process of fusion, which is the most important part of this model, the weight
of the cropland area proportion of the products in each grid cell is determined according to the
difference of the overall consistency. A higher weight is given to a product with higher consistency
with the overall cropland area proportion, and a smaller weight is assigned to a product with a lower
overall consistency. According to the above principle, the proportion of cropland area in each grid cell
is established.

In content-based remote sensing image retrieval (CBIR), similarity metric is used to indicate the
difference between the features of the image to be retrieved and the features of the target image [30,31].
For the data characteristics of the various remote sensing cropland products, similarly, we can also
consider a similarity metric called overall consistency metric to represent the difference between a
single product and all the products.

In the beginning, a confidence distance between the various cropland products, as the measurement
of the mutual support degree between the multiple existing products, in the grid cell (x, y) is defined
as follows:

∆αβx,y = ∆βαx,y =
∣∣∣∣Pαx,y − Pβx,y

∣∣∣∣ (2)

where Pαx,y(α = 1, 2, · · · , M), Pβx,y(β = 1, 2, · · · , M) are the elements in
{
Pαx,y

}
, and the set represents

the cropland proportions of all the cropland products. The greater the value of ∆αβx,y, the greater the
difference in the area proportion between the two products in the grid cell, which means that the
mutual support between Pαx,y and Pβx,y is weaker. The definition of the confidence distance makes full
use of the implicit information in each grid cell of the multiple existing cropland products and reduces
the requirement for prior information.

In order to standardize the mutual support between the cropland area proportion of all the
cropland products, the definition of the consistency distance Dαβ

x,y is as follows:

Dαβ
x,y =

max
{
∆αβx,y

}
− ∆αβx,y

max
{
∆αβx,y

} (3)

where max
{
∆αβx,y

}
represents the maximum value in ∆αβx,y. If all the proportions in

{
Pαx,y

}
are exactly equal,

the proportion of cropland in the grid cell (x, y) can be directly represented by the proportion of any
product Pαx,y. In addition to this situation, the confidence distances in {∆αβx,y} are not all 0, which means

max
{
∆αβx,y

}
> 0. Clearly,Dαβ

x,y has the following two characteristics [32]: (1)Dαβ
x,y is inversely proportional

to ∆αβx,y; and (2) Dαβ
x,y ∈ [0, 1].

In the case of considering the difference in the spatial distribution quality of the different cropland
products, we let Rαx,y denote the similarity of Pαx,y with all the proportions of

{
Pαx,y

}
:

Rαx,y =
M∑
β=1

wαDαβ
x,y (4)

where wα is the weight coefficient of each product, which is obtained according to the spatial accuracy
of each product. In addition, wα is positively correlated with the kappa coefficient of the spatial
positioning accuracy of product α, i.e., wα ∝ kappaα. At the same time, an overall consistency vector
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Rx,y = w ·Dx,y is constructed to represent the overall degree of support for all the elements in{
Pαx,y

}
, where vector Rx,y =

[
R1

x,yR2
x,y · · ·RM

x,y

]
represents the consistency, and vector w = [w1w2 · · ·wM]

represents the weight.

Dx,y =


D11

x,y D12
x,y · · · D1M

x,y
D21

x,y D22
x,y · · · D2M

x,y
...

...
. . .

...
DM1

x,y DM2
x,y · · · DMM

x,y

 (5)

represents the consistency matrix.
The primary weight wα is different from the weight defined in the similarity metric in the CBIR

research. For example, Rui et al. [30] directly use the inverse of the standard deviation metric as the
estimation of the weight, which is also a measurement for confidence among data elements. Due to
the target objects, the actual equations, and the functions of the similarity metric and the overall
consistency Rαx,y generated in our research are different. Most importantly, the overall consistency
vector Rx,y is used for being decomposed to obtain the feature vector corresponding to the maximum
eigenvalue and finally generate the weight of different products for fusion process.

The maximum eigenvalue λx,y(λx,y > 0) exists in Rx,y, and the elements in the eigenvector

γx,y =
[
γ1

x,yγ
2
x,y · · ·γ

M
x,y

]T
corresponding to only this eigenvalue are all positive, and to make Rx,y ·γx,y =

λx,y · γx,y [33].
The eigenvectors corresponding to the maximum eigenvalues are then normalized:

γ′αx,y =
γαx,y

M∑
α=1

γαx,y

(6)

where γ′αx,y obtained through this process is taken as the weight of Pαx,y, the cropland proportion
of product α in the fusion process. In CBIR systems, the weights can be dynamically modified by
relevance feedback with a recursive implementation [31]. In this paper, the final weights of different
products in different grid cells can be also automatically adapted through the process above according
to their different overall consistency.

Finally, the proportion of cropland area after fusion in each grid cell (x, y) can be calculated as
follows:

Px,y =
M∑
α=1

Pαx,yγ
′α
x,y. (7)

This significant step can reduce the impact of individual abnormal products whose proportion of
cropland area has poor consistency with the cropland area proportion of the overall product. However,
this method has certain requirements on the quantity and quality of the cropland products.

Through this process, the cropland area proportion of grid cells with high consistency will rarely
be impacted by the abnormal estimated cropland area of individual products and will be closer to the
real value, while the cropland area proportion of grid cells with low consistency will be similar to the
result by fusion based on the direct arithmetic average.

3.4. Determination of the Best Combination Level

The fusion results at different levels can be obtained after fusing the different original remote
sensing cropland products based on the overall consistency difference, which means that different grid
cells are fused at their corresponding fusion levels after the so-called hierarchical integration of each
cell grid cell according to the different fusion levels, as shown in Figure 4.
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Figure 4. Fusion results with different combination levels.

According to the established hierarchical order of the fusion combination level, the fusion results
are superimposed by combination level, and the best fusion results are obtained by the use of the
cropland statistics data as an adaptive constraint, as shown in Figure 5. When this process is completed,
the synergy cropland product can be generated.
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Figure 5. Using cropland statistics to obtain the optimal combination level.

In the step of using cropland statistics as a constraint of the hierarchical superposition by
combination level to obtain the synergy cropland product, the range that should be adjusted when
using the cropland statistics to adaptively determine the results is adjusted accordingly as the proportion
of cropland area in each grid cell after the fusion is closer to the real value than the value after fusion
based on the generalized model, achieving results that are close to the real distribution for cropland.

The proposed model considers the overall consistency difference of the estimated cropland area
of all the products in each grid cell as the basis of the fusion and reduces the impact of the abnormal
estimated cropland areas of individual products on the result. Therefore, the cropland distribution
result of the study area, i.e., the synergy cropland product, with a high accuracy of cropland area
estimation, as well as spatial positioning can be obtained quickly and efficiently, without relying on
training samples.
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4. Experiments and Analysis

4.1. Accuracy Measurement

4.1.1. Accuracy of Cropland Area Estimation

The accuracy of the cropland area estimation is obtained by using the cropland statistics to test
the estimated cropland area of the remote sensing cropland products.

The calculation methods of difference ∆Pαk , total absolute difference ADα, total average absolute
difference AARDα, and total root-mean-square error RMSEα of the set α of cropland products in
province k are as follows:

∆Pαk = Pαk −Ok (8)

ADα =
1
N

N∑
k=1

(Pαk −Ok) (9)

AARDα =
1
N

N∑
k=1

∣∣∣(Pαk −Ok)/ Ok| (10)

RMSEα =

√√√√√ n∑
k=1

(Pαk −Ok)
2

n
(11)

where Pαk is the proportion of cropland produced by the product set α in province k; Ok is the proportion
of cropland in province k in the cropland statistics of cropland; and n is the total number of provinces,
municipalities, and autonomous regions.

Finally, in order to reflect the coincidence of the estimated cropland area of each product and the
cropland statistics, the correlation coefficient is calculated on the proportion of cropland area of each
product and the proportion of cropland area of the statistics, as shown in Equation (11):

Rα =

n∑
k=1

(Pαk − Pα)(Ok −O)√
n∑

k=1
(Pαk − Pα)

2 n∑
k=1

(Ok −O)
2

(12)

where Pα indicates the average of the proportion of cropland area in each province of the product set α,
and O is the average value of the proportion of cropland area in each province in the cropland statistics.
The larger the value of Rα, the higher the degree of coincidence between the product set α and the
cropland statistics.

4.1.2. Accuracy of the Spatial Positioning

We use a confusion matrix to evaluate the accuracy of the spatial positioning using selected test
samples. Since the categories studied are only cropland and non-cropland, the confusion matrix is as
follows:

M =

[
TP FP
FN TN

]
(13)

where TP represents the number of cropland samples correctly predicted as cropland, FP represents
the number of non-cropland samples incorrectly predicted as cropland, FN represents the number of
cropland samples incorrectly predicted as non-cropland, and TN represents the number of non-cropland
samples correctly predicted as non-cropland.
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For the experimental results, the classification accuracy is evaluated based on the overall
classification accuracy and kappa coefficient, and the error rate of cropland and the leakage rate of
cropland are used as auxiliary evaluation criteria [34].

• Overall accuracy (OA): The OA represents the ratio of correct samples to the total number of test
samples N, indicating whether the product category is the same as the real ground-truth data [35].
The equation is as follows:

OA =
TP + TN

N
. (14)

• Kappa coefficient (kappa): The kappa coefficient is a discrete calculation method that is a statistic
that obtains the consistency of the probability by observing the main diagonal and the total
number of rows and columns in the confusion matrix [36]: Kappa = OA−Pc

1−Pc

Pc =
(TP+FN)(TP+FP)+(FP+TN)(FN+TN)

N2

. (15)

In addition, the misclassification rate (MR) and leakage rate (LR) can be calculated as follows:

MR =
FP

TP + FP
, (16)

LR =
FN

TP + FN
. (17)

4.2. Experimental Results

According to the method described in Sections 2 and 3, the four original cropland products
and the cropland statistics were used to generate the synergy cropland products. All of the above
geographic analyzing and processing, as well as the display of the different maps, were supported by
ESRI ArcGIS Desktop software. The result of the fusion algorithms and the process of determining
the best combination level with cropland statistics are realized by MathWorks MATLAB software.
The result of the synergy cropland product obtained using the model through fusion based on the
direct arithmetic average method (MDAA) and the result of the synergy cropland product using the
model through fusion based on the overall consistency difference (MOCD) are shown in Figure 6.



Remote Sens. 2019, 11, 1065 13 of 18
Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 18 

 

  
a b 

  
c d 

Figure 6. (a) The synergy cropland product generated by the model through fusion based on the 
direct arithmetic average method (MDAA). (b) The synergy cropland product generated by the 
model through fusion based on the overall consistency difference (MOCD). (c) Spatial distribution 
of the test samples. (d) Local zoomed maps of (a) and (b). 

We then use the accuracy measurements described in Section 4.1 to evaluate the quality of the 
obtained experimental results and to compare them with the original products. As for the spatial 
positioning accuracy, it is still difficult to meet the quantitative requirements for the accuracy 
evaluation of cropland with the existing cropland validation datasets for the China region [37,38]. 
Therefore, we use high-resolution remote sensing images to obtain test samples for the cropland 
validation [39], and we use these test samples as a benchmark to compare the spatial positioning 
accuracy of the different products. In this experiment, the part of the test samples selected by us are 
based on the spatial distribution map of the consistency level of the four cropland products, and 
0.001% of the grid cells are randomly sampled as samples at different consistency levels. Then, the 
test samples were labeled as cropland or no-cropland by visual interpretation via Google Earth 
high-resolution images in 2010 obtained from the Google Earth Pro software. Finally, a total of 1993 
cropland test samples and 838 non-cropland test samples were obtained to evaluate the spatial 
positioning accuracy of the original data sets and the synergy cropland products. Their spatial 
distribution is shown in Figure 6. 

4.2.1. Accuracy of the Cropland Area Estimation  
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direct arithmetic average method (MDAA). (b) The synergy cropland product generated by the model
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samples. (d) Local zoomed maps of (a) and (b).

We then use the accuracy measurements described in Section 4.1 to evaluate the quality of the
obtained experimental results and to compare them with the original products. As for the spatial
positioning accuracy, it is still difficult to meet the quantitative requirements for the accuracy evaluation
of cropland with the existing cropland validation datasets for the China region [37,38]. Therefore,
we use high-resolution remote sensing images to obtain test samples for the cropland validation [39],
and we use these test samples as a benchmark to compare the spatial positioning accuracy of the
different products. In this experiment, the part of the test samples selected by us are based on the
spatial distribution map of the consistency level of the four cropland products, and 0.001% of the grid
cells are randomly sampled as samples at different consistency levels. Then, the test samples were
labeled as cropland or no-cropland by visual interpretation via Google Earth high-resolution images
in 2010 obtained from the Google Earth Pro software. Finally, a total of 1993 cropland test samples
and 838 non-cropland test samples were obtained to evaluate the spatial positioning accuracy of the
original data sets and the synergy cropland products. Their spatial distribution is shown in Figure 6.



Remote Sens. 2019, 11, 1065 14 of 18

4.2.1. Accuracy of the Cropland Area Estimation

Figure 7 shows the scatterplots of the cropland area proportion from statistics, and those estimated
by the original products, the synergy cropland product through fusion based on the direct arithmetic
average method (MDAA), and the synergy cropland product through fusion based on the overall
consistency difference (MOCD). The dotted line in the figure indicates the 1:1 line. It can be seen that the
cropland areas estimated by MDAA and MOCD are close to the cropland statistics in all the provinces,
as all the points are distributed near the 1:1 line, which is far better than the four original products.
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MDAA; and (f) the synergy cropland product generated by MOCD.

As for MDAA, the maximum area proportion difference does not exceed 5%. The overall
root-mean-square error is only 0.1%, and the correlation coefficient is 0.96. This shows that the
proportion of cropland area for the synergy cropland product generated by this method has a high
degree of coincidence with the official statistics.

As for MOCD, the largest area proportion difference is only 3.28%, and the overall root-mean-square
error is only 0.02%. The correlation coefficient is 0.98, which is even better than MDAA. This shows
that the proportion of cropland area in each province for the synergy cropland product generated by
this method also has a very high degree of coincidence with the official statistics.

4.2.2. Accuracy of the Spatial Positioning

For the spatial positioning accuracy, the experimental results are compared using the cropland
and non-cropland test samples. The obtained accuracy indicators are shown in Table 3, and the OA of
the spatial positioning in the different geographic regions for these products is shown in Figure 8.
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Table 3. Accuracy indices of the original and synergy cropland products.

GlobCover 2009 MODIS Cropland MCD12Q1 FROM-GLC MDAA MOCD

OA 76.23% 67.99% 73.49% 79.61% 89.09% 91.99%
Kappa 0.52 0.38 0.47 0.58 0.77 0.83

MR 21.66% 13.68% 20.79% 19.70% 11.09% 8.97%
LR 21.11% 49.86% 29.31% 21.33% 6.49% 3.86%
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It can be seen from Table 3 and Figure 8 that the spatial positioning accuracy evaluation indices of
MDAA and MOCD are significantly improved compared with those of the original cropland products.

As for MDAA, its OA reaches 89.09%, while none of the original remote sensing products have
an OA of more than 80%. The kappa coefficient reaches 0.77, indicating high consistency, while no
original remote sensing product has a kappa coefficient of more than 0.6. In addition, the cropland MR
and LR values are clearly smaller than those of the original products.

As for MOCD, its OA is as high as 91.99%, and is high in all geographical areas, which is better
than any other cropland product. The kappa coefficient is 0.83, which means that it is almost identical
to the test samples and even better than the result generated by MDAA. At the same time, both the MR
and the LR are kept at relatively low values and are better than the values for any other product.

4.3. Results Analysis

It can be seen from the experimental results that the synergy cropland product generated by
the model through fusion based on the overall consistency difference (MOCD) is improved in both
the estimated accuracy and the spatial positioning accuracy of the cropland area when compared to
the synergy cropland product generated by the model through fusion based on the direct arithmetic
average method (MDAA), as well as the original products.

This is because MOCD not only considers the difference in the quality of the different cropland
products to establish a fusion combination level table, which is an important reason for the higher
accuracy of the synergy cropland product, but it also establishes if the cropland area in each product is
consistent, based on the overall consistency difference in the proportion of the cropland area of each
grid cell (x, y). This weakens the influence of the cropland area proportion of some abnormal cropland
products on the grid cell fusion value, so that a fusion result can be obtained first in the high fusion
combination level, which is close to the actual cropland area proportion of the grid cell.

The range that should be adjusted when using cropland statistics to adaptively determine the
results is adjusted accordingly, achieving a result that is closer to the true cropland area. At the same
time, in this process, the complementary nature between the different products can be fully utilized to
obtain a synergy cropland product that is closer to the real cropland spatial distribution. Better fusion
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results from the previous step provide better data for this process, giving this process more scope for
adjustment by using cropland statistics to obtain a better synergy cropland product.

Through the fusion based on the overall consistency difference, and the process of determining
the best combination level, MOCD can easily obtain a synergy cropland product with a higher accuracy
of cropland area estimation, as well as spatial positioning, than the result generated by MDAA and the
original cropland products.

5. Conclusions

The method for generating the synergy cropland product by fusing the multiple existing cropland
products based on the overall consistency difference has been proposed to obtain a better-quality
product, as the existing generalized methods are easily affected by the low-quality products with
abnormal cropland areas. In the proposed method, we first create a fusion combination level table.
The process of fusing the multiple existing products then considers the overall consistency difference of
the estimated cropland area of all the products in each grid cell as the basis of the fusion. The synergy
cropland product is finally generated after determining the best combination level with the cropland
statistics. This method can reduce the impact of the individual abnormal products on the result. As a
result, the cropland distribution result of the study area, i.e., the synergy cropland product, with a
high accuracy of cropland area estimation, as well as spatial positioning, can be obtained quickly and
efficiently, without relying on training samples.

Experiments were carried out to test the proposed method by using four remote sensing products:
GlobCover 2009, MODIS Cropland, MCD12Q1, and FROM-GLC, along with cropland statistics.
After the accuracy measurement of the results and the original products, we concluded that the synergy
cropland product obtained through fusion of the multiple existing products based on the overall
consistency difference (MOCD) has a higher cropland estimated area accuracy and better spatial
positioning accuracy than the result obtained by the generalized model, as well as the original products.

In the future, more remote sensing products will be collected as remote sensing data sources
to further improve the accuracy of the generated synergy cropland product, especially in areas of
landscape heterogeneity. When the number of products is increased, the fusion algorithm based on
the overall consistency difference will be even more advantageous. At the same time, the fusion
combination level table will have more levels, with which it will be easier to derive a result that is
closer to the cropland statistics. In the future, we will continue to explore new ways to reduce the
dependence on prior knowledge such as cropland statistics and take the impact of small temporal
differences on the change of cropland area into account.
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