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Abstract: The cross-spectral correlation approach has been used to estimate the wave spectrum from
optical and radar images. This work aims to improve the cross-spectral approach to derive current
velocity from the X-band marine radar image sequence, and evaluate the application conditions
of the method. To reduce the dependency of gray levels on range and azimuth, radar images are
preprocessed by the contrast-limited adaptive histogram equalization. Two-dimensional cross-spectral
coherence and phase are derived from neighboring X-band marine radar images, and the phases
with large coherences are used to estimate the phase velocity and angular frequency of waves, which
are first fitted with the theoretical dispersion relation by different least square models, and then the
current velocity can be determined. Compared with the current velocities measured by a current
meter, the root-mean-square error, correlation coefficient, bias, and relative error are 0.15 m/s. 0.88,
–0.05 m/s, and 7.79% for the north-south velocity, and 0.14 m/s, 0.86, 0.06 m/s, and 10.75% for the
east-west velocity in the experimental area, respectively. The preprocessing, critical coherence, and
the number of images for applying the cross-spectral approach, are discussed.
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1. Introduction

The sea surface current is important for marine activities and scientific research. The current is
usually measured using a current meter and an acoustic Doppler current profiler (ADCP), which provide
current velocity with high accuracy, but can only be used at fixed positions, and they are both expensive
and difficult to deploy [1]. Due to the high spatial and temporal resolutions, the X-band marine radar
has been used in the observation of ocean waves and currents [2,3].

The X-band marine radar works under low grazing incidence angles, and records the radar
backscatter from the sea surface as a gray level image. The algorithms used to retrieve the current from
these X-band marine radar images are mainly based on a three-dimensional (3D) fast Fourier transform
(FFT) [2]. By applying this 3D FFT on the radar image sequence, a 3D wavenumber-frequency spectrum
is obtained, and then the current can be derived by minimizing the difference between the image
spectrum and the theoretical dispersion relation [2,4–6]. 3D FFT requires that the global wave field
be stationary and homogeneous. To overcome this disadvantage, the dispersive surface classificator
was developed to analyze inhomogeneous image sequences on a local spatial scale [7]. Gangeskar [8]
showed that the 3D FFT algorithms can provide high-accuracy current measurements using the X-band
marine radar in deep water environments.
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In addition to the algorithms based on 3D FFT, the cross-spectral correlation approach was
used to derive wavenumber spectra from radar images and optical images. Engen and Johnsen [9]
extracted the ocean wave spectrum from image cross-spectra by combining pairs of single look
synthetic aperture radar (SAR) images, and showed that the image cross-spectra significantly reduce
the speckle noise level, while preserving the spectral shape. Plant et al. [10] found that the solution
of the cross-spectral approach is tolerant to noise and other forms of sampling deficiency; compared
to the power spectral density fitting approach based on FFT, the cross-spectral correlation fitting
improved the resolution by a factor of 10. In the cBathy algorithm, the dominant wave frequencies
were estimated by Fourier transform, whereas the corresponding wavenumbers were derived from
spatial gradients in the cross-spectral phase over analysis tiles that can be small, producing high
spatial resolution [11,12]. However, the Doppler shift of the gravity wave caused by the current was
ignored in the dispersion relation, so the current velocities were not obtained in these studies. Using
the 3D wavenumber-frequency cross spectrum between power and the Doppler velocity measured
by an X-band imaging Doppler radar, Frasier and McIntosh [13] studied the properties of microwave
backscatter, but the method is still based on the 3D wavenumber-frequency spectrum, and the velocity
measured by a Doppler radar is required. Kudryavtsev et al. [14,15] retrieved the directional wave
spectrum from the high-resolution Sentinel-2 satellite sun glitter imagery, using the cross-channel
correlation, and the surface current was derived by fitting the dispersion relation. They found an
encouraging agreement between the retrieved wave spectra and several in-situ measurements.

Although the cross-spectral correlation approach has been used to estimate sea surface information
from sea surface images, few people have studied the application conditions of the algorithm, especially
in nearshore areas, where the wave field is inhomogeneous, and traditional algorithms may not be
applicable [16]. In this study, several improvements to the cross-spectral correlation approach are
proposed to derive current velocity from X-band marine radar image sequences. We then evaluated
the approach under different conditions.

The remainder of this paper is organized as follows. The method to retrieve current velocity
from an X-band marine radar image sequence is proposed in Section 2. The proposed method is
evaluated using the experimental data in Section 3. The source of error and the application conditions
are discussed in Section 4, and conclusions are provided in Section 5.

2. Method

In this section, the method to retrieve sea surface current velocity from a X-band marine radar
image sequence is proposed, by using cross-spectra analysis and ocean wave theory.

2.1. Preprocessing of Radar Image

At low grazing incidence angles, tilt modulation and shadowing are important for the imaging of
sea surface waves, so the images produced by the X-band marine radar are affected by the range and
azimuth from the radar station [17]. To reduce the dependency of gray levels on range and azimuth,
the radar images are preprocessed using contrast limited adaptive histogram equalization (CLAHE).
CLAHE is a commonly used algorithm in digital image processing [18] that enhances the contrast
of an image by applying contrast limited histogram equalization on small data regions, rather than
upon the entire image, and then sticks back the resulting neighboring small tiles seamlessly, using
bilinear interpolation. By limiting the contrast in a small homogeneous region, the variations in the
radar image with range and azimuth can be reduced.

2.2. Cross-Spectral Correlation Approach

Assume that there are n images in an X-band marine radar image sequence, and Ii(x, y) is the
gray level of location (x, y) measured at time i.
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Firstly, determine the cross-spectrum Si,i+1
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To reduce the noise of the cross-spectra and auto-spectra, the spectra are averaged to determine
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Sac

(
→

k
)
=

1
n− 1

n−1∑
i=1

Si,i+1

(
→

k
)

(1)

and the average auto-spectrum:

S(1,n)
aa

(
→

k
)
=

1
n

n∑
i=1

Sii

(
→

k
)

(2)

where the superscript (1,n) means the average of the 1st to the nth spectrum.
Secondly, obtain the cross-spectral coherence and cross-spectral phase of the radar image

sequence by:
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where the mathematical operator |·| and arg(·) are the modulus and argument of a complex number,
respectively. However, 180◦ directional ambiguities exist in the cross-spectral coherence and phase.
To remove the directional ambiguity, the true wave direction is chosen as that with positive phase

using Equation (4). Then the peak wavenumber
→

k m can be obtained from the peak of the cross-spectral
coherence using Equation (3).

2.3. Estimation of Current Velocity

According to linear gravity wave theory, the dispersion relation is determined using:

ω =
√

gk tan h(kh) +
→

k ·
→
u (5)

where ω is the wave angular frequency; g is the gravitational acceleration;
→
u =

(
ux, uy

)
is the current

velocity; ux and uy are the current components in north-south (NS) and east-west (EW) directions,
respectively; and h is the water depth of the region.

To derive current velocity from an X-band marine radar image sequence using the cross-spectral
approach, two methods are used.

2.3.1. Method 1

The first method to derive current velocity involves fitting the wave phase velocity derived from
the theoretical dispersion relation with that estimated from radar images (named CSP1 for short).

According to the dispersion relation in Equation (5), the wave phase velocity can be obtained by:

ctheory =
ω
k
=

√
g
k

tan h(kh) +

→

k
k
·
→
u (6)
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According to the cross-spectral phase in Equation (4), the wave phase velocity can be estimated
from an X-band marine radar image sequence using:

cradar =
Φ(k,ϕ)

k · ∆t
(7)

where ∆t is the time delay between two neighboring radar images, i.e., the antenna rotation period of
an X-band marine radar.

Then, the difference between the estimated phase velocity and that derived by the theoretical
dispersion relation is:

Φ(k,ϕ)
k · ∆t

−

√
g
k

tan h(kh) = u cos(ϕ− θ) (8)

where there are two undetermined variables: The current speed u and current direction θ. By choosing
different directions φ, different phase velocities can be obtained from the cross-spectral phase
(Equation (7)), then Equation (8) can be solved using the least squares method.

To deduce current velocity from an X-band marine radar image sequence using Equation (8),
the wavenumber k and direction φ should be chosen as those with large coherences, because
cross-spectra with small coherences are affected by noise or aliasing. In this study, the critical coherence
was chosen asγc = 0.6, and the cross-spectra with wavenumbers and directions that satisfyγ(k,φ) ≥ γc
were used.

2.3.2. Method 2

The second method to derive current velocity is to fit the two-dimensional dispersion relation
into Equation (5). Because the wave constituents with large cross-spectral coherences are significant,
they are important to the Doppler shift in dispersion relation. The least-square model is weighted by
the cross-spectral coherence in Equation (3), which is estimated from radar images (named CSP2):[
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γkxky
∑
γk2

y

]−1 ∑
γkx

[
ω−

√
gk tan h(kh)

]∑
γky

[
ω−

√
gk tan h(kh)

]  (9)

where kx = k cosφ, ky = k sinφ, andω = Φ/∆t; the wavenumber k and direction φ are also chosen
as those with large coherences; and γ(k,φ) ≥ γc = 0.6 are used here.

To evaluate different sea states, an indicator γI is defined as the average of the first five coherences
for peak wave direction φm. When the sea state is high, the coherences are large, so γI is large under a
high sea state; similarly, it decreases when the sea state is low. We found that γI is larger than about 0.7
under moderate and high sea states.

To summarize, our method used to retrieve current velocity from X-band marine radar image
sequences is shown in Figure 1.
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Figure 1. The flowchart of the method used to retrieve sea surface current from an X-band marine
radar image sequence.

3. Data and Result

In this section, the experimental data are illustrated and the methods are evaluated by comparing
the current velocities retrieved from an X-band marine radar image sequence with in-situ measurements.

3.1. Experiment

An experiment was conducted on Haitan (or Pingtan) Island, of China (Figure 2a),
from 27 October 2014 to 11 November 2014 [19,20]. During the experiment, an X-band marine radar
system was used to acquire gray level images of the sea surface, and a current meter was deployed
to collect current velocity simultaneously. According to a nautical chart, the water depths of the
observation area were about 10–40 m. The tide of the area is dominated by a semidiurnal tide, the
maximum tidal current velocity reaches up to 1.5–2 m/s, and the maximum tidal amplitude is more
than 2 m. An anemometer was used near the radar station (A1 in Figure 2a), from December 2014 to
January 2015 [19]; whereas the other anemometer was deployed about 10 km away from the radar
station (A2 in Figure 2a), from October 2014 to January 2015. The wind was mostly from the northeast
in the winter, and the waves propagated toward both the west and southwest in the field of view of
the radar.
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Figure 2. (a) Map of the experimental area, where R, C, A1 and A2 mark the locations of the radar
station, current meter, and two anemometers, respectively. (b) A gray level X-band marine radar image
acquired at 12:00 a.m. on 29 October 2014. The yellow bin signifies the study area, the green asterisk
marks the location of current meter, the red arrow in the upper right points to north (with 0◦ pointing
to the north), and the yellow arrows point the wave directions in several positions.

The X-band marine radar system was deployed on the shore about 15 m above sea level (a.s.l.),
and 20 m away from the coastline (Figure 2a). The configurations of the radar are shown in Table 1.
By using a dedicated 40 MHz analogue-to-digital converter card, the radar backscatter from the sea
surface was recorded and converted into gray level images. The radar worked every 7–30 minutes, and
32 images were recorded in a single radar image sequence, which required 80 s to acquire one radar
image sequence. The measurement range of the radar was about 3 km, and the field of view ranged
from 0 to 240◦ in azimuth. As an example, one image acquired by the X-band marine radar system is
shown in Figure 2b, where the yellow arrows indicate that the waves propagated from northeast to
southwest, and west and northwest at the time.

Table 1. Configurations of the X-band marine radar system.

Parameter Value

Polarization VV
Radar frequency 9410 ± 30 MHz

Pulse width 70 ns
Pulse repetition frequency 3000 Hz

Transmit power 25 kW
Gain 30.2 dB

Beam width 1.2◦ horizontal, 20.5◦ vertical
Antenna 2.4-m slotted waveguide antenna

Antenna rotation speed 24 rpm

The current meter was moored 1 km from the radar station at an azimuth of about 70◦ (Figure 2).
It was moored about 1 m below the water surface by a long anchor chain, so the measured current
was affected by sea surface wind drift [21,22]. The current meter worked 20 minutes every hour, with
a sampling rate of 2 Hz, so the current velocities were averaged hourly to reduce the influence of
turbulence and noise.

Figure 2b also shows several small islands to the north of the observation area, so the current may
be influenced by tidal current, wind drift, and bathymetry, except for any large-scale current, such as
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the Kuroshio Current. According to the location of the current meter, the study area was chosen to
range from –480 m to 544 m on the x-axis, and –1374 m to –350 m on the y-axis, as demarcated by the
yellow box in Figure 2b. According to the nautical chart, the average water depth of the study area is
about 15 m. The first 16 images of each X-band marine radar image sequence were used to derive the
current velocity.

3.2. Results

Using the method in Section 2, the sea surface current velocities were retrieved from X-band
marine radar image sequences, and they were compared with those measured by the current meter,
as shown in Figure 3. Both the NS current velocities and EW current velocities retrieved from the
radar image sequences showed a distinct period of about 12 hours, which corresponded well with
those measured by the current meter, which was caused by the semidiurnal tidal current. The NS
current velocities measured by this current meter changed from –1.5 m/s to 0.8 m/s (the red dashed
line in Figure 3a), which were close to those retrieved from the X-band marine radar image sequences
using different methods; large differences between them occurred between the hours of about 1:00–1:30
and 2:30–2:50, when the sea state is low, and the coherence indicator γI < 0.7 at the time (Figure 3c).
The EW current velocity measured by the current meter was –0.7 to 0.5 m/s (the red line in Figure 3b),
whereas the velocities retrieved from the radar image sequences were mostly larger than that, which
may be caused by the wind-induced surface drift. For the current velocities estimated using different
methods, Figure 3a,b show that the error is smaller using the CSP2 method than when using CSP1.

Figure 3c shows that the coherence indicators were mostly 0.7–0.9, which signifies that the
correlation between each pair of neighboring radar images was significant, so the cross-spectral
correlation approach is suitable for deriving current velocity from X-band marine radar image sequences.

Quantitatively, the current velocities retrieved from the X-band marine radar image sequence
were compared with those measured by the current meter, as shown in Figure 4. Because the radar
backscatter is low under low sea states, the radar image sequences with γI < 0.7 were not considered
here (Figure 3c). For NS current velocities, the black dots and digits indicate that the root-mean-square
error (RMSE), the bias, and the relative error (RE) were smaller when using CSP2 than when using
CSP1, whereas the correlation coefficients (Corr) for both methods were similar. For EW current
velocities, a similar result was obtained from the red dots and digits, so the current velocities retrieved
from the X-band marine radar images are better when using CSP2 than those retrieved using CSP1.
The RE of the current velocities was about 7.8–10.8% using CSP2, while the Corr was 0.86–0.88, so CSP2
is suitable for retrieving the current velocity from X-band marine radar image sequences.

To further evaluate our proposed method, the current velocities were also retrieved from X-band
marine radar images using the traditional 3D FFT algorithm [2,4], and then they were compared with
the current meter, as shown in Figure 5. The RMSE and RE of the current velocities retrieved by the
traditional algorithm were larger than those retrieved by CSP2, whereas the correlation coefficients
were smaller, so the current velocities estimated using CSP2 were better than those estimated by
traditional algorithm in the observation area. There may be several reasons for this: (1) The 3D FFT
algorithm requires the wave field to be homogeneous [16], but the wave field changes considerably
in nearshore regions (e.g., the wave directions changed rapidly in Figure 2b); (2) in the traditional
algorithm, current velocity is estimated using the weighted least-square method, but the estimated
velocity is affected by some parameters, such as the critical weighting energy (Figure 5 shows the
best velocities that can be obtained using the method). However, the traditional algorithm has been
validated in the regions with deep water [8] or nearshore regions with slowly varying topography [23],
and more data will be needed to evaluate the proposed cross-spectral method.
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Figure 3. Time series of (a) north-south (NS) velocity and (b) east-west (EW) velocity measured by a
current meter, and those retrieved from X-band marine radar image sequences using different methods.
(c) Time series of the coherence indicator; the cyan dashed line marks the coherence of 0.7.
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Figure 4. Comparisons of the current velocities measured by current meter with those retrieved from
X-band marine radar image sequences using different methods: (a) CSP1 and (b) CSP2. The black dots
and digits are NS current velocities, and the red dots and digits are EW current velocities.

Figure 5. Comparisons of the current velocities measured by a current meter with those retrieved from
X-band marine radar image sequences using the traditional algorithm. The black dots and digits are
NS velocities, and the red dots and digits are EW velocities.
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4. Discussion

In this section, the preprocessing of radar images, the source of error, and the application conditions
of the proposed method are discussed, such as the effect of sea surface drift, the critical coherence,
and the number of radar images used in the proposed method.

4.1. Effect of Radar Image Preprocessing

In Section 2.1., X-band marine radar images were firstly preprocessed using CLAHE. To study the
influence of CLAHE on the method, the radar image sequence in Figure 2b was taken as an example.
Figure 6a shows the radar image in the study region, and the waves propagated approximately along
the y-axis in the area. To show the effect of CLAHE, one radial was selected (the yellow dashed line
in Figure 6a), and is shown in Figure 6b (the blue line). The gray levels tend to increase as the range
varied from –1200 m to –400m. After preprocessing the image (Figure 6a) using CLAHE, the radial
gray levels are shown by the red line in Figure 6b, which indicates that the wave crests and troughs
were clearer than those of the original gray levels (i.e., the blue line). In addition, the variations in
gray levels with range also decreased. The blue line and red dotes in Figure 6c,d show the phase
velocities estimated from the radar images with and without CLAHE, and they are compared with the
phase velocity derived from the theoretical dispersion relation (the green lines), which shows that the
phase velocity estimated with CLAHE (Figure 6d) coincides better with the theoretical phase velocity,
than that estimated without CLAHE (Figure 6c). Therefore, the preprocessing of radar images using
CLAHE is useful for estimating current velocity from X-band marine radar images.

Figure 6. (a) Part of the X-band marine radar image acquired at 12:00 a.m. on 29 October 2014. (b) The
gray levels of the yellow dashed line in (a) with and without preprocessing. The phase velocities derived
from radar images (c) without and (d) with contrast limited adaptive histogram equalization (CLAHE).
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4.2. Effect of Sea Surface Drift

The current observed by the X-band marine radar was close to the sea surface (i.e., the current at
a depth of 1.2 mm) [24], whereas the current meter measured the current at the depth of about 1 m,
so they are different. As shown in Figure 4, there were negative biases of −0.05 m/s–−0.1 m/s for the NS
velocity, whereas there were positive biases of 0.06–0.12 m/s for the EW velocity. To study the reasons,
the influences of Stokes drift and Ekman current were estimated.

Stokes drift is caused by the orbital motion of a wave. For simplicity, the linear wave theory for
deep-water wave is used here, and the horizontal component of Stokes drift velocity uS is given by [25]:

uS =
4π2a2

λT
e4πz/λ (10)

where a is wave amplitude, λ is wavelength, T is wave period, and z is the vertical coordinate in the
positive direction pointing out of the fluid layer. Because the waves mostly propagate from east to west
in the study region, the wave-induced Stokes drift mainly affects the EW velocity. In Equation (10),
the wavelength and wave period can be obtained from the auto-spectrum of the radar images using
Equation (2). The wave amplitude was chosen to be half the significant wave height, which was
determined using the method previously published [20,26].

Figure 7a shows that the Stokes drift varied from about 0.05 m/s to more than 0.25 m/s, showing
it is important to the sea surface current in the area. The difference between Stokes drift at the sea
surface and at a depth of one meter is usually 0.02–0.04 m/s, which accounts for about one-third to
one-half of the biases of the EW velocities (Figure 3

There was no measurement of wind at A1 (Figure 2a) during the experiment. The wind-induced
Ekman drift is estimated as follows. Simultaneous measurements showed that the wind speeds at
A1 and A2 (Figure 2a) were well correlated, and the correlation coefficient and RMSE between them
were 0.84 and 2.57 m/s, respectively, so the wind speed measured at A2 was used to estimate that at A1
during the experiment, as shown in Figure 7b. According to previous studies, the sea surface Ekman
current speed is about 1–2.5% of the wind speed [22], so it was estimated to be 0.05–0.2 m/s during
the experiment (Figure 7b). Because the wind mostly came from the northeast in the area, whereas
the Ekman current direction may turn about 10–20◦ to the right of the wind direction at a depth of
one meter in the northern hemisphere [22], the Ekman current may also play an important role in EW
velocity. The Ekman current is affected by both sea surface wind and bottom friction in shallow water,
which is much more complex than in deep water [27], and it was not considered here.

The current speed and current direction can be determined by composing the NS velocity and EW
velocity, and then they were compared with those measured by the current meter, as shown in Table 2.
The third and fifth columns show the original current velocities retrieved using the two methods, and
the RMSE of the current speeds were 0.11 m/s (i.e., the relative error was less than 10%), whereas the
RMSE of the current directions were greater than 50◦.

The fourth and sixth columns show the result corrected by wind-induced surface drift, and the
RMSE of current directions were reduced to less than 28◦. Therefore, the sea surface drift is important
to the surface current estimated from radar images in the area.
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Figure 7. (a) The Stokes drift at different depths, and (b) the estimated wind speed and sea surface
Ekman current.

Table 2. The root mean squared error (RMSE) and correlation coefficient (Corr) between the current
speed and current direction measured by current meter and those retrieved from X-band marine radar
images using two methods.

Method
CSP1 CSP2

Original Original +Wind Original Original +Wind

Current speed RMSE (m/s) 0.11 0.11 0.11 0.12

Corr 0.86 0.87 0.87 0.87

Current direction
RMSE (◦) 63.5 27.7 52.8 27.5

Corr 0.6 0.55 0.54 0.45

4.3. Critical Coherence

In Section 2.3., the critical coherence γc was chosen to be 0.6, and the cross-spectral phases that
satisfy γ ≥ γc were used to derive the current velocity from the X-band marine radar image sequence.
To study the influence of critical coherence on the method, different critical values were used to estimate
the current velocity from radar images. The CSP2 method was used here, and comparisons of the
current velocities retrieved from radar images, with those measured by the current meter, are shown in
Figure 8. For the critical coherences less than 0.5, the RMSE, bias, and correlation coefficient changed
considerably, and the RMSE and bias were large, while the correlation coefficients were small. For a
critical coherence larger than 0.6, the variations in RMSE and bias were small, and the correlation
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coefficients decreased slightly from 0.86 to 0.8, and the RMSE and bias were small while the correlation
coefficients were large. Therefore, the critical value of 0.6 is applicable when estimating the current
velocity from X-band marine radar images using the cross-spectral method.

Figure 8. The RMSE, bias, and correlation coefficient between the current velocities measured by a
current meter and those retrieved from X-band marine radar images with different critical coherences.

4.4. Number of Images

In Section 3, the current velocity was retrieved from 16 images of an X-band marine radar image
sequence, whereas 32 images are often used in the 3D FFT algorithm [8,23]. Usually, there are few
successive images for airborne or satellite-borne sensors [9,14,15], so the influence of the number of
images on the cross-spectral correlation approach was analyzed.

The current velocities were derived from 2, 4, 8, 16, and 32 radar images using the CSP2 method,
and then the results were compared with the measurements from the current meter, as shown in
Figure 9. The RMSE of the NS velocity (blue solid line) decreased rapidly from 2 to 4 images, then
decreased slightly from 4 to 16 images, and then increased slightly from 16 to 32 images. The RMSE of
the EW velocity (blue dashed line) changed slightly for different numbers of images. The correlation
coefficients of the NS velocity (red solid line) and the EW velocity (red dashed line) increased rapidly
from 2 to 4 images, then increased slightly from 4 to 16 images, and then slightly decreased from
16 to 32 images. The biases of NS velocity (green solid line) and EW velocities (green dashed line)
decreased from 2 to 4 images, then varied slowly from 4 to 32 images. Therefore, for an X-band marine
radar system with a sampling period of 2.5 s, at least four images are needed to determine a relatively
reasonable current velocity, and a better current velocity can be derived using 16 images.
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Figure 9. The RMSE, bias and correlation coefficient between the current velocities measured by a
current meter and those retrieved from different numbers of X-band marine radar images.

Figure 9 also indicates that it is unnecessary to use 32 images in the cross-spectral correlation
approach, because the wave field is heterogeneous and varies rapidly in nearshore areas, and the
coherences of waves decrease over a long time period (i.e., 80 s were needed to capture 32 images
for the radar system). Because the sampling periods of different sensors are different (e.g., they are
usually 1–3 s for different X-band marine radar systems), we suggest that the minimum time to acquire
one image sequence should be 10–40 s to obtain a reasonable current velocity using the cross-spectral
correlation approach.

5. Conclusions

In this study, an X-band marine radar was used to observe sea surface currents. Although the
algorithm based on 3D FFT is widely used, the accuracy often decreases in heterogeneous regions.
The cross-spectral correlation approach is also used in the estimation of wave spectrum and currents
from optical and radar images, but mostly used for case studies from several images. This study
improves the cross-spectral correlation approach to retrieve current velocity from an X-band marine
radar image sequence, and we evaluated the application conditions. To reduce the dependency of
gray levels on range and azimuth, the radar images were preprocessed by CLAHE. By applying the
cross-spectral correlation approach on different pairs of neighboring radar images, the cross-spectral
coherences and phases were obtained and averaged. Then, the phases with large coherences were used
to deduce the phase velocities of waves, and the current velocity was derived by fitting them with
the theoretical dispersion relation. In this method, the current is estimated using two-dimensional
cross-spectral coherence and phase, rather than the widely-used 3D dispersion shell in traditional 3D
FFT algorithms; the temporal aliasing is avoided by choosing positive phases, and the wavenumbers
close to the peak of the coherence spectrum.

The method was validated by comparing the current velocities retrieved from X-band marine
radar image sequences with the collocated measurements of a current meter. The RMSE of the EW
velocity and NS velocity are 0.14 m/s and 0.15 m/s, respectively, using the CSP2 method, with relative
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errors of 7.79% and 10.75%, respectively, which are reasonable, because the current velocity varies
from 0 to 1.4 m/s in the area. The RMSE of the total current speed is about 0.11 m/s, whereas that of
current direction is more than 50◦, but it decreases to less than 28◦ after considering the influence of
wind drift. In nearshore regions, the sea surface current is influenced by many variables, such as tidal
current, sea surface drift, and bathymetry. Due to the limitation of the experiment, the influence of
wave-induced drift was studied using linear wave theory, whereas the wind drift was approximately
estimated. In the future, experiments with more in-situ measurements should be conducted to further
evaluate the method.

The application conditions of the cross-spectral correlation approach were discussed. We showed
that the cross-spectra with a coherence larger than 0.6 are applicable to estimate current velocity; for the
sampling period of 1–3 s, images acquired within 10–40 s may be necessary to obtain a reasonable
current velocity. This may be helpful in the estimation of the current from spaceborne sensors using
the cross-spectrum approach.
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