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Abstract: In forest management, site index information is essential for planning silvicultural operations
and forecasting forest development. Site index is most commonly expressed as the average height of
the dominant trees at a certain index age, and can be determined either by photo interpretation, field
measurements, or projection of age combined with height estimates from remote sensing. However,
recently it has been shown that site index can be accurately predicted from bi-temporal airborne
laser scanner (ALS) data. Furthermore, single-time hyperspectral data have also been shown to be
correlated to site index. The aim of the current study was to compare the accuracy of modelling site
index using (1) data from bi-temporal ALS; (2) single-time hyperspectral data with different types of
preprocessing; and (3) combined bi-temporal ALS and single-time hyperspectral data. The period
between the ALS acquisitions was 11 years. The preprocessing of the hyperspectral data included
an atmospheric correction and/or a normalization of the reflectance. Furthermore, a selection of
pixels was carried out based on NDVI and compared to using all pixels. The results showed that
bi-temporal ALS data explained about 70% (R2) of the variation in the site index, and the RMSE values
from a cross-validation were 3.0 m and 2.2 m for spruce- and pine-dominated plots, respectively.
Corresponding values for the different single-time hyperspectral datasets were 54%, 3.9 m, and 2.5 m.
With bi-temporal ALS data and hyperspectral data used in combination, the results indicated that
the contribution from the hyperspectral data was marginal compared to just using bi-temporal ALS.
We also found that models constructed with normalized hyperspectral data produced lower RMSE
values compared to those constructed with atmospherically corrected data, and that a selection of
pixels based on NDVI did not improve the results compared to using all pixels.

Keywords: ALS; hyperspectral imagery; site index; atmospheric correction; normalization

1. Introduction

In forest management, information on forest productivity is essential for planning silvicultural
operations [1]. Timing and type of final harvest, choice of regeneration method, optimal number of
saplings planted, and timing and intensity of thinning, are all silvicultural operations dependent on the
forest productivity at the sites where they are considered. Furthermore, forecasts of forest development [2]
under a certain management regime also depend on the forest productivity. Most growth models used to
predict the development of single-tree diameter or basal area [3,4], single-tree height [5–7], or stand
basal area and dominant height [8,9], require that forest productivity directly or indirectly is included
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as explanatory information. Furthermore, analyses of future scenarios with regard to the effect of
different management regimes on carbon sequestration, and the causal relationships between changing
climate and carbon sequestration, are important. In this context, and with the changes in growth
patterns that are expected by changing climate [10,11], the importance of information about forest
productivity becomes even more vital.

In forest management inventories (FMIs), forest productivity is not directly measured, but rather
quantified in terms of an age–height relationship, or a site index [1,12]. For example, in Norway the H40
site index [8,13,14] is used, where the specific H40 value is the tree height at an index age of 40 years at
breast height, estimated using species–specific models. Even though there can be substantial variation
within a forest stand, a mean site index value is usually assigned to each stand. In Norway, the time
period between repeated FMIs is typically 10–15 years. Different methods have been used in order to
estimate the site index value for each stand, depending on the type of inventory. Before inventories
supported by airborne laser scanner (ALS) data became the preferred method, both relascope and photo
inventories were common. Under these inventory systems, the site index for each stand was estimated
either by field recordings of age and height on subjectively selected sample trees, or by pure visual
photo interpretation [15]. In order to reduce costs, existing site index values from previous inventories
were reused if stand borders had been retained since the last inventory. Models for prediction of site
index by means of site properties and climate data have also been developed [11], and can be applied if
at least data on the year of stand origin, temperature sum, vegetation type, and soil depth are available.

As indicated above, the preferred method for performing FMIs in Norway today is the so-called
area-based approach using ALS data [16]. With this method, reliable estimates have been obtained of
the most common forest variables [17] such as timber volume, dominant height, and mean diameter.
Since site index reflects growth—a property that by its very nature is a temporal phenomenon, it has
obviously been challenging to include this variable in the pool of forest variables most commonly
predicted in area-based ALS inventories based on data from one measurement occasion. However,
if stand age is available from stand records, ALS predictions of dominant height could be used together
with age to obtain a site index [18–21]. If records of stand age are missing, however, hyperspectral
information have the potential for predicting age. Kandare et al. [22] estimated site index with single-tree
age predicted from hyperspectral data, and height predicted from ALS. Site-type classification, another
proxy for forest productivity, has also been carried out using single-time ALS data [23,24].

In the beginning of the approximately 15-year period for which ALS-based FMIs have been
used operationally in Norway [25], stand-wise site index values were often obtained by an initial
photo interpretation followed by a subjective field assessment. In addition to site index, tree species
composition, stand age, and stand borders were interpreted from the aerial photographs. During the
field assessment, the quality of the photo interpretations was assessed, and the interpretations were
updated where necessary. During the last five years, the common practice has been to use predictions
of dominant height from ALS with projected age from the previous inventory to estimate site index.
Site index values at stand level are associated with a high level of uncertainty, and they are costly to
obtain, especially if field work is required. In Norway, several studies have analyzed the difference
between stand-wise site index values from ordinary FMIs, and site index values obtained by intensive
control measurements based on core samples of the same forest stands [26–28]. These studies have
shown that the mean difference between the operational FMIs and the values from the intensive control
typically range between 2% and 18% in terms of the H40 site index.

Norway is now entering into the second cycle of area-based FMIs supported by ALS.
With bi-temporal ALS data, it is possible to detect, predict, and estimate forest changes, for example
harvests [29], biomass change [30–33] or height growth [34,35]. Furthermore, by predicting height
growth of single trees using bi-temporal ALS, both Hollaus et al. [36] and Kvaalen et al. [37] have
demonstrated estimation of site index for forest stands. Their results were promising and both
studies concluded that the height growth was estimated with sufficient accuracy to be used for site
index estimation. However, single-tree inventories require ALS data with point densities of typically
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5–10 points m−2. Operational FMIs based on ALS data rarely acquire such dense data because the
point density requirement of the area-based method, which is currently dominating the market, is
typically <1 point m−2 [38]. An increase of the point density to greater than 1-point m-2 is often costly
and does not necessarily improve accuracy of the estimates of the forest variables when using the
area-based method. Thus, including site index estimation in the area-based method stands out as a
prioritized choice for methodological advancement to reduce costs and improve accuracy—and thus,
the utility of the data. Noordermeer et al. [39] showed that area-based predictions of site index have
higher accuracies than those of currently adopted methods. The additional requirement, however, as
compared to a conventional FMI based on ALS data is that data from the preceding inventory, typically
10–15 years back in time, must be available and used in addition to current inventory data.

Three-dimensional forest canopy information can also be extracted from stereoscopic aerial
photogrammetry (image matching) where overlapping aerial images are used to create point clouds,
similar to those obtained from ALS [40]. For example, by using historical aerial images spanning a
period of 58 years and a digital terrain model constructed from ALS data, Véga and St-Onge [41]
created a time-series of canopy height models for a 4.5-km2 study area. They estimated site index and
stand age by fitting age–height curves to the stand height records obtained from the time-series data
using the area-based approach.

In the study by Véga and St-Onge [41], multispectral imagery from the Quickbird satellite was
used to classify tree species. Hyperspectral information for tree species classification have also been
applied successfully in several other studies [42,43]. As mentioned above, spectral information has
been used to predict age [22], and others have even used hyperspectral data to estimate nitrogen
concentration in forest canopies and linking that to wood production as a measure of aboveground
forest productivity [44,45], for which the site index is a proxy. Thus, it is likely that spectral information,
and hyperspectral data in particular, can positively contribute to site index estimation, even when the
remotely sensed data are available from just a single point in time. Estimation of site index based on
data from a single point in time is per se very interesting with regard to FMIs because the bi-temporal
data-restriction no longer will apply. It is also relevant to analyze the utility of hyperspectral data
compared to that of bi-temporal ALS to aid decisions on which sensor or combination of sensors to use.

The aim of the current study was to compare the accuracy of modelling site index using (1) data
from bi-temporal ALS; (2) single-time hyperspectral data with different types of preprocessing; and
(3) combined bi-temporal ALS and single-time hyperspectral data. The analyses were carried out
in two steps. First, a partial least squares regression analysis was used to screen all the potential
variables from both the ALS and hyperspectral data to rank the variables according to their importance.
Then, the site index was modelled using ALS and hyperspectral data, both separately and combined.
The models were evaluated by means of root mean square error from a leave-one-out cross-validation.

2. Materials and Methods

2.1. Study Area

The current study was conducted in the southeastern part of Norway, in the municipality of
Våler (59◦30′N, 10◦55′E, 70–120 m a.s.l). The study area was 853 ha in size and comprised actively
managed forest stands of mainly conifer tree species, Norway spruce (Picea abies (L.) Karst.), and Scots
pine (Pinus sylvestris L.). The prevailing harvesting methods in this area are clear felling on the most
productive sites where spruce is the dominating species, and harvests leaving seed trees in the pine
stands, which are typically drier and less fertile.

2.2. Selection of Field Plots

The current study was based on data from 81 sample plots. These 81 plots were selected from a
greater pool of 178 plots systematically distributed across the study area. Tree measurements were
available for all 178 plots from two points in time, so that the status and development of relevant forest
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characteristics were known. The selection of plots was based on criteria that determine if a plot was
suitable for site index estimation. There are both general limitations in terms of forest properties to
where the site index models can be applied, and limitations particular to the use of bi-temporal height
data to estimate site index. First, according to Tveite [13], the site index models should not be applied
to forests of breast height ages < 20 years, so all plots where sample trees were younger than 20 years in
breast height were excluded. Second, the dominating tree species must be known. In the current study,
we used species information from field observations. Lastly, if the site index is to be modelled and
predicted from the change in height between two points in time, the natural development of height
has to be undisturbed by human intervention or calamities between measurements. In this particular
study, the bi-temporal field-observed numbers of stems were used to determine if there had been any
silvicultural operations between the field measurements. In operational inventories, both tree species
and disturbance have to be classified using remotely sensed data. In the current study, we applied a
simple rule that if the number of stems decreased at a rate higher than the expected average natural
mortality calculated from national forest inventory data by tree species [46], the plot was excluded
from further analyses. We also excluded all plots that were dominated by deciduous tree species in
2010. A summary of the field data is displayed in Table 1.

2.3. Field Measurements

The different measurements used in the current study originate from four different points in time:
(1) 1998—plot positioning; (2) 1999—tree measurements (species, diameter, and height); (3) 2010—tree
re-measurements (species, diameter, and height); and (4) 2013—registration of ground reference
site index.

2.3.1. Plot Positioning

All plots were positioned in 1998 using static measurements and a subsequent post-processing
with data from a local base-station [47]. Two survey grade dual-frequency receivers, observing
pseudo-range and carrier phase of both the Global Positioning System (GPS) and the Global Navigation
Satellite System, were used as rover and base units. The plot centers were physically marked with
wooden sticks. In 2010, all plots were once more positioned using the same measurement procedure.
In the 2013 field campaign, we navigated to each plot using a handheld GPS unit. Details about the
positioning of the plots can be found in Næsset et al. [32].

2.3.2. Tree Measurements

Diameter and height information for the field plots were recorded both in 1999 and 2010. In 1999,
200-m2 plots were measured, but when they were all re-measured in 2010 [32], their sizes had increased
to 400 m2. Furthermore, in 2010, polar coordinates (distance and azimuth from the plot center) were
recorded for each tree within each of the 400-m2 plots. Information derived from the tree measurements
from both 1999 and 2010 was used to select suitable plots (see above) and to select sample trees for
registration of field reference site index.

2.3.3. Registration of Field Reference Site Index

The H40 site index [13,14], which is used in Norway to represent forest productivity, depends
on the average age and height of the 100 largest trees per hectare in terms of diameter, as predictors
in the models. Thus, in the current study where 400-m2 plots were used, we selected four trees per
plot for age and height measurements. The trees were selected using information from the diameter
measurements taken in 2010 and identified by their polar coordinates. To reduce the total work load,
age was registered (by coring) on just two of the four sample trees (randomly selected) on each plot,
while heights were registered on all four sample trees. The average age and height were calculated for
each plot and used as predictor variables in the H40 site index models.
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Table 1. Mean values and ranges of field-observed variables in 1999, 2010, and 2013.

Variable 1999 (n = 65 *) 2010 (n = 81) 2013 (n = 81)

SprucePROP 0.45 (0.0–1.0) 0.51 (0.0–1.0)
PinePROP 0.43 (0.0–1.0) 0.40 (0.0–1.0)

DecidPROP 0.11 (0.0–0.5) 0.09 (0.0–0.4)
N (ha−1) 1624 (350–4600) 1686 (350–5700)

HDOM (m) 18.1 (8.3–28.8) 20.4 (13.6–30.6) 20.0 (11.8–30.4)
Stand age (yrs) 85 (24–209)

H40 site index (m) 14.5 (6.2–25.8)

SprucePROP = volume proportion of spruce; PinePROP = volume proportion of pine; DecidPROP = volume proportion
of deciduous species; N = number of stems; HDOM = dominant height: the average height of the 100 largest trees
according to diameter per hectare. * 16 plots were defined as regeneration plots in 1999, and thus, registered
according to a different field protocol than the mature plots.

2.4. Airborne Laser Scanner Data

The airborne laser scanner (ALS) data used in the current study were collected at two points in
time, with 12 years in between. The first campaign was carried out under leaf-on conditions in early
June of 1999 (Table 2). A Piper PA-31-310 Navajo carried an Optech ALTM 1210 at an average altitude
above ground of approximately 700 m, at an average speed of 71 ms−1. The pulse repetition and scan
frequencies were 10 kHz and 21 Hz, respectively. With a half scan angle of 14◦, this resulted in an
average point density on the ground of 1.2 m−2. The contractor (Fotonor AS, Norway) undertook
a complete post-processing of the ALS data using Optech proprietary software. The DTM was
constructed from the last echoes classified as ground echoes, using Optech software as a triangulated
irregular network (TIN). Heights above the DTM for both the first and last echoes from 1999 were
calculated. However, in this particular study, only the first echoes were used. More details about the
ALS campaign from 1999, can be found in Næsset [16] and Næsset et al. [32].

Table 2. Parameters for ALS campaigns in 1999 and 2011.

Parameter 1999 2011

Dates 8–9 June 9 September
Instrument Optech ALTM 1210 Leica ALS70

Average flying altitude (m above ground level) 700 1500
Flight speed (ms−1) 71 70

Pulse repetition frequency (kHz) 10 181
Scan frequency (Hz) 21.0 37.7

Half scan angle (degrees) 14.0 20
Pulse density on the ground (m−2) 1.2 2.4

The second ALS campaign was carried out on the 9th of September 2011, also under leaf-on
conditions. The laser instrument was a Leica ALS70 carried by the same type of fixed-wing aircraft
as in 1999, at an average flying altitude above ground of 1500 m. The average speed of flight was
70 ms−1. The pulse repetition frequency was 18 times greater than in 1999 (Table 2). The average point
density on the ground was 2.4 m−2. The Leica ALS70 is capable of recording up to four echoes per
pulse. In this study, we aggregated the “single” and “first of many” echoes into a single dataset of first
echoes. The DTM was constructed from the ground echoes using TerraScan software [48] with the TIN
densification algorithm developed by Axelsson [49].

Calculation of ALS Variables

Canopy height distributions were derived from the ALS first echoes reflected from each of the
400-m2 sample plots at each point in time. Only vegetation echoes with height values greater than
1.3 m above the constructed terrain surface were included. Therefore, echoes reflected from shrubs
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and low vegetation and ground echoes erroneously classified as vegetation echoes did not affect the
distributions. From these echo-height distributions, metrics representing the canopy height were
calculated. Heights at the 10th, 20th, . . . , 90th, 95th, and 100th percentiles were derived, and labeled
P101999/P102011, P201999/P202011, . . . , P901999/P902011, P951999/P952011, and P1001999/P1002011 (subscript
numbers indicate year of measurement). Furthermore, the difference between each pair of height
percentiles was calculated. These differences (for example: P102011–P101999) were denoted as dP10,
dP20, . . . , dP90, dP95, and dP100. In the following, these variables are referred to as difference variables.

2.5. Hyperspectral Data

The hyperspectral data were collected over the study area simultaneously (the same flight) to
the 2011 ALS data, using the HySpex VNIR-1600 sensor. The sensor collected 80 different bands
between 413 and 986 nm and with a spectral resolution of 7.2 nm. The across-track field of view was
17◦. The images were sensor-calibrated and converted to radiance. Furthermore, the images were
orthorectified using an ALS-derived digital surface model with a spatial resolution of 0.5 m, the same
resulting spatial resolution as the hyperspectral images. To improve the positional accuracy, the first
order rotation-, scale- and translation transformation was performed by the contractor based on control
points. There were 21 stripes that were mosaicked together using the software ENVI version 4.8 (Exelis
Visual Information Solutions, Boulder, Colorado).

2.5.1. Preprocessing (Atmospheric Correction and Normalization)

The preprocessing of hyperspectral images could potentially have large effects on the resulting
classification [50]. Three different preprocessing methods were applied to each pixel, i.e., (1) an atmospheric
correction; (2) a normalization procedure; and (3) a combination of the two. The atmospheric correction
was performed using the QUAC algorithm [51]. Even if the QUAC algorithm is not a rigorous
atmospheric correction algorithm, it has been shown to produce results quite similar to other more
rigorous and complex methods, like FLAASH [52]. Furthermore, the normalization procedure of each
pixel was carried out with respect to the sum of the values of all the bands in the same pixel [53],
which suppresses illumination differences. Thus, one mosaic was created applying only atmospheric
correction, while for the second only the sum normalization was applied. The third mosaic combined
the two previous ones by first applying the QUAC algorithm and then applying the sum normalization.
The three mosaics are referred to as QUAC, NORM, and QUACNORM, respectively.

2.5.2. Selection of Pixels

The selection of the pixels to be used to create explanatory variables from spectral data has
been investigated thoroughly in previous studies dealing with individual tree species classification.
Criteria that frequently have been used for pixel selection are threshold values calculated from the
spectral characteristics of each pixel. The effect of thresholding was studied by Dalponte et al. [54], and
they found that spectral thresholding was important and could improve the classification accuracy.
In area-based methods using hyperspectral imagery for trees species classification, no threshold [43]
and a threshold based on the normalized difference vegetation index [22] have been tested. In the
current study, we used (1) no threshold and (2) a threshold of NDVI keeping pixels with an index value
greater than 0.5 [22]. The two thresholding methods where referred to as NO and NDVI, respectively

2.6. Datasets and Analyses

Thirteen different datasets were used in the current study, and they were all analyzed in
relation to the H40 site index. The ALS dataset is presented in Section 2.4 and was labelled “ALS”.
Furthermore, there were six different datasets comprising hyperspectral data that are presented
in Sections 2.5.1 and 2.5.2. They were labelled according to the preprocessing method and the pixel
selection method, i.e., “QUACNDVI”, “QUACNO”, “NORMNDVI”, “NORMNO”, “QUACNORMNDVI”,
and “QUACNORMNO”. Moreover, to evaluate the synergies of ALS and hyperspectral data, each of the
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hyperspectral datasets were fused with the ALS dataset and labelled “QUACNDVI +ALS”, “QUACNO +ALS”,
“NORMNDVI + ALS”, “NORMNO + ALS”, “QUACNORMNDVI + ALS”, and “QUACNORMNO + ALS”.

2.6.1. Screening Variable Importance Using Partial Least Squares Regression

To get an overview of the explanatory power of all the variables, the variables of all 13 datasets
were used separately as predictors in partial least squares regression (PLSR) analyses, to model the
H40-site index. Partial least squares regression is a bilinear factor method that by means of linear
combinations of all variables, constructs principal components to explain the variation of a response
variable [55,56]. These principal components are in the case of PLSR referred to as latent variables,
variables that are not possible to observe directly, but resulting from a mathematical model dependent
on a set of observed variables. The latent variables are linear combinations of all observed variables,
where a weight (score) is given to each so that the explanatory power of the latent variable on the
response is maximized. In this particular study, we used two latent variables in the screening. In all
PLSR analyses, we calculated the variable importance for projection (VIP) [57] which indicates the
contribution of a variable in the model. Subsequently, the variables were ranked according to their VIP
value and used as the basis for variable selection in the modelling. Wold [57] recommends a cutoff

value of 0.8 to distinguish important from unimportant variables. The variable ranking is also a useful
result in and of itself, both as an indication of which ALS height variables and spectral bands are most
strongly related to variation in the H40 site index, but also as an indication of the relative explanatory
power of variables derived from these two distinctly different data sources.

2.6.2. Modelling H40 Site Index Using Bi-Temporal ALS Data

Based on the ranking from the PLSR, the field-observed H40 site index was related to at least
one height percentile from the first measurement occasion, accompanied by at least one difference
variable. In terms of model fitting, this is equivalent to relying on pairs of corresponding height
percentiles from each of the measurement occasions. McRoberts et al. [58] found that using pairs of
variables instead of a single difference between the pair-variables gave better precision for biomass
change estimation with bi-temporal ALS data, since the model would gain more flexibility through the
separate parameter estimates of the variables in each pair. Using a single difference variable, on the
other hand, would in practice mean that the variables in a pair have the same parameter estimate [58].
Another important issue in this respect is that a certain change in tree height (represented by a certain
change in a height percentile), does not directly indicate site index, but depends on the tree height
(development stage) at the first measurement occasion. Thus, we considered it to be important that
ALS variables representing both the status and the change were included in models of H40 site index,
which is a proxy for change in dominant height over a given period of time. The models were fitted
using ordinary least squares (OLS) estimators with untransformed variables. The linear models were
using the REG procedure of the SAS software [59]. Alternative models were cross-validated using
the press option of the REG procedure, and only models where the variance inflation factor (VIF)
did not exceed 10 [60] were considered. The root mean square error (RMSE) was calculated from
the cross-validated results. Furthermore, Anderson–Darling (AD) tests [61] were performed on the
residuals of the different models to test for non-normality. The null-hypothesis for this test is that the
residuals are normal, and it was rejected if p < 0.05. Moreover, Breusch–Pagan (BP) tests [62] were
performed to test for heteroscedasticity. The null-hypothesis is that the residuals are homoscedastic,
and it was rejected if p < 0.05.

2.6.3. Modelling H40 Site Index Using Hyperspectral Data and Combined Data

The hyperspectral variables in the six different hyperspectral datasets (QUACNDVI, QUACNO,
NORMNDVI, NORMNO, QUACNORMNDVI, and QUACNORMNO) were separately related to the
field observed H40 site index using linear regression, identical to the modelling with ALS-variables.
Furthermore, the fitting of the models on the fused datasets (QUACNDVI + ALS, QUACNO + ALS,
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NORMNDVI + ALS, NORMNO + ALS, QUACNORMNDVI + ALS, and QUACNORMNO + ALS), were
restricted to include variables from both data categories. Height percentiles from the 2011 ALS
data were pooled with the suite of hyperspectral variables. In addition, we also fitted models using
single-time ALS together with single-time hyperspectral data. The rationale for including the latter
alternative was that if hyperspectral data are correlated to age [22], a single height estimate would be
sufficient to predict site index. The respective VIP rankings were used to guide the variable selection.
Variable selections were carried out among the 10 variables with the highest VIP rank in the respective
datasets. When judging the alternative models we considered the VIF, which should be <10 [60], and
that parameter estimates had to be statistically significant (p < 0.05). The R2 was used to select the final
model among the alternatives that met the criteria stated above. For each model, results from the AD
and BP tests were reported, in addition to the RMSE from the cross-validation.

3. Results

3.1. Screening of Variable Importance

3.1.1. ALS Data

The initial screening of the ALS variables showed that the difference variables scored the highest
in terms of VIP, with those from the upper percentiles as the most important ones (dH90 and dH80).
Although the VIP scores of the height percentiles were lower compared to those for the difference
variables, they were still above the cutoff value of 0.8 for pine-dominated stands. However, for spruce,
all VIP scores were lower than the cutoff value. Figure 1 shows the VIP score for both pine and spruce.
The five top-ranking variables for each species appear in green. The variables following next on the
VIP ranking are indicated with grey bars. The cutoff value is indicated with a horizontal line. Red bars
indicate top ranking variables that were selected in the modelling, and black bars indicate variables
that were not among the top-ranking ones, but still selected in the final models.
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Figure 1. Variable importance for projection (VIP) values from the partial least squares (PLS) analysis
with site index as a response for ALS-variables. Results for pine appear on the left, and results for spruce
appear on the right. The five top-ranking variables according to VIP appear in green. Variables among
the top-ranking variables that were included in the subsequent modelling appear in red. Black bars
indicate variables that were selected in the modelling, but that were not among the top five.
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3.1.2. Hyperspectral Data

The results from the screening of the hyperspectral variables and the joint dataset of hyperspectral
and ALS variables, are displayed in Figures 2 and 3. The VIP score of the 10 most important variables
are displayed with green bars. The other colors have the same interpretation as for Figure 1 (see
above). In both Figures 2 and 3, the bars representing ALS variables appear on a yellow background.
The results are described in separate sections below.

3.1.3. VIP Values: NDVI Selection Threshold

The importance (VIP) of the data using the NDVI threshold in terms of explaining the variation of
the H40 site index, seemed to increase to values >0.8 in the interval between 500 nm and 530 nm for
both tree species. The most important variables represented wavelengths in the red-edge region, i.e.,
between 640 nm and 730 nm. These results are displayed graphically in the left column of Figure 2.
It can also be seen from the figure that the important spectral bands for spruce were slightly shifted
towards longer wavelengths compared to those for pine. The shapes that are formed by the bars in the
figure panels also indicate that the type of correction (atmospheric correction, normalization or both)
seemed to change the VIP ranking more for spruce compared to pine.
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Figure 2. Variable importance for projection (VIP) values from the partial least squares (PLS) analysis
with site index as a response for hyperspectral variables, and hyperspectral variables in combination
with ALS variables. In each panel, results for pine appear on the left, and results for spruce appear
on the right. The 10 top-ranking variables according to VIP appear in green. Variables among the
top-ranking variables that were included in the subsequent modelling appear in red. Black bars indicate
variables that were selected in the modelling, but that were not among the top 10. The results in
each panel show variables derived from hyperspectral data where pixels were selected with a NDVI
threshold but with different preprocessing; upper left: atmospherically corrected hyperspectral data;
middle left: normalized hyperspectral data; lower left: atmospherically corrected and normalized
hyperspectral data; upper right: atmospherically corrected hyperspectral data with ALS variables;
middle right: normalized hyperspectral data with ALS variables; lower right: atmospherically corrected
and normalized hyperspectral data with ALS variables. In the right column of the panels, the bars
representing the ALS variables appear on a yellow background. The sequence of ALS variables from
left to right is H901999, dH90, H801999, dH80, . . . , H101999, and dH10.
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3.1.4. VIP Values: NO Selection Threshold

The importance of the variables calculated from the hyperspectral data, with and without pixel
selection threshold (Figure 3), were similar. However, for the QUAC data for spruce (upper left
panel), the most important wavelengths were shifted, compared to using NDVI threshold data, to the
interval between 770 nm to 830 nm. Furthermore, for the normalized data (middle left panel), the most
important variables were the same as the NDVI threshold data, but they were more distinctly differing
from the other variables in terms of the VIP value. For both tree species, the most important wavelength
was 710 nm. Similar results for the normalized variables were obtained for the QUACNORM variables
(lower left panel), although the most important variables did not stand out as distinct, especially not
for pine. The most important wavelength for pine was 689 nm and for spruce it was 718 nm.
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Figure 3. Variable importance for projection (VIP) values from partial least squares (PLS) analysis
with site index as a response for hyperspectral variables, and hyperspectral variables in combination
with ALS variables. In each panel, results for pine appear on the left, and results for spruce appear
on the right. The 10 top-ranking variables according to VIP appear in green. Variables among the
top-ranking variables that were included in the subsequent modelling appear in red. Black bars indicate
variables that were selected in the modelling, but that were not among the top 10. The results in
each panel show variables derived from hyperspectral data where pixels were selected without any
thresholding, but with different preprocessing; upper left: atmospherically corrected hyperspectral
data; middle left: normalized hyperspectral data; lower left: atmospherically corrected and normalized
hyperspectral data; upper right: atmospherically corrected hyperspectral data with ALS variables;
middle right: normalized hyperspectral data with ALS variables; lower right: atmospherically corrected
and normalized hyperspectral data with ALS variables. In the right column of the panels, the bars
representing the ALS variables appear on a yellow background. The sequence of ALS variables from
left to right is H901999, dH90, H801999, dH80, . . . , H101999, and dH10.
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3.1.5. The Relative Effect of Introducing ALS Data

When including also the ALS variables (right columns of Figures 2 and 3) the importance
distributions among the hyperspectral variables were more or less maintained. However, the
importance of the ALS variables seemed to dominate the QUAC data for both tree species. For the
NORM and QUACNORM data, the importance of the hyperspectral variables remained on a high
level, but for spruce, eight and nine of the 10 top-ranking variables for NORM and QUACNORM,
respectively, were ALS variables.

3.2. Modelling

All the selected variables for the different fitted models (Table 3) were statistically significant
(p < 0.05) and the VIF values did not exceed 7.9 for any of them. The modelling revealed no serious
problems with regard to non-normality or heteroscedasticity according to the AD and the BP test,
respectively, although the BP test indicated heteroscedasticity for one of the models that combined
hyperspectral information with ALS (Table 3). For the datasets where models could be fitted with
statistically significant parameter estimates, one to three explanatory variables were used. With a
couple of exceptions, the final models were fitted using the variables that were ranked as the most
important ones after the screening. However, in some cases low-ranking variables had significant
contributions to the model judged by RMSE and the distribution of the residuals.

Table 3. Results from modelling the H40 site index using variables derived from either bi-temporal
ALS data, hyperspectral data, or a combination of the two.

Model Dominant
Species

Explanatory
Variables

AD
Test

BP
Test R2 RMSE

(m) VIF

ALS Spruce P901999 dP90 ns ns 0.70 3.04 1.7
Pine P901999 dP90 ns ns 0.69 2.21 3.0

QUACNDVI Spruce 638 nm, 819 nm ns ns 0.48 4.01 2.1
Pine 674 nm, 768 nm ns ns 0.59 2.49 2.3

NORMNDVI Spruce 638 nm, 718 nm ns ns 0.54 3.78 2.6
Pine 645 nm, 703 nm ns ns 0.60 2.43 7.9

QUACNORMNDVI Spruce 710 nm ns ns 0.47 3.93 1
Pine 689 nm ns ns 0.56 2.48 1

QUACNDVI + ALS Spruce - - -
Pine - - -

NORMNDVI + ALS Spruce dP90, 710 nm ns ns 0.63 3.36 2.4
Pine dP90, 710 nm ns * 0.71 2.14 1.9

QUACNORMNDVI + ALS Spruce dP90, 943 nm ns ns 0.75 2.80 1
Pine P701999, dP90, 652 nm ns ns 0.77 1.88 4.6

QUACNO Spruce 638 nm, 819 nm ns ns 0.47 4.04 2.0
Pine 674 nm, 768 nm ns ns 0.56 2.59 1.9

NORMNO Spruce 710 nm, 739 nm ns ns 0.52 3.80 1.2
Pine 623 nm, 710 nm ns ns 0.60 2.43 1.3

QUACNORMNO Spruce 609 nm, 718 nm ns ns 0.51 3.86 1.7
Pine 689 nm ns ns 0.53 2.57 1

QUACNO + ALS Spruce - - -
Pine - - -

NORMNO + ALS Spruce P701999 dP90, 943 nm ns ns 0.75 2.88 1.8
Pine P701999 dP90, 703 nm ns ns 0.78 1.89 4.0

QUACNORMNO + ALS Spruce P701999 dP90, 943 nm ns ns 0.76 2.86 2.6
Pine P701999 dP90, 703 nm ns ns 0.75 1.91 4.1

AD test = Anderson–Darling test of normality; BP test = Breush–Pagan test of heteroscedasticity; R2 = coefficient
of determination; RMSE = root mean square error from leave-one-out cross-validation; VIF = maximum variance
inflation factor.

3.2.1. ALS Data

With the ALS data only, the final models included the P901999 and the corresponding difference
variable dP90 (Table 3). Although P901999 was not among the five top-ranking variables from the PLSR
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screening, we considered that a variable representing canopy height at the beginning of the observation
period was important to include because a certain height growth over a certain time period is possible
for a range of H40 site index values. It is only when the initial height is known that a certain height
growth unambiguously can be related to a specific H40 site index value. The cross-validation resulted
in RMSE values of 3.04 m and 2.21 m for spruce and pine, respectively.

3.2.2. Hyperspectral Data: NDVI Selection Threshold

The spruce models constructed based on the QUACNDVI data included the variables representing
638 nm and 819 nm wavelengths. This particular inter-distance between wavelengths was wider
compared to the one for pine (674 nm and 768 nm). The results are displayed in Table 3, and the selected
variables are also indicated by the red bars in the top left panel of Figure 2. The model fit, as expressed by
the R2 values, were weaker than for the models comprising only ALS variables, and the cross-validated
RMSEs were 4.01 m and 2.49 m for spruce and pine, respectively. The models constructed using
variables derived from the NORMNDVI data (Table 3, middle left panel of Figure 2) were more similar
between tree species compared to those constructed with the QUACNDVI data. Furthermore, the
RMSE values from the cross-validation were slightly smaller using NORMNDVI models, compared
to those obtained with QUACNDVI models. The models fitted with the QUACNORMNDVI data were
similar to those fitted with NORMNDVI data, but with slightly lower R2, and with only one explanatory
variable. With the fused dataset of QUACNDVI and ALS (QUACNDVI + ALS) no model could be
fitted while fulfilling the modelling criteria. No combination of variables from QUACNDVI and ALS
produced models with statistically significant parameter estimates. However, when ALS variables
were combined with NORMNDVI variables, models that included dH90 and a variable representing the
710 nm spectral band could be fitted for both spruce and pine. The model fit and RMSE indicated that
the model including ALS variables only, was slightly better for spruce (R2 = 0.70 and RMSE = 3.04 m
versus R2 = 0.63 and RMSE = 3.36 m). The results showed the opposite for the pine model, where
the NDVI data improved the model slightly. The combination of the QUACNORMNDVI data with
the ALS data, however, had a positive effect on the results with higher R2 and smaller RMSE for both
tree species. Both models were among the top-ranking models with regard to both R2 and RMSE.
The pine model comprised one variable representing the height in 1999 (P701999) and one representing
the change in height (dP90), together with the variable representing the 652 nm band. The model
for spruce did not include a height variable from ALS but did include a height difference variable
(dH90) and the 943 nm band from the QUACNORMNDVI data. The modelling using the combination
of single-time ALS and hyperspectral data, failed for all the different hyperspectral datasets. We could
not fit any model that fulfilled the criteria.

3.2.3. Hyperspectral Data: NO Selection Threshold

With the QUACNO data, the same variables were selected as for the models constructed with
the QUACNDVI data for both tree species, and the R2 values were also similar (Table 3). However,
for the models constructed with the NORM data, the selected variables differed between the NDVI
threshold and the NO threshold. The spruce model (middle left panel of Figure 3, Table 3) included
variables representing 710 nm and 739 nm, and the pine model included variables representing more
narrow wavelengths (623 nm and 710 nm). In terms of model fit and cross-validation, the NORM
data produced the best model for both tree species on data with NO selection threshold. The R2 of
the models constructed with QUACNORMNO data were similar to the NORMNO models, although
the selected wavelengths shifted towards the narrow end of the spectrum for spruce, and only one
wavelength (689 nm) was selected for pine. The RMSE for the spruce model was 3.80 m with the
NORMNO data, 4.04 m with the QUACNO data, and 3.86 m for QUACNORMNO data. The RMSE
values were slightly improved when using the NDVI thresholding. As for the NDVI threshold data,
no statistically significant variables remained after the modelling the H40 site index with the fused
ALS and QUACNO data. With the fused data of NORMNO and ALS, a model with three variables
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(P701999, dP90, and the NORMNO variable representing 943 nm) was constructed for spruce. Here it
can be noted that the NORMNO variable (943 nm) was not among the top-ranking ones, not even
among those that were considered to be important, but it was the only one that could be included
without violating the criteria of significant variables. The RMSE from the cross-validation was the
lowest among the different spruce models (2.88 m). For the pine model, the same ALS variables and
the variable representing the spectral wavelength 703 nm were selected. This particular pine model
was one of the best of the alternative pine models evaluated by means of the RMSE (1.89 m) and R2

(0.78). The models constructed on the fused ALS and QUACNORMNO data comprised exactly the
same variables as the NORMNO + ALS models, and with similar R2 values and cross-validation results.
As for the NDVI threshold data with the combination of single-time ALS and hyperspectral data, no
significant variables remained after the modelling.

4. Discussion

The analysis showed that among the ALS variables, the difference variables ranked on top in
terms of the VIP values (Figure 1). An explanation for this is that relatively long growth periods
develop strong relationships between height growth and site index, irrespective of the development
stage (initial height). Over a certain number of years, the height growth on the most fertile sites will
tend to be greater than on poor sites, even if the trees on the most fertile sites are old and in a slow
growing development stage, and the trees on the poor soils are in a fast-growing development stage.
The longer the period, the more important the difference variables will be.

The analyses showed that the hyperspectral data fused with ALS data provided only limited
additional value, compared to using ALS data only. The main reason is probably that spectral
information is mainly related to the species and to the phenological characteristics of the trees, while
site index is strongly related to the structural characteristics of forest [63] that is mainly explained
by ALS data. Despite this, models dependent only on hyperspectral data obtained R2 values of
approximately 0.60. This is very interesting, as it shows that in cases where only spectral data are
available, it can still be possible to construct prediction models of the H40 site index. The fact that
our results indicate that the site index of pine forest was the most correlated to hyperspectral data,
could be explained by that the vegetation on the forest floor differs more between different site indices
in pine forest, compared to those of spruce forest along the same gradient. While the vegetation in
low-productivity pine forest often is dominated by bare rock and light colored lichens in the Cladonia
family, the more productive sites have darker colored heather (Vaccinium family) [64]. Forest density
also depends on productivity, so there will be more reflectance from the vegetation on poor sites
compared to more productive sites.

Several factors affect the reflectance of trees as registered by hyperspectral sensors, and they have
to be considered in the interpretation of the specific results of any study of this kind. There are different
spectral signatures for different forest ages [65], and it should be mentioned that in our material
there was a strong relationship between age and the H40 site index (r = −0.82, not shown in tables).
Moreover, forest vitality will also affect reflectance, so if there is a relationship between H40 site index
and the vitality of the forest [66], this could also strengthen the relationship between the hyperspectral
variables and H40 site index. The specific time of the acquisition is another factor. The illumination
conditions, which are affected by the angle of the sun and shadowing by vegetation and terrain features,
may have affected the results even after the atmospheric correction. The phenology, and thereby the
reflectance, also naturally change throughout the growth season. There may also be temporal effects of
plant stress due to drought, for example, and these factors may vary on small spatial scales. Thus,
for the development of prediction models in the context of an FMI, this indicates that it is even more
important with the use of hyperspectral data than ALS, to construct models spatially and temporally
consistent with the area being inventoried.

It was a surprising result that the normalized data provided models with slightly lower RMSE
values compared to the atmospherically corrected data. In the literature, the atmospheric correction
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is a procedure that is considered essential to the use of hyperspectral data for prediction purposes.
However, if the modelling is based on hyperspectral data that are acquired over a short time period,
the atmospheric effect among the different stripes could be very small. In the domain of land cover
classification, some studies have shown that atmospheric correction is not necessary at all. For instance,
in a study by Song et al. [67] it was concluded that atmospheric correction was necessary only when
models were applied across spatiotemporal dimensions. Similar conclusions were made in the studies
of Kim et al. [68] and Hoffbeck and Landgrebe [69]. Thus, as our study area is small, the normalization
could in fact be more useful than to use the atmospheric correction.

All the hyperspectral bands used in the models (Table 3) were in the red and infrared parts of the
spectrum. These ranges of the spectrum are generally important for modelling chlorophyll and water
content, but also the amount biomass. For example, the bands at 638 and 652 nm can be related to
chlorophyll a and b [70]. Moreover, all the selected bands (Table 3) could be used to compute vegetation
indices. As an example, the bands 674 and 768 are usually used to compute the narrowband NDVI, or
the bands 739 and 718 to the Vogelman index [71]. Vegetation indices are usually used to describe the
physiological status of plants.

It was noted that there was a slight difference among the bands selected in the NORM and QUAC
datasets. One reason is obviously that the atmospheric correction acts to correct the noisy parts of
the spectrum that are usually in the blue- and infrared ranges. Another reason is the data range.
The NORM variables have a narrower range compared to the QUAC variables, as the normalization
used tends to make the different stripes uniform, and thus remove the slight changes among stripes [53].
The models constructed with QUACNORM data were more similar to NORM models than they were to
models constructed with OUAC data. This indicates that the normalization had a more positive effect
on the data with regard to improving model fit, compared to the atmospheric correction.

The application of an NDVI threshold for selection of pixels, did not seem to have a pronounced
positive effect on the relationship to H40 site index, in contrast to what has been shown in studies on
tree species classification [54]. The importance of the highest-ranking variables from the screening
even seemed to be more pronounced for the data with NO threshold. The model RMSE, however, were
similar for the models using variables computed from hyperspectral data with- and without NDVI
threshold in the pixel selection.

Compared to Kandare et al. [22] who used fused ALS and hyperspectral data to predict age
and height as input to the appropriate site index curves, our models produced slightly lower RMSE
values. At plot level, Kandare et al. [22] obtained an RMSE value of 4.3 m, compared to our range
of 1.9–3.4 m with fused hyperspectral and ALS data. Kandare et al. [22] also compared their results
to a situation where age was known from field measurements, so that height was the only variable
predicted from remotely sensed data. With this combination of data, their RMSE decreased to 1.2 m.
Furthermore, Noordermeer at al. [39] used bi-temporal ALS data, where 15 years separated the first
and last acquisition. They compared both a direct approach (site index modelled from bi-temporal
ALS data) and an indirect approach (site index solved from the site index curves with initial height
and change in height as input). At plot level, their cross-validated results showed RMSE values of
2.4 m and 1.9 m for spruce and pine, respectively. This is slightly lower than our results using only
ALS variables, but similar to those of our results where hyperspectral variables were included.

In terms of reducing the cost of making in-optimal management decisions because of inaccurate
inventory information, site index is one of the most important variables [15]. The study by Eid [15]
quantified and reported the loss that could be attributed to random errors in site index, by means of a
cost-plus-loss analysis. To determine if the magnitude of reduction in the site index uncertainty as a
result of adding hyperspectral information (RMSE: 3.04 m and 2.21 m versus 2.80 m and 1.88 m for
spruce and pine, respectively), can defend the acquirement of hyperspectral data in addition to ALS,
a similar cost-plus-loss analysis with updated prices and costs have to be carried out.
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5. Conclusions

This study has shown that it is possible to model and predict site index using single-time
hyperspectral data, but that bi-temporal ALS data explains more of the site index variation.
When combining the two data sources, hyperspectral data marginally improved the results compared
to only using bi-temporal ALS. In terms of preprocessing of the hyperspectral data, a normalization
had greater effect on the data with regard to strengthening the relationship to site index, compared
to an atmospheric correction. The selection of pixels based on NDVI did not have a positive effect
compared to using all pixels.

There is also a need for more studies on the relationship between hyperspectral information
and productivity (site index) in forests. Our dataset only reflects a limited range of forest conditions,
and that might have affected the results and conclusions. Site index estimation studies using both
bi-temporal ALS and hyperspectral data, should therefore be carried out in a broader range of forest
conditions with respect to geographical range, dominant tree species, forest age, and forest productivity.

Author Contributions: The author contributions are as follows: conceptualization, O.M.B., H.O.Ø. and M.D.;
methodology, O.M.B., H.O.Ø. and M.D.; validation, O.M.B.; formal analysis, O.M.B.; data curation, H.O.Ø.,
T.G.; writing—original draft preparation, O.M.B.; writing—review and editing, O.M.B., H.O.Ø., M.D., T.G., E.N.;
visualization, O.M.B.; project administration, T.G.; funding acquisition, T.G., E.N.

Funding: This research was funded by Research Council of Norway, grant number 244599.

Acknowledgments: We would like to thank Terratec for collection and preprocessing of the remotely sensed data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Skovsgaard, J.P.; Vanclay, J.K. Forest site productivity: A review of spatial and temporal variability in natural
site conditions. For. Int. J. For. Res. 2013, 86, 305–315. [CrossRef]

2. Pretzsch, H.; Grote, R.; Reineking, B.; Rötzer, T.; Seifert, S. Models for forest ecosystem management:
A european perspective. Ann. Bot. 2008, 101, 1065–1087. [CrossRef] [PubMed]

3. Rivas, J.J.C.; González, J.G.Á.; Aguirre, O.; Hernández, F.J. The effect of competition on individual tree basal
area growth in mature stands of pinus cooperi blanco in durango (mexico). Eur. J. For. Res. 2005, 124,
133–142. [CrossRef]

4. Bollandsås, O.M.; Næsset, E. Weibull models for single-tree increment of norway spruce, scots pine, birch
and other broadleaves in norway. Scand. J. For. Res. 2009, 24, 54–66. [CrossRef]

5. Hasenauer, H.; Monserud, R.A. Biased predictions for tree height increment models developed from
smoothed ‘data’. Ecol. Model. 1997, 98, 13–22. [CrossRef]

6. Hasenauer, H.; Monserud, R.A.; Gregoire, T.G. Using simultaneous regression techniques with individual-tree
growth models. For. Sci. 1998, 44, 87–95.

7. Sharma, R.P.; Brunner, A. Modeling individual tree height growth of norway spruce and scots pine from
national forest inventory data in norway. Scand. J. For. Res. 2017, 32, 501–514. [CrossRef]

8. Sharma, R.P.; Brunner, A.; Eid, T.; Øyen, B.-H. Modelling dominant height growth from national forest
inventory individual tree data with short time series and large age errors. For. Ecol. Manag. 2011, 262,
2162–2175. [CrossRef]

9. Pienaar, L.V.; Rheney, J.W. Modeling stand level growth and yield response to silvicultural treatments.
For. Sci. 1995, 41, 629–638.

10. Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity—Evidence since the
middle of the 20th century. Glob. Chang. Biol. 2006, 12, 862–882. [CrossRef]

11. Sharma, R.P.; Brunner, A.; Eid, T. Site index prediction from site and climate variables for norway spruce and
scots pine in norway. Scand. J. For. Res. 2012, 27, 619–636. [CrossRef]

12. Skovsgaard, J.P.; Vanclay, J.K. Forest site productivity: A review of the evolution of dendrometric concepts
for even-aged stands. For. Int. J. For. Res. 2008, 81, 13–31. [CrossRef]

13. Tveite, B. Bonitetskurver for Gran; Norsk Institutt for Skogforskning: Ås, Norway, 1977; pp. 1–84.
14. Tveite, B.; Braastad, H. Bonitering for gran, furu og bjørk. Nor. Skogbr. 1981, 27, 17–22.

http://dx.doi.org/10.1093/forestry/cpt010
http://dx.doi.org/10.1093/aob/mcm246
http://www.ncbi.nlm.nih.gov/pubmed/17954471
http://dx.doi.org/10.1007/s10342-005-0061-y
http://dx.doi.org/10.1080/02827580802477875
http://dx.doi.org/10.1016/S0304-3800(96)01933-3
http://dx.doi.org/10.1080/02827581.2016.1269944
http://dx.doi.org/10.1016/j.foreco.2011.07.037
http://dx.doi.org/10.1111/j.1365-2486.2006.01134.x
http://dx.doi.org/10.1080/02827581.2012.685749
http://dx.doi.org/10.1093/forestry/cpm041


Remote Sens. 2019, 11, 1020 16 of 18

15. Eid, T. Use of uncertain inventory data in forestry scenario models and consequential incorrect harvest
decisions. Silva Fenn. 2000, 34, 89–100. [CrossRef]

16. Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage
procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [CrossRef]

17. Næsset, E. Area-based inventory in norway—From innovation to an operational reality. In Forestry Applications
of Airborne Laser Scanning: Concepts and Case Studies; Maltamo, M., Næsset, E., Vauhkonen, J., Eds.; Springer:
Dordrecht, The Netherlands, 2014; pp. 215–240.

18. Gatziolis, D.; Fried, J.S.; Monleon, V.S. Challenges to estimating tree height via lidar in closed-canopy forests:
A parable from western oregon. For. Sci. 2010, 56, 139–155.

19. Packalén, P.; Mehtätalo, L.; Maltamo, M. Als-based estimation of plot volume and site index in a eucalyptus
plantation with a nonlinear mixed-effect model that accounts for the clone effect. Ann. For. Sci. 2011, 68,
1085. [CrossRef]

20. Chen, Y.; Zhu, X. Site quality assessment of a pinus radiata plantation in victoria, australia, using lidar
technology. South. For. J. For. Sci. 2012, 74, 217–227. [CrossRef]

21. Tompalski, P.; Coops, N.C.; White, J.C.; Wulder, M.A.; Pickell, P.D. Estimating forest site productivity using
airborne laser scanning data and landsat time series. Can. J. Remote Sens. 2015, 41, 232–245. [CrossRef]

22. Kandare, K.; Ørka, H.O.; Dalponte, M.; Næsset, E.; Gobakken, T. Individual tree crown approach for
predicting site index in boreal forests using airborne laser scanning and hyperspectral data. Int. J. Appl. Earth
Obs. Geoinf. 2017, 60, 72–82. [CrossRef]

23. Holopainen, M.; Vastaranta, M.; Yu, X.; Haapanen, R.; Hyyppä, J.; Kaartinen, H.; Viitala, R.; Hyyppä, H. Site
type estimation using airborne laser scanning and stand register data. Photogramm. J. Finl. 2010, 22, 16–32.

24. Vehmas, M.; Eerikäinen, K.; Peuhkurinen, J.; Packalén, P.; Maltamo, M. Airborne laser scanning for the site
type identification of mature boreal forest stands. Remote Sens. 2011, 3, 100–116. [CrossRef]

25. Næsset, E. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand. J.
For. Res. 2004, 19, 164–179. [CrossRef]

26. Eid, T. Standwise Control of Forest Management Planning Data in Cutting Class III–V; Meddelelser fra
Skogforskningen: Ås, Norway, 1992; pp. 1–78.

27. Eid, T. Kontroll av Skogbruksplandata fra “Understøttet Fototakst”; Aktuelt fra Skogforsk: Ås, Norway, 1996;
pp. 1–21.

28. Eid, T.; Nersten, S. Sammenligning av skogbruksplandata og kontrolldata. In Problemer Omkring Registreringer
og Planlegging for en Skogeiendom i Birkenes Kommune; Eid, T., Ed.; Skogforsk: Ås, Norway, 1996; Volume 47,
pp. 1–34.

29. St-Onge, B.; Vepakomma, U. Assessing forest gap dynamics and growth using multi-temporal laser-scanner
data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 140, 173–178.

30. Bollandsås, O.M.; Gregoire, T.G.; Næsset, E.; Øyen, B.-H. Detection of biomass change in a norwegian
mountain forest area using small footprint airborne laser scanner data. Stat. Methods Appl. 2013, 22, 113–129.
[CrossRef]

31. Ene, L.T.; Næsset, E.; Gobakken, T.; Bollandsås, O.M.; Mauya, E.W.; Zahabu, E. Large-scale estimation of
change in aboveground biomass in miombo woodlands using airborne laser scanning and national forest
inventory data. Remote Sens. Environ. 2017, 188, 106–117. [CrossRef]

32. Næsset, E.; Bollandsås, O.M.; Gobakken, T.; Gregoire, T.G.; Ståhl, G. Model-assisted estimation of change in
forest biomass over an 11year period in a sample survey supported by airborne lidar: A case study with
post-stratification to provide “activity data”. Remote Sens. Environ. 2013, 128, 299–314. [CrossRef]

33. Strîmbu, V.F.; Ene, L.T.; Gobakken, T.; Gregoire, T.G.; Astrup, R.; Næsset, E. Post-stratified change estimation
for large-area forest biomass using repeated als strip sampling. Can. J. For. Res. 2017, 47, 839–847. [CrossRef]

34. Hyyppä, J.; Yu, X.; Rönnholm, P.; Kaartinen, H.; Hyyppä, H. Factors affecting laser-derived object-oriented
forest height growth estimation. Photogramm. J. Finl. 2003, 18, 16–31.

35. Næsset, E.; Gobakken, T. Estimating forest growth using canopy metrics derived from airborne laser scanner
data. Remote Sens. Environ. 2005, 96, 453–465. [CrossRef]

36. Hollaus, M.; Eysn, L.; Maier, B.; Pfeifer, N. Site index assessment based on multi-temporal als data.
In Proceedings of the Silvilaser 2015, La Grande Motte, France, 28–30 September 2015.

37. Kvaalen, H.; Solberg, S.; May, J. Aldersuavhengig Bonitering Med Laserscanning av Enkelttrær; Rapport fra
NIBIO: Ås, Norway, 2015; pp. 1–31.

http://dx.doi.org/10.14214/sf.633
http://dx.doi.org/10.1016/S0034-4257(01)00290-5
http://dx.doi.org/10.1007/s13595-011-0124-9
http://dx.doi.org/10.2989/20702620.2012.741767
http://dx.doi.org/10.1080/07038992.2015.1068686
http://dx.doi.org/10.1016/j.jag.2017.04.008
http://dx.doi.org/10.3390/rs3010100
http://dx.doi.org/10.1080/02827580310019257
http://dx.doi.org/10.1007/s10260-012-0220-5
http://dx.doi.org/10.1016/j.rse.2016.10.046
http://dx.doi.org/10.1016/j.rse.2012.10.008
http://dx.doi.org/10.1139/cjfr-2017-0031
http://dx.doi.org/10.1016/j.rse.2005.04.001


Remote Sens. 2019, 11, 1020 17 of 18

38. Gobakken, T.; Næsset, E. Assessing effects of laser point density, ground sampling intensity, and field sample
plot size on biophysical stand properties derived from airborne laser scanner data. Can. J. For. Res. 2008, 38,
1095–1109. [CrossRef]

39. Noordermeer, L.; Bollandsås, O.M.; Gobakken, T.; Næsset, E. Direct and indirect site index determination for
norway spruce and scots pine using bitemporal airborne laser scanner data. For. Ecol. Manag. 2018, 428,
104–114. [CrossRef]

40. Baltsavias, E.; Gruen, A.; Eisenbeiss, H.; Zhang, L.; Waser, L.T. High-quality image matching and automated
generation of 3d tree models. Int. J. Remote Sens. 2008, 29, 1243–1259. [CrossRef]

41. Véga, C.; St-Onge, B. Mapping site index and age by linking a time series of canopy height models with
growth curves. For. Ecol. Manag. 2009, 257, 951–959. [CrossRef]

42. Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the southern alps based on the fusion of
very high geometrical resolution multispectral/hyperspectral images and lidar data. Remote Sens. Environ.
2012, 123, 258–270. [CrossRef]

43. Ørka, H.O.; Dalponte, M.; Gobakken, T.; Næsset, E.; Ene, L.T. Characterizing forest species composition
using multiple remote sensing data sources and inventory approaches. Scand. J. For. Res. 2013, 28, 677–688.
[CrossRef]

44. Smith, M.; Martin, M.E.; Plourde, L.; Ollinger, S.V. Analysis of hyperspectral data for estimation of temperate
forest canopy nitrogen concentration: Comparison between an airborne (aviris) and a spaceborne (hyperion)
sensor. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1332–1337. [CrossRef]

45. Smith, M.-L.; Ollinger, S.V.; Martin, M.E.; Aber, J.D.; Hallett, R.A.; Goodale, C.L. Direct estimation of
aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecol. Appl. 2002,
12, 1286–1302. [CrossRef]

46. Eid, T.; Tuhus, E. Models for individual tree mortality in norway. For. Ecol. Manag. 2001, 154, 69–84.
[CrossRef]

47. Næsset, E. Determination of mean tree height of forest stands by digital photogrammetry. Scand. J. For. Res.
2002, 17, 446–459. [CrossRef]

48. Anon. Terrascan User’s Guide; Terrasolid Ltd.: Jyvaskyla, Finland, 2016.
49. Axelsson, P. Dem generation from laser scanner data using adaptive tin models. Int. Arch. Photogramm.

Remote Sens. 2000, 33, 110–117.
50. Cao, F.; Yang, Z.; Ren, J.; Jiang, M.; Ling, W.-K. Does Normalization Methods Play a Role for Hyperspectral Image

Classification? 2017. Available online: https://arxiv.org/abs/1710.02939 (accessed on 29 April 2019).
51. Bernstein, L.S.; Adler-Golden, S.M.; Sundberg, R.L.; Levine, R.Y.; Perkins, T.C.; Berk, A.; Ratkowski, A.J.;

Felde, G.; Hoke, M.L. A new method for atmospheric correction and aerosol optical property retrieval for
vis-swir multi- and hyperspectral imaging sensors: Quac (quick atmospheric correction). In Proceedings
of the 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’05, Seoul, Korea,
29 July 2005; pp. 3549–3552.

52. Rani, N.; Mandla, V.R.; Singh, T. Evaluation of atmospheric corrections on hyperspectral data with special
reference to mineral mapping. Geosci. Front. 2017, 8, 797–808. [CrossRef]

53. Yu, B.; Ostland, M.; Gong, P.; Pu, R. Penalized discriminant analysis of in situ hyperspectral data for conifer
species recognition. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2569–2577. [CrossRef]

54. Dalponte, M.; Ørka, H.O.; Ene, L.T.; Gobakken, T.; Næsset, E. Tree crown delineation and tree species
classification in boreal forests using hyperspectral and als data. Remote Sens. Environ. 2014, 140, 306–317.
[CrossRef]

55. Martens, H.; Martens, M. Multivariate Analysis of Quality: An Introduction; John Wiley & Sons: Hoboken, NJ,
USA, 2000.

56. Wold, S.; Sjöström, M.; Eriksson, L. Pls-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst.
2001, 58, 109–130. [CrossRef]

57. Wold, S. Pls for multivariate linear modeling. In Chemometric Methods in Molecular Design; Waterbeemd, H.V.D., Ed.;
VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1994; pp. 195–218.

58. McRoberts, R.E.; Næsset, E.; Gobakken, T.; Bollandsås, O.M. Indirect and direct estimation of forest biomass
change using forest inventory and airborne laser scanning data. Remote Sens. Environ. 2015, 164, 36–42.
[CrossRef]

59. Anon. Sas®9.4 Statements: Reference; SAS Institute Inc.: Cary, NC, USA, 2016.

http://dx.doi.org/10.1139/X07-219
http://dx.doi.org/10.1016/j.foreco.2018.06.041
http://dx.doi.org/10.1080/01431160701736513
http://dx.doi.org/10.1016/j.foreco.2008.10.029
http://dx.doi.org/10.1016/j.rse.2012.03.013
http://dx.doi.org/10.1080/02827581.2013.793386
http://dx.doi.org/10.1109/TGRS.2003.813128
http://dx.doi.org/10.1890/1051-0761(2002)012[1286:DEOAFP]2.0.CO;2
http://dx.doi.org/10.1016/S0378-1127(00)00634-4
http://dx.doi.org/10.1080/028275802320435469
https://arxiv.org/abs/1710.02939
http://dx.doi.org/10.1016/j.gsf.2016.06.004
http://dx.doi.org/10.1109/36.789651
http://dx.doi.org/10.1016/j.rse.2013.09.006
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/j.rse.2015.02.018


Remote Sens. 2019, 11, 1020 18 of 18

60. Montgomery, D.; Peck, E.; Vining, G. Introduction to Linear Regression Analysis; John Wiley & Sons, Inc.:
Hoboken, NJ, USA, 2013.

61. Stephens, M.A. Edf statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 1974, 69, 730–737.
[CrossRef]

62. Breusch, T.S.; Pagan, A.R. A simple test for heteroscedasticity and random coefficient variation. Econometrica
1979, 47, 1287–1294. [CrossRef]

63. Bolton, D.K.; Coops, N.C.; Wulder, M.A. Measuring forest structure along productivity gradients in the
canadian boreal with small-footprint lidar. Environ. Monit. Assess. 2013, 185, 6617–6634. [CrossRef]

64. Fremstad, E. Vegetasjonstyper i Norge; Norsk Institutt for Naturforskning: Trondheim, Norway, 1997; pp. 1–279.
65. Rautiainen, M.; Lukeš, P.; Homolová, L.; Hovi, A.; Pisek, J.; Mõttus, M. Spectral properties of coniferous

forests: A review of in situ and laboratory measurements. Remote Sens. 2018, 10, 207. [CrossRef]
66. Reichmuth, A.; Henning, L.; Pinnel, N.; Bachmann, M.; Rogge, D. Early detection of vitality changes of

multi-temporal norway spruce laboratory needle measurements—The ring-barking experiment. Remote Sens.
2018, 10, 57. [CrossRef]

67. Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using
landsat tm data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244.
[CrossRef]

68. Kim, S.-H.; Shin, J.-I.; Yoo, H.-R.; Lee, K.-S. Effect of Atmospheric Correction for the Land Cover Classification
Using Hyperspectral Data. Proceedings of Asian Association on Remote Sensing—27th Asian Conference on
Remote Sensing, ACRS 2006, Ulaanbaatar, Mongolia, 9–13 October 2006.

69. Hoffbeck, J.P.; Landgrebe, D.A. Effect of radiance-to-reflectance transformation and atmosphere removal
on maximum likelihood classification accuracy of high-dimensional remote sensing data. In Surface and
Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Proceedings of the Geoscience and
Remote Sensing Symposium (IGARSS ’94), Pasadena, CA, USA, 8–12 August 1994; IEEE: New York, NY, USA,
1994; Volume 4, pp. 2538–2540.

70. Siebke, K.; Ball, M.C. Non-destructive measurement of chlorophyll b:A ratios and identification of
photosynthetic pathways in grasses by reflectance spectroscopy. Funct. Plant Biol. 2009, 36, 857–866.
[CrossRef]

71. Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Evaluation of broadband and narrowband vegetation indices
for the identification of archaeological crop marks. Remote Sens. 2012, 4, 3892. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01621459.1974.10480196
http://dx.doi.org/10.2307/1911963
http://dx.doi.org/10.1007/s10661-012-3051-9
http://dx.doi.org/10.3390/rs10020207
http://dx.doi.org/10.3390/rs10010057
http://dx.doi.org/10.1016/S0034-4257(00)00169-3
http://dx.doi.org/10.1071/FP09201
http://dx.doi.org/10.3390/rs4123892
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Selection of Field Plots 
	Field Measurements 
	Plot Positioning 
	Tree Measurements 
	Registration of Field Reference Site Index 

	Airborne Laser Scanner Data 
	Hyperspectral Data 
	Preprocessing (Atmospheric Correction and Normalization) 
	Selection of Pixels 

	Datasets and Analyses 
	Screening Variable Importance Using Partial Least Squares Regression 
	Modelling H40 Site Index Using Bi-Temporal ALS Data 
	Modelling H40 Site Index Using Hyperspectral Data and Combined Data 


	Results 
	Screening of Variable Importance 
	ALS Data 
	Hyperspectral Data 
	VIP Values: NDVI Selection Threshold 
	VIP Values: NO Selection Threshold 
	The Relative Effect of Introducing ALS Data 

	Modelling 
	ALS Data 
	Hyperspectral Data: NDVI Selection Threshold 
	Hyperspectral Data: NO Selection Threshold 


	Discussion 
	Conclusions 
	References

