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Abstract: There is ongoing interest in developing remote sensing technology to map and monitor
the spatial distribution and carbon stock of mangrove forests. Previous research has demonstrated
that the relationship between remote sensing derived parameters and aboveground carbon (AGC)
stock varies for different species types. However, the coarse spatial resolution of satellite images
has restricted the estimated AGC accuracy, especially at the individual species level. Recently,
the availability of unmanned aerial vehicles (UAVs) has provided an operationally efficient approach
to map the distribution of species and accurately estimate AGC stock at a fine scale in mangrove areas.
In this study, we estimated mangrove AGC in the core area of northern Shenzhen Bay, South China,
using four kinds of variables, including species type, canopy height metrics, vegetation indices, and
texture features, derived from a low-cost UAV system. Three machine-learning algorithm models,
including Random Forest (RF), Support Vector Regression (SVR), and Artificial Neural Network
(ANN), were compared in this study, where a 10-fold cross-validation was used to evaluate each
model'’s effectiveness. The results showed that a model that used all four type of variables, which were
based on the RF algorithm, provided better AGC estimates (R? = 0.81, relative RMSE (rRMSE) = 0.20,
relative MAE (rMAE) = 0.14). The average predicted AGC from this model was 93.0 + 24.3 Mg C ha’l,
and the total estimated AGC was 7903.2 Mg for the mangrove forests. The species-based model
had better performance than the considered canopy-height-based model for AGC estimation, and
mangrove species was the most important variable among all the considered input variables; the mean
height (Hmean) the second most important variable. Additionally, the RF algorithms showed better
performance in terms of mangrove AGC estimation than the SVR and ANN algorithms. Overall,
a low-cost UAV system with a digital camera has the potential to enable satisfactory predictions of
AGC in areas of homogenous mangrove forests.

Keywords: mangrove forests; aboveground carbon stocks (AGC); Unmanned Aerial Vehicles (UAV);
high spatial resolution orthoimages; species type; canopy height model (CHM)

1. Introduction

Globally, mangrove forests have been shown to contain significant carbon (C) pools, where an
average estimate of 1023 Mg C ha™! has been suggested for mangroves in the tropics [1,2]. Although
the total worldwide area of mangrove forests is only 137,760 km?, accounting for just 0.7% of the
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total tropical forest area [3], mangrove forests contribute 10-15% of all coastal sediment carbon
storage [4]. Unfortunately, mangrove forests are a key ecosystem that suffer from intense anthropogenic
disturbances [5,6] and severe stress from global climate change [7]. As a result, 2% of global mangrove
C was lost between 2000 and 2012, which is equivalent to a maximum potential of 316,996,250t of CO,
emissions [8]. As such, analyses of carbon reserves in mangrove ecosystems are of great value and
interest with respect to climate change adaptation and mitigation strategies such as the United Nation’s
Reducing Emissions from Deforestation and Forest Degradation (REDD+) program [9]. Moreover, it is
of great practical significance to help developing countries reduce deforestation and degradation rates,
build capacity for conservation and sustainable forest management, and enhance forest C stock.

In South China, with its population boom and rapid economic development, the area of mangrove
forests has decreased to only 22,025 ha, which is less than half of the mangrove area in the 1950s [10].
Since the 1980s, the Chinese government has launched a series of programs to restore and rehabilitate
mangrove forests, where 34 natural mangrove conservation areas have been established to date [11].
Recently, an increased number of studies have focused on the restorative effects of mangrove forests
through artificial planting and their temporal changes [12,13]. However, a comprehensive examination
of the C stocks of mangrove forests and their recovery process is still lacking, and the effects of these
efforts require scientific and systemic study. In an attempt to provide insights into the dynamics of
mangrove recovery and address many of the mangrove restoration problems, estimating mangrove C
stocks has become an issue of great interest to both researchers and governments.

Traditional inventory taking of the C stock of mangrove forests are usually lengthy and expensive
because of their location in intertidal zones. Therefore, the estimation of mangrove C stocks by
means of field measurements combined with remotely sensed data is considered to be an ideal,
cost-effective method [14]. Remote sensing models for estimating mangrove aboveground biomass
(AGB) and aboveground carbon stocks (AGC) have been established from different sensing data such as
Landsat [15], Systeme Probatoire d’Observation de la Tarre (SPOT) [16], IKONOS [17], Advanced Land
Observing Satellite (ALOS) [18], synthetic aperture radar (SAR) [19,20], and Worldview [21]. Because
mangrove forests have monospecific assemblages with different physical community structures (e.g.,
the diameter at breast height (DBH) and density), it has been emphasized that vegetation types should
be considered for accurate AGC estimation. Research conducted by Zhu et al. [21] has demonstrated
that species type information obtained from WorldView-2 images can significantly improve biomass
estimation accuracy. Chen et al. [22] integrated conifer species for biomass mapping with airborne
light detection and ranging (LiDAR) and aerial photography, concluding that the incorporation of
species types reduced the RMSE (root mean square error) by 10%. Chadwick [17] integrated LiDAR
and IKONOS multispectral imagery to map red and black mangrove species and their biomasses.

With the recent development of unmanned aerial vehicle (UAV) technology, aerial images
obtained with a digital camera mounted on a UAV have been widely used in small-scale forest
inventory which has the benefits of low cost and high flexibility [23-25]. Very-high-resolution imagery
derived from UAV system (UAVs) has the potential for identifying mangrove species [26]. Moreover,
object-based approaches combined with high-resolution imagery have been frequently applied for
mapping mangrove species in recent years [26,27]. For example, Wang et al. [28] showed that the
object-based method had a better overall accuracy than the pixel-based method for demarcating artificial
mangrove species communities using 0.5-m Pléiades-1 imagery. Additionally, photogrammetric
imaging supported by the structure of motion (5fM) technique and dense image matching has become a
very interesting tool to collect three-dimensional (3D) information of objects [29,30]. These methods, in
combination with RGB (red-green-blue) spectral data, have already been explored in terms of retrieval
of canopy height [31-33] and vegetation biomass estimations [34-37]. Nevertheless, only a few studies
applying the low-cost UAVs with RGB spectral data for the estimation of the mangrove biomass [27].
For example, Otero et al. [36] used UAVs with digital camera for retrieving mangrove AGB in Matang
Mangrove Forest Reserve. Navarro et al. [38] integrated UAV-based plot data with Sentinel-1 and
Sentinel-2 to estimate mangrove AGB in Senegal.
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Additionally, the consideration of texture information, which is ignored by most previous UAV
studies, has been shown to significantly improve the accuracy of biomass estimation compared to
the use of spectral information alone [39]. We believe that combining these variables, including
species type, canopy height, texture features and vegetation indices (VIs), could greatly improve the
accuracy of mangrove AGC estimates. In addition, the contribution and performance of these variables,
especially species type and canopy height, during the estimation still need quantitative evaluation.

Remote-sensing modeling is an important method of biomass estimation, and the selected
estimation methods may largely affect the subsequent results [40]. Previous studies that estimated
mangrove biomasses applied traditional linear-regression algorithms [27]. However, linear regression
methods are based on the assumption of linear relationships between biomass and predictors or
independent variables, and thus, they may not provide satisfactory results due to the complex
relationships between remote-sensing variables and biomass [41-43]. In this case, nonparametric
and machine-learning algorithms (MLAs), such as artificial neural network (ANN), support vector
regression (SVR), and random forest (RF), can deal with nonlinear relationships, learn from limited
training data, and successfully solve classification problems that are difficult to distinguish; such
approaches have been widely employed in forest biomass estimation [41,42,44-47]. Nevertheless, there
is no single MLA that performs best for every study object and area [41,44—47], and a comparison of
MLAs is highly desired, which will help us select the most appropriate model.

In this study, hundreds of images with very high resolution were collected to estimate the AGC of
the mangrove forests in the Futian Mangrove National Nature Reserve using a low-cost UAV system
with a digital camera. Based on the overlapping photographs and the SfM method, a high spatial
resolution UAV orthoimage and a Digital Surface Model (DSM) were obtained. Then, four kinds
of variables, including species type, canopy height, texture features and VIs derived from the UAV
data, were used to estimate the mangrove AGC. More specifically, our study aimed to: (i) evaluate
the importance of these four kinds of variables and select the most suitable; (ii) compare the full
model with all variables, species-based model and canopy height model for mangrove AGC estimation;
and (iii) examine which MLAs (ANN, RF, SVR) provided better AGC estimation performance of
mangrove forests.

2. Materials

2.1. Study Site and Species

The mangrove forest in the northern Shenzhen Bay, which is representative of those in South China,
significantly decreased in area during the 1970s and 1980s due to the urbanization of the Shenzhen
Special Economic Zone [48]. In order to reverse this degradation, the government established the
Futian Mangrove National Nature Reserve (FMNNR) in 1984 to protect the wetlands and restore the
degraded mangroves while maintaining economic and social development [49] (Figure 1). The study
site is characterized by a subtropical monsoonal climate, with an annual precipitation of 1700-1900 mm,
a mean annual relative humidity of approximately 80%, and an annual average temperature of
22.4 °C [13]. The tides in Shenzhen Bay are semi-diurnal, with a spring tidal range of about 1.9 m [50].

Approximately 89 ha? of the conserved mangroves in the FMNNR [51] are distributed along 9 km
of the coast from east to west. At the study site, there are four main native mangrove species belonging
to three genera from three families, namely, Kandelia obovata Sheue, H.Y. Liu & J. Yong (Rhizophoraceae),
Avicennia marina (Forsk.) Vierh. (Acanthaceae), Acanthus ilicifolius (L.) (Acanthaceae) and Aegiceras
corniculatum (L.) Blanco (Myrsinaceae). Two pioneer species with a fast growth rate, Sonneratia apetala
Buch.-Ham. (Lythraceae) and Sonneratia caseolaris (L.) Engl. (Lythraceae), were introduced to the study
area via afforestation in 1993 [52]. They rapidly proliferated into low tidal zones and they established
a dense population covering approximately 4 ha? [51]. Because A. corniculatum and A. ilicfolius are
shrubs, we focused on the tree species K. obovata, A. marina, S. apetala and S. caseolaris with zonation of
a single dominant layer in FMNNR.
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Figure 1. The location of the Futian Mangrove National Nature Reserve and the orthoimage produced
from the unmanned aerial vehicles (UAV) flight in the study area with ground control points and

field quadrats.
2.2. Field Measurements

Fieldwork was conducted in December 2017, where 88 quadrats of 5 m X 5 m with nearly
mono-dominance (>90% coverage of one species in the canopy) were established with an interval
about 50~100 m between quadrats, and GPS coordinates were recorded at the center of each quadrat
using a Real Time Kinematic GPS device (586, SOUTH, China; see Figure 1). Because the eastern part
of the reserve is a military frontier zone, which is off-limits to the public, the quadrats were located
in the western part of the reserve, which included the four mangrove species of interest (Figure 1).
All trees with heights > 1.3 m in the quadrats had their heights and DBHs precisely measured following
the standardized mangrove field protocol described by Kauffman and Donato [53]. All diameters
were measured to the nearest 0.1 cm using a diameter tape. Heights were measured to a precision of
0.5 m for every tree using a handheld laser range finder (DISTO A3, Leica, Switzerland). In addition,
the DBHs and heights of the standing dead trees were measured using the same methods used for the
living trees [53]. As for the shrub, sapling of A. ilicifolius is the only dominant species in this layer,
we also recorded its coverage and average height in each quadrat.

AGBs were determined through species specific allometric equations, where the height and DBH
were considered as the independent variables for each tree species (Table 1). The climate conditions of
the study area are similar to the sampled area of the studies below. Moreover, previously published
studies gave a size range of the tree species included in this study, and our measurements were
within these ranges, which allowed for the development of relevant equations for each species [54-57].
For standing dead trees, the aboveground biomass was estimated for each decay class according to
Kauffman and Donato [53]. The C mass of the vegetation was calculated as the product of the vegetation
biomass multiplied by the wood C concentration. C concentration was determined using results from
previously published research of each tree species in South China (Table 1). For the biomass estimation
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of A. ilicifolius sapling, we harvested all its saplings in ten 1 m X 1 m quadrats, and measure their dry
mass as well as the carbon concentration (0.4225) of A. ilicifolius with the elemental analyzer in the
lab [53]. An equation for estimating the biomass of A. ilicifolius was developed based on the height
(biomass = 0.02775 H(m) — 0.003846, R? = 0.9225).

Table 1. Allometric equations and carbon content for calculating the aboveground carbon stacks of the
mangrove species.

Carbon

Species Allometric Equations Concentration (%) References

A. marina log Bstern = 0.544 log(DBHzH) + 1.643 41.2 [54,55]
108 Byyanch = 0.567 log(DBH2H) + 1.897 412
108 Bjeqs = 0.287 log(DBH2H) + 0.690 39.8

K. obovata 10g Bstem = 0.869 log( DBH2H) +2.162 432 [54,55]
108 Byranch = 1.253log(DBH2H) + 2.741 432
10g Bjey = 0.943log(DBHH) + 1.706 43.1

S. caseolaris 10g Bytem = 0.807 log(DBH?H) + 1.451 432 [55,56]
108 Byyanch = 0.951log(DBH2H) +0.321 432
10g Bjegs = 0.931log(DBH2H) - 0.379 39.9

S. apetala 10g Bstem = 0.330 log( DBH2H) — 0.959 429 [55,57]
108 Byyanch = 0.388 log(DBH2H) - 1.393 429
108 Bjeqs = 0.436 log(DBH2H) — 2.500 38.6

DBH: diameter at breast height (m); H: height (m); Baogp: aboveground biomass (kg); Bstem: stem biomass (kg);
Bpranch: branch biomass (kg); Bieas: leaf biomass (kg).

2.3. Field-Based AGC

Table 2 shows the descriptive statistics of the quadrat-level AGC stock for the four mangrove
assemblages in the FMNNR. Forest stand parameters (density, height and DBH) measured for
individual trees within the quadrats were significantly different (p < 0.05) among the mangrove species.
AGC values were calculated using the allometric equations in Table 1 and the C content of each species.
The AGC ranged from 46.12 (Mg C ha™?!) to 153.12 (Mg C ha™!), with the highest value calculated for
S. apetala, followed by K. obovata, S. caseolaris, and A. marina (Table 2).

Table 2. Summary of the mangrove species information from the field sampling.

Mangrove n Density Height DBH AGC
Assemblage (trees-ha™1) (m) (cm) (Mg Cha™1)
A. marina 18 1555 +91°2 6.03+£0.172 16.56 + 0.67 2 46.12 + 3.87 @
K. obovata 42 7685+ 679P  6.62+0.13%  932+035° 11254 +7.98P
S. apetala 16 1625 + 682 8.82 +0.38P 1748 £0.722  153.12+9.96 ¢
S. caseolaris 12 1866 + 114 2 8.40 + 0.32° 1628 +0.662  127.89 +7.27b

DBH stands for the tree diameter at breast height greater than 1.3 m; AGC: aboveground carbon stock. Data is given
as a mean =+ standard error. The mean values of density, height, DBH and AGC followed by different letters (a,b,c)
within columns are significantly different at p < 0.05 based on Dunn’s tests.

2.4. UAV Flight Data

The UAV flights were conducted in August 2017. A six rotor-wing UAV system (see Figure Al,
ZR-66B, SOUTH, China) was used to collect the images. The UAV platform, which has a maximum
flight time of 50 min under optimal weather conditions, was equipped with a Sony RX1RM2 camera
and a GPS (SOUTH, China) as the payload. The camera has a focal length of 35 mm with 42.5 million
effective pixels and produces images in three bands, namely, red (R, 625 nm), green (G, 550 nm),
and blue (B, 485 nm). The flight mission was planned with the Mission Planer software that came with
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the UAV (Figure A2). The flight altitude was set to 100 m above ground level. In total, 1997 valid
images (7952 x 5304 pixels) were collected with 74% longitudinal overlap and 65% lateral overlap.
Since the GPS loaded on the UAV platform can only provide rough positions, 24 ground control points
(GCPs) were marked and positioned using a Real Time Kinematic GPS device (S86, SOUTH, China)
with a horizontal accuracy of 0.01 m and an elevation accuracy of 0.02 m.

The professional software “Pix4Dmapper” (Pix4D, Lausanne, Switzerland), which has been
widely used for UAV photogrammetric workflows, was used to reconstruct the study area using
the UAV images. The processing procedure consisted of initial processing, point cloud and mesh,
and DSM orthomosaic and index. 24 GCPs were used in the initial processing procedure. Subsequently,
SfM dense point cloud data were produced after the point cloud and mesh procedure. Finally, two UAV
raster products were derived from the images: an RGB orthoimage and the DSM. The ground sampling
distance (GSD) was 0.02 m for the RGB orthoimage and 0.1 m for the DSM. The RMSE of the checkpoints
was 4.2 cm along the X-axis (east), 5.6 cm along the Y-axis (north), and 8.7 cm along the Z-axis.

3. Methods

To estimate mangrove AGC, and quantify the effect of species type and canopy height metrics
on the mangrove AGC estimation accuracy, we conducted three different experiments that involved
building MLA models of the mangrove forest. In experiment 1, all the selected variables, including
species type, canopy height metrics, VIs and texture features, were put into the models. In experiment
2, all variables except the canopy height metrics were put into the models. In experiment 3, all variables
except the species type were put into the models.

First, we selected relevant variables for AGC estimation using the Boruta feature selection
algorithm. Then, in each experiment, three MLAs were applied to develop the models, including
RE, ANN, and SVM. After that, the performances of the nine models were assessed in terms of the
coefficient of determination (R?), RMSE, relative RMSE (rRMSE), mean absolute error (MAE), and the
relative MAE (rMAE), all of which were based on 10-fold cross-validation. A flowchart of this study is

shown in Figure 2.
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Figure 2. Flowchart of this study.
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3.1. Classification of Mangrove Species

Objected-based approaches are based on segmentation, which divide the image into spatially
continuous and spectrally homogeneous objects [16,26-28]. Image segmentation was processed in
eCogniton Developer 9.0 (Trimble, Sunnyvale, CO, USA), using the multi-resolution segmentation
(MRS) algorithm [26-28]. We set the segmentation parameters as follows: scale (50), color (0.9), shape
(0.1), compactness (0.5), and smoothness (0.5). Three kinds of object features were also selected: spectral
features (R/G/B/Brightness), geometry features (shape index and compactness), and texture features
(Table 3).

We randomly selected 100 samples for each mangrove species based on artificial interpretation
and field survey. In total 400 samples were divided into two sets randomly, with one set (200 samples)
designated for training the Support Vector Machine (SVM) classifier [16,27] and the other for assessing
the classification accuracy. The classification result was assessed by confusion matrix, which had
an overall accuracy of 78% and a kappa coefficient of 0.73 (Table Al). The final distribution map of
mangrove species is shown in Figure 3a.
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Figure 3. The classification of mangrove species (a) and canopy height model (CHM) (b) of the
study area.
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3.2. Predictor Variables Selection

3.2.1. Calculation of the UAV Variables

To extract the height information of the mangrove forest, we produced a canopy height model
(CHM) (0.1 m GSD) by normalizing the DSM to the average elevation of mudflat (Figure 3b). In this
study, we calculated three CHM metrics, including the mean of the point height (Hmean), the standard
deviation of the point height (Hstd), and the coefficient of point height variation (Hcv), according to
previous research on canopy height estimation (Table 3) from CHMs [32,34,58].

12 selected VIs were calculated as different mathematical combinations of the RGB digital numbers
from the orthoimage based on previous research on AGB and AGC estimations of UAV images
(Table 3) [34,59,60].

Table 3. Definitions of variables used in this study.

Variables Definition Source
CHM metrics
Hmean Hmean = % ijzl hy
Hstd Hstd = \/I%] 22]:1 (hy — Hmean)?
Hcev Hcv = Hstd/Hmean
Spectral vegetation index
Red Band1 (R)
Green Band2 (G)
Blue Band3 (B)
Green-red ratio index (GRRI) GRRI = G/R [62]
Green-blue ratio index (GBRI) GBRI = G/B [63]
Red-blue ratio index (RBRI) RBRI =R/B [59]
Normalized green-red difference index .
(NGRDI) NGRDI = (G-R)/(G+R) [64]
Normalized green-blue difference index e
(NGBDI) NGBDI = (G-B)/(G+B) [62]
Green leaf index (GLI) GLI = (2G-R-B)/(2G+R+B) [65]
Visible atmospherically resistant index VARI = (G-R)/(G + R—B) [66]
(VARI)
Excess green index (EXG) EXG=2G-R-B [67]
Excess green minus excess red index . 3 3
(ExGR) EXGR = EXG-14R -G [34]
GLCM texture measures
)
Angular Second Moment (ASM) ASM = Zl‘ Z]: P[i, j]
e N2
Contrast (Con) Con = ;%P(l = j)"Pli, j]
Correlation (Cor) Cor = M#W [61]
]
Entropy (Ent) Ent = - Zl: % P[i, j]In P[i, j]
Plij
Homogeneity (Hom) Hom = Z Z ﬁ
ij
Mean pi = XiPli, j]
Dissimilarity (Dis) Dis = § %P li ]
Variance (Var) 012 =Y i2P[i, f] - ;11.2

Note: hy, = height of pixel in the CHM; N = number of pixels in the CHM; i is the row number of the orthoimage; j is
the column number of the orthoimage; P[i, j] represents the relative frequency of two neighboring pixels.
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In addition, we employed eight gray level co-occurrence matrices (GLCMs) to represent the
texture measures (Table 3) [61]. The eight GLCM measures with eight different window sizes (3 x 3,
5%5,7%x7,9%9,11 x 11,13 x 13,15 x 15,17 X 17 and 19 X 19) were calculated from band 2 (Green) of
the orthoimage in ENVI 5.3 (Exelis Visual Information Solutions, CO, USA).

To correspond to the field quadrats, 5 m X 5 m square vector buffers were set according to the
GPS coordinates of the field sampling points. These pixel-wise UAV variables for each quadrat were
averaged with a regional statistic tool (Zonal Statistics) to obtain the values per buffer in ArcMap10.2
(Esri, CA, USA).

3.2.2. Selection of Variables

To estimate the AGC of the mangrove forests, 88 variables, including species types, three height
variables, 12 spectral variables, and 72 texture variables, were derived from the CHM and orthoimage
as predictor variables. The variables were further analyzed with the Boruta feature selection algorithm,
which is an all-relevant feature selection wrapper algorithm based on the RF algorithm [68]. Feature
selection could be used to reduce the impact of a large number of explanatory variables. The Boruta
method compares the importance of the original attributes with the randomly achievable importance,
uses their replacement copies for estimation, and gradually eliminates irrelevant features to stabilize
the test, thereby performing a top-down search for relevant features.

3.3. Model Regression and Accuracy Assesement

3.3.1. Random Forest (RF)

The RF algorithm is an ensemble of many classification or regression trees that can reduce model
overfitting [69,70]; a recent review of RF in remote sensing was given by Belgiu and Dragut [71].
Two parameters need to be defined in a RF: the number of trees to grow (ntree) and the number of
variables to randomly sample as candidates at each split (mtry). Through tuning parameters, RF tries to
maintain the prediction strength while inducing diversity among the trees [69]. In this study, mtry was
set to the total number of available variables and ntree was set to 500 according to the review of [71].
The RF model was implemented with the “randomForest” package in R.

3.3.2. Artificial Neural Network (ANN)

The ANN method simulates human brain learning processes via the establishment of linkages
between input data and output data. Various ANN algorithms have been developed and applied
in remote sensing; the reader is referred to the review by Mas and Flores [72] for more details.
The back-propagation algorithm was used in this study. Two parameters need to be tuned: the
number of units in the hidden layer and the weight decay. We examined a range of units, from 1 to 20,
in the hidden layer, while the weight decay parameter ranged from 0.1 to 1. The other parameters
were assigned default values. The optimal parameters were determined when the RMSE reached a
minimum. The ANN model was implemented with the “nnet” package in R.

3.3.3. Support Vector Machine (SVM)

The SVM method commonly uses a kernel function to transform training data into a high
dimensional feature space, and to identify an optimal hyperplane that maximizes the distance between
the hyperplane and the nearest positive and negative training examples [73]. A detailed review of
SVM in remote sensing is provided by Mountrakis et al. [73]. In this study, a radial basis function
(RBF) was used as the SVM kernel function. Two parameters need to be confirmed: cost and gamma.
The “tune.svm” and “svm” functions were used to find the optimal combination of cost and gamma
values. The SVM model was implemented with the “e1071” package in R.
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3.3.4. Accuracy Assessment

A 10-fold cross-validation was used to assess the AGC estimates of the nine models.
The cross-validation approach was based on the entire reference dataset, rather than using separate
training and validation data subsets, which is a useful approach when only limited reference data
is available [74]. Five validation measures of model performance were calculated from the 10-fold
cross-validation including R2, RMSE, rRMSE, MAE, and rMAE [37-43]. Models with higher R?,
smaller rRMSE and smaller rMAE values indicate a higher prediction accuracy:

n A~ \2
2 i1 (vi — 9i)
Re=1 - —
1:l(yi_y1)
AN\2
a n
RMSE = %SE
Yi

n
T
i=1

MAE

Yi
where y; is the AGC measured in the field, y; is the average value of y;, #; is the model-predicted value
of AGC, and i is the total number of matched quadrats.
In the 10-fold cross validation, each model produces AGC predictions for all the corresponding
field measurements, while the regressions between the field measurements and model predictions
were also conducted to further evaluate each model’s performance.

rMAE =

4. Results

4.1. Variable Selection and Importance

Figure 4 presents scatterplots between three kinds of variable (texture features, VIs, and height
metrics) and the measured AGC values of different species. Because texture features show high
correlation with window size, we chose a window size of 19 x 19 to plot. As Figure 4 shows, the
spectral signals, such as Green leaf index (GLI), Visible atmospherically resistant index (VARI), Green
blue ratio index (GBRI), Normalized green-blue difference index (NGBDI), Normalized green-red
difference index (NGRDI), Red-blue ratio index (RBRI), and Green-red ratio index (GRRI), of the UAV
orthoimage tended to saturate with AGC in mangrove forests with such dense canopies.
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Figure 4. Scatterplots between the variables (texture features (19 X 19), vegetation indices and height
metrics in Table 3) and the measured aboveground carbon stock (AGC) values of various species.

Figure 5a shows the 30 selected variables (from the 88 input variables) used for the AGC estimation,
as determined with the Boruta method. The %IncMSE is the increase in the mean square error (MSE)
of the predictions, which represents each variable’s importance value in the RF model. In Experiment
1, 30 selected variables were put into the RF model, where the most important variable was species
followed by Hmean, Excess green index (EXG), and Variancel9 (Var19) (Figure 5a). In Experiment
2, 28 selected variables, excluding Hmean and Hcv, were put into the RF model, where species was
most important variable, followed by EXG, Var19, and Variancel3 (Var13) (Figure 5b). In Experiment
3, 29 selected variables, excluding species, were put into the RF model, where Hmean was the most
important variable, followed by EXG, Excess green minus excess red index (EXGR), and Blue (Figure 5c).
The selected variables were then used to build the ANN and SVR models for mangrove AGC estimation
in each experiment.
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Figure 5. Selected variables of each experiment and their importance values (a—c).

4.2. MLA Models and Accuracy Assessment

In Experiment 1, four types of variables were put into the three models, where species was the
most important variable (Figure 5a). The RF model achieved better accuracy than the other two
models in terms of AGC estimation (Table 4). The SVR model and the ANN model also showed good
performances with no statistically significant differences in terms of RMSE and MAE. In Experiment
2, three kinds of variables, excluding height metrics, were put into the three models, where species
was also the most important variable (Figure 5b). The RF model also achieved the most accurate AGC
estimation among the three models, while the ANN model was the least accurate (Table 4).

Table 4. Model performance for AGC estimation based on 10-fold cross validation. (RMSE: root mean
square error; rRMSE: relative RMSE; MAE: mean absolute error; rMAE: relative MAE.)

RMSE MAE
2
Model R (Mg C ha™") (Mg C ha1) rRMSE rMAE
Experiment 1: all selected variables
RF (a) 0.81 20.46 € 14.82¢ 0.20 0.14
ANN (b) 0.75 23.13 be 18.33 be 0.23 0.18
SVR () 0.80 21.21be 16.82 be 0.21 0.16
Experiment 2: selected variables without canopy height metrics
RF (d) 0.75 21.78 ¢ 15.88 ¢ 0.21 0.15
ANN (e) 0.64 31.342b 26.67 2b 0.31 0.26
SVR (f) 0.75 22.24 be 16.25 be 0.22 0.16
Experiment 3: selected variables without species
RF (g) 0.65 27.32 abe 21.78 abe 0.27 0.21
ANN (h) 0.44 37.792 31.232 0.37 0.31
SVR (i) 0.66 26.39 abe 21.54 abe 0.26 0.21

The means of RMSE values followed by letters within columns are significantly different at p < 0.05 based on Dunn’s
tests. RF: Random Forest; ANN: Artificial Neural Network; SVR: Support Vector Regression
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Overall, as shown in Table 4, the RF model in Experiment 1 showed the best accuracy and
successfully explained 81% of the variance of the field-measured AGC values, with rRMSE = 0.20 and
rMAE = 0.14. The models in Experiment 1 showed the best performance among the three experiments;
this meant the four variable types considered in the models, including species, height metrics, Vis,
and texture features, were suitable for AGC estimation. In addition, by comparing Experiment 2 with
Experiment 3, and the importance values of the variables in Figure 5a, species was more important
than height metrics. As for the model comparison, the RF models had better performance than the
SVR and ANN models. This indicated that the RF algorithm was more useful and robust than the
SVR and ANN algorithms for AGC estimation. The correlation between field-measured AGC and
predicted AGC from the regression models are displayed in Figure 6.
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Figure 6. Field-measured aboveground carbon stock (AGC) values versus predicted AGC values from
different models. Panels (a—i) are in consistent with Table 4.

4.3. Spatial Distribution of Mangrove AGC

Finally, an AGC map of mangrove forests in the study area (Figure 7) was produced based on the
RF model from Experiment 1 (Table 4) and the 30 selected variables shown in Figure 5a (R =0.81,
rRMSE = 0.20 and rMAE = 0.14). The estimated AGC values of the K. obovate assemblage were the
highest, followed by the S. apetala and S. caseolaris assemblages. The AGC values of the A. marina
assemblages were the lowest (Table 5). Overall, the average estimated AGC was 93.0 + 24.3 Mg C ha™!,
which ranged from 31.7 Mg C ha™! to 195.8 Mg C ha™!, while the total estimated AGC was 7903.2 Mg
within the 85-ha mangrove forest (Table 5).
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Figure 7. Aboveground carbon stock (AGC) values of the mangrove forest in the Futian Mangrove
National Nature Reserve (FMNNR) based on an Random Forest model with 30 variables.

Table 5. Estimated aboveground carbon stock (AGC) values of four mangrove assemblages.

Assemblage Types Area (ha) AGC (Mg Cha™!)  Total carbon (Mg)

A. marina 9.5 474 +6.2 450.3
K. obovata 62.6 94.0+25.3 5884.4
S. apetala 7.6 128.6 + 38.13 977.4
S. caseolaris 5.3 1115+ 31.7 591.1
Total 85.0 7903.2

5. Discussion

5.1. The Importance of UAV Variables

Satisfactory results were achieved by estimating the AGC of the mangrove forests with all four
types of variables (species, height metrics, VIs and texture features based on the RF algorithm in
Experiment 1 (Table 4). The importance values (Figure 5a) and the results of Experiment 1 and
Experiment 2 (Table 4) revealed that species type is the most important variable among all the selected
variables for mangrove AGC estimation in this study, while Hmean was the second important. There
were two main reasons why species was more important than Hmean for AGC estimation in this
study. First, most of the mangrove forests are of similar age; thus, there was little variation in canopy
structure for each mangrove assemblage from the CHM shown in Figure 3. Given a greater range of
canopy height values, the CHM would have likely been more important in predicting AGC [36,37,39].
Second, mangrove species not only represented the wood density of each species, but also contained
information related to structural characteristics such as tree density, DBH, and tree height, which were
relevant to biomass estimation at the quadrat-level of different species. Furthermore, since each type of
mangrove tends to have a similar canopy height, and it is a biophysical characteristic for estimating
biomass in tree-level allometry, was nested within species [54,75,76]. Therefore, there were also some
reports that species information plays a key role in biomass estimation modeling, and its inclusion can
improve the estimation accuracy [16,21,23].

In this study, we also found that EXG and Var19 were important variables for estimating AGC
(Figure 5). EXG values derived from RGB orthoimages had previously been shown to perform well in
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the estimation of crop AGB in previous studies [34,67,77]. However, since visible spectral imagery
lacks a near infrared band, many VlIs are easily saturated, which will affect the subsequent AGC
estimation of complex, dense forest stands [78]. As shown in Figure 4, NGBDI and NGRDI are totally
saturated with the mangrove AGC. Meanwhile, Zhu et al. [21] found that red-edge band derived from
the Worldview-2 is more sensitive than other multispectral bands to mangrove AGB.

On the other hand, a texture analysis, which refers to visual effects caused by spatial variations
in tone quantity over a relatively small area, was adopted [79], because texture represents patterns
in pixels that cannot be described by spectral values and individual pixels alone. Moreover, texture
features show different canopy structures, which may reflect the tree density in mangrove assemblages.
For example, the texture feature Variance represents the variance of the considered imagery. A high
value indicated that the objects in the region were disordered, where large canopy gaps that reveal
other objects such as water or mud may lead to lower mangrove AGC estimates. As the study showed,
the integration of textural information with spectral information texture features yielded more accurate
estimates compared to the use of spectral information alone [39].

5.2. Model Performance of the MLAs

The MLAs, which demonstrated great potential to estimate forest parameters, especially AGB and
AGC, can overcome the multicollinearity problem and they do not make assumptions about the nature
of the data distribution [44]. The comparison of the MLAs showed that RFs had better performance
in AGC estimation than SVR and ANN in this study (Table 4). The RFs were more consistent in
responding to small perturbations in the data, and the randomness in the RFs reduces overfitting
during model training [71]. This result was consistent with some other studies that showed that RF and
SVR have great potential for forest biomass estimation with remote-sensing techniques [41,44,46,47].
Additionally, the main advantage of the RF algorithm was to identify important predictor variables
and model the relationship between them and the AGC. Therefore, the RF algorithm could provide a
convenient and efficient way to estimate mangrove AGC with importance value measures.

5.3. Application and Limatation

To accurately estimate AGC values in the mangrove forest, we combined field sampling with
UAV technology to obtain a high spatial resolution orthoimage and a DSM, which meant obtaining
spectral and structural attributes simultaneously in the area. Additionally, the minimal time and labor
required to cover the study area is one of the main advantages of the use of UAVs. The UAV took
seven sorties of approximately 40 min each, including flight planning and scanning, with three people
involved in the execution of the flights to cover the entire range of the study site (85 ha). In contrast,
for the ground forest inventory, six people with experience in field sampling worked for one week
(approximately 8 h per day) to obtain the ground data from an area of just 0.255 ha. The UAV also was
able to access areas unreachable, or difficult to reach, on foot, particularly at low tides in areas with
deep silt. Furthermore, the use of the UAV to monitor forests does not disturb the flora and fauna as
much as traditional inventory surveys do.

In this study, we only used a simple digital camera loaded on the UAV, which has some limitations
compared with hyperspectral cameras and laser scanning. In fact, more diverse spectral characteristics
can be obtained when a hyperspectral camera is loaded on the UAV system, which can generate precise
classifications of vegetation [26,80], and hence improve the biomass estimation [81]. Furthermore,
the spectral saturation of dense canopies will be reduced as more Vls can be calculated and selected
from the hyperspectral data [26,45]. In addition, to our knowledge, it is hard to obtain a sufficient
number of SfM ground points in areas with highly dense canopies because the ground is not visible to
the passive imaging sensor. In contrast, airborne laser scanning (ALS) can provide detailed structural
variations along the canopy depth, while they can hardly provide sufficient spectral characteristics.
With the development of remote sensors, UAV system with laser scanning and hyperspectral camera
will be a very promising alternative in the estimation of forest AGB and AGC [82-84].
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5.4. Estimate of Mangrove Carbon Stocks

The total mangrove C stock in the FMNNR was 7903.2 Mg over an area of 85 ha. The average
predicted mangrove AGC was 93.0 + 24.3 Mg C ha~!, which is similar with the mean C density of
84.61 + 30.67 Mg C ha~! in southern China [10]. Hutchison et al. [85] found a potential mangrove AGC
of 67.96 Mg C ha™! in the FMNNR calculated with the latitudinal model, which is slightly lower than
our estimate. The difference in the calculated AGCs may be due to the effort that the government
implemented with regards to restoring the mangrove ecosystem [12]. As reported, the government
started planting the exotic S. apetala and S. caseolaris in the FMNNR since 1993 [52], especially S. apetala,
which is a fast-growing mangrove species from Bangladesh that has now become a dominant species
in the FMNNR. Moreover, the S. apetala assemblage has a higher carbon density (Table 5) than other
assemblages because of its high density, tall heights and large DBHs. As a result, there was a higher
average C density than expected in the FMNNR. Thus, we suggest just conservation, rather than
reforestation, as the next step for local management.

6. Conclusions

Our study effectively developed a remote-sensing model for the AGC mapping of mangrove
forests using four kinds of variables, including species type, canopy height, texture features, and Vis,
derived from a high spatial resolution orthoimage and DSM based on an UAV system with a digital
camera in the FMNNR (R? = 0.81, rRMSE = 0.20, rMAE = 0.14). Moreover, the species-based model
had better performance than the canopy-height-based model for AGC estimation, where mangrove
species was the most important variable among those tested, with the mean height (Hmean) the second
most important. Our results also suggested that the species-based model with VIs and texture features
had acceptable performance for AGC estimation in the homogenous mangrove forests. Additionally,
the RF algorithm had better performance in terms of mangrove AGC estimation than SVR and ANN in
this study. Finally, the average predicted AGC was 93.0 + 24.3 Mg C ha™!, and the total estimated AGC
was 7903.2 Mg for the mangrove forests. Based on the predicted data, we specifically suggest that
conservation, and not reforestation, should be the next step in the local management of the mangrove
forests in the FMNNR.

To conclude, species type information with spectral and structural attributes should be
simultaneously considered when only simple RGB orthoimages are available for AGC estimation in
areas of homogenous mangrove forests. In the future, the potential of applying UAV technology to
determine C stocks and other biophysical parameters of mangrove forest should be investigated.
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Figure A3. Photos of mangrove assemblages.

Table A1. Confusion matrix of the mangrove species classification for the UAV orthoimage.

AMangrove A.marina K. obovate S.apetala S. caseolaris Producer’s User’s
ssemblages Accuracy Accuracy
A. marina 41 3 4 2 82% 79%
K. obovate 3 40 2 5 80% 87%

S. apetala 5 1 39 5 78% 76%

S. caseolaris 3 2 6 36 72% 75%

Overall accuracy = 78%
Kappa coefficient = 0.73

Table A2. Biomass of each mangrove assemblage of field sampling.

Biomass (Mg ha ~1)

Assemblage
Ttypes Live Tree (stem) Live Tree Live Tree (leaf) Dead Tree Underst.ory
(branch) Vegetation
A. marina 66.07 +1.992 40.98 + 055 3.82+078%  274+157™  250+0452
K. obovata 213.59 +10.73 P 12.32 + 4.84 2 497 +1353  1.32+045™ 8.48 +0.34°
S. apetala 190.78 +28.85P  46.67 £10.25° 578 +1.882 ons 439+0.61°
S. caseolaris 178.73 +18.152  38.11 +8.06 P 511+ 1322 ons 3.47 +0.81 be

Data is given as a mean =+ standard error. The mean values of biomass followed by different letters (a,b,c) within
columns are significantly different at p < 0.05 based on Dunn’s tests, ns: non-significant difference.
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