
remote sensing  

Article

Detecting Land Degradation in Eastern China
Grasslands with Time Series Segmentation and
Residual Trend analysis (TSS-RESTREND) and
GIMMS NDVI3g Data

Caixia Liu 1,2,* , John Melack 2, Ye Tian 1, Huabing Huang 1 , Jinxiong Jiang 3, Xiao Fu 4 and
Zhouai Zhang 5,6

1 State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing and
Digital Earth of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101, China;
tianye@radi.ac.cn (Y.T.); huanghb@radi.ac.cn (H.H.)

2 Bren School of Environmental Science and Management, University of California, Santa Barbara,
CA 93106, USA; melack@lifesci.ucsb.edu

3 State Key Laboratory of Space-Ground Integrated Information Technology, Beijing 100029, China;
jiangjx@spacestar.com.cn

4 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, Beijing 100085, China; xiaofu@rcees.ac.cn

5 Shenhua Baorixile Energy Co., Ltd., Hulunbuir 021000, China; 11550128@chnenergy.com.cn
6 State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 100011, China
* Correspondence: caixialiu@ucsb.edu

Received: 6 March 2019; Accepted: 25 April 2019; Published: 29 April 2019
����������
�������

Abstract: Grassland ecosystems in China have experienced degradation caused by natural processes
and human activities. Time series segmentation and residual trend analysis (TSS-RESTREND) was
applied to grasslands in eastern China. TSS-RESTREND is an extended version of the residual
trend (RESTREND) methodology. It considers breakpoint detection to identify pixels with abrupt
ecosystem changes which violate the assumptions of RESTREND. With TSS-RESTREND, in Xilingol
(111◦59′–120◦00′E and 42◦32′–46◦41′E) and Hulunbuir (115◦30′–122◦E and 47◦10′–51◦23′N) grassland,
6% and 3% of the area experienced a decrease in greenness between 1984 and 2009, 80% and 73%
had no significant change, 5% and 3% increased in greenness, and 9% and 21% were undetermined,
respectively. RESTREND may underestimate the greening trend in Xilingol, but both TSS-RESTREND
and RESTREND revealed no significant differences in Hulunbuir. The proposed TSS-RESTREND
methodology captured both the time and magnitude of vegetation changes.

Keywords: grassland; NDVI; RESTREND; BFAST; land degradation

1. Introduction

Grasslands are the largest ecosystem in China, covering 393,000 km2, 43% of the country
territory [1]. In the past forty decades, the grasslands in China have experienced serious land
degradation caused by natural process and human activities, including climate change, land use
alternations, and socioeconomic transformation [1,2]. Discerning the impacts of these drivers is
important for understanding and managing landscapes, particularly for grasslands in arid and
semi-arid areas. In these areas, annual precipitation is low and inter-annual variability in rainfall
high [3,4]. When conducting vegetation greenness change and land degradation analysis in these areas
caused by human activities, the first step is to exclude the impact from climatic variations. The climate
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variability makes it difficult to separate natural changes in vegetation from those caused by direct
human activities [5–7]. Given that land degradation may occur progressively over many decades, it is
necessary that measurements be consistent, and combined with large areas influenced [5,8], remote
sensing is an appropriate approach.

Several studies of the relations between the normalized difference vegetation index (NDVI) and
climatic factors have been used to separate changes in vegetation caused by climate from those caused
by both anthropogenic and natural factors [8–10]. The residual trend approach (RESTREND) [11]
is a method for removing the climate influence from an NDVI trend, and it has been used for
detection of dryland degradation based on climatic data and vegetation indices [5,11]. It was initially
developed to control for variations in climate influencing vegetation indices by calculating a linear
regression between annual maximum NDVI, a proxy for ecosystem productivity, and precipitation [6,11].
The difference between the observed NDVI and estimated NDVI from the linear regression, referred
to as the NDVI residuals, was then calculated, and linear trend analysis implemented using the
NDVI residuals. However, RESTREND has a limitation because it provides valid results only when
there is a strong linear relationship between the variations in the precipitation and vegetation index.
When degradation occurred in the middle of the time series, a strong linear relationship may be
lacking and lead to unreliable results [7]. Thus, it is of importance to detect if degradation causes the
linear relationship between vegetation and precipitation to breakdown (also termed as a breakpoint).
Breakpoint detection on the time series of remotely sensed products has been applied to land cover
mapping [12–14] and forest management [15,16]. It has been argued that dryland degradation could
be improved when detecting breakpoint when the relationship between vegetation and precipitation
breaks down [5,7,17]. Introduced by Burrell, Evans, and Liu [8], time series segmentation and residual
trend analysis (TSS-RESTREND) is such a methodology, and combines RESTREND time series analysis
with breakpoint detection using breaks for additive seasonal and trend (BFAST) [18,19]. It was
successfully used to detect land degradation in Australia [8,10] and was able to improve the detection
of degraded areas and direction of change compared to RESTREND alone. The recent study proposed
by Abel et al. [17] also used BFAST for breakpoint detection on sequential linear regression slopes
(SeRGS) for time series rainfall and vegetation relationship.

In the eastern grasslands of China, most studies focus on the Mongolian plateau [20–22] or Xilingol
grasslands [9,23,24]. Our study areas are the eastern grasslands of Xiliingol and Hulunbuir, located in
arid and semi-arid regions experiencing decreased rainfall [25] and frequent human activities [23,24,26].
Hulunbuir and Xilingol have many coal-fired power plants [27]. Coal production in Inner Mongolia
accounted for 25% of China’s production. The mining of coal and construction of power plants may
degrade vegetation by reducing surface and subsurface water resources as well as pollution from the
power plants [28,29]. To the best of our knowledge, no studies have examined and compared land
degradation in Xilingol and Hulunbuir grasslands using a RESTREND or a similar methodology to
control for variations in precipitation.

The aim of this study is to develop an understanding of land degradation in the eastern grasslands
of China for the period from 1984 to 2009. Xilingol and Hulunbuir grasslands were chosen as study
areas due to their representative roles as typical steppe and meadow steppe in the arid and semi-arid
area of eastern China. The specific objectives in our study area are: (1) to test the new TSS-RESTREND
method, (2) to explore breakpoints in NDVI time series, and (3) to compare the performance of
TSS-RESTREND results with other statistical methods.

2. Materials and Methods

2.1. Study Area

Inner Mongolian grasslands are regarded as an important ecological barrier to the north of China
and East Asia because the vegetation can reduce the effects of wind and dust when the winter northwest
monsoon passes through. These grasslands extend more than 3000 km from east to west, with the
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grasslands gradually changing from meadow steppe to steppe, desert steppe, and desert [30,31].
The total area of grasslands is 749,000 km2, accounting for 63% of Inner Mongolia. Most (84%) of
the grasslands are used for grazing [32]. Hulunbuir and Xilingol in Figure 1, were chosen for study
because they are the main land cover types in our study areas.

The Xilingol grasslands (111◦59′–120◦00′E and 42◦32′–46◦41′E) are situated in the middle part of
the Inner Mongolia Autonomous Region, northeastern China (Figure 1B). The elevation of Xilingol
is between around 750 and 1900 m. The terrain has low hills in the east and south and is flat in the
west and north, with a sporadic distribution of low hills and lava platforms. It is characterized by
a mid-temperate semi-arid continental climate type. The average annual precipitation ranges from
135 mm to 380 mm. Xilingol grasslands are considered to be the most complete wild grassland in
the grassland subzone of East Asia in the Eurasian steppe region, with an area of approximately
200,000 km2, of which the grassland area accounts for 98%. The main vegetation types include various
formations of desert steppes, typical steppes, and meadow steppes (Figure 2).

The area of Hulunbuir grasslands (115◦30′–122◦E and 47◦10′–51◦23′N) is approximately 83,000 km2.
The topography of Hulunbuir becomes gradually flatter with a decrease in elevation from the center
to the east and west. The elevation of Hulunbuir ranges from about 170 to 1700 m. It has a typical
temperate continental monsoon climate, with the annual precipitation approximately 250 mm to
400 mm; average annual temperature is approximately −3 ◦C to 0 ◦C. The study area is dry and windy
in spring and warm in summer. Temperatures decrease quickly in autumn, and winter is long and cold.
The main grassland vegetation in the region is meadow steppe and steppe from east to west (Figure 2).
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Figure 1. Elevation of the study area. The location of the study area in China is shown (A).
The topographic elevations of Xilingol and Hulunbuir are shown (B,C), respectively. Grasslands are
demarcated with a dark line (C).

2.2. Data Source and Pre-Processing

2.2.1. GIMMS NDVI3g Data

The global inventory modeling and mapping studies (GIMMS) 16-day composite NDVI3g dataset
was used for vegetation change. GIMMS NDVI3g data are currently the longest time series of NDVI for
monitoring the characterization and variability of vegetation. Yin et al. [33] argued the importance of
temporally consistent NDVI for vegetation monitoring and some studies have shown that NDVI3g is
more accurate than the GIMMS NDVI for monitoring vegetation activity and phenological change [34].
GIMMS NDVI3g data were derived from the AVHRR instrument onboard the NOAA satellite series
(7, 9, 11, 14, 16–19) from July 1981 to December 2013. The dataset has been corrected for calibration,
solar geometry, aerosols, clouds, and other effects not related to vegetation change [35]. Monthly
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GIMMS NDVI was computed from the GMMIS-NDVI3g with 16-day temporal resolution through
the maximum-value composite procedure (MVC) [36]. We used cloud-based Google Earth Engine to
process this dataset (imageCollection ID is NASA/GIMMS/3GV0) using quality record (QA flags) in
each time series image to filter for high quality monthly maximum NDVI data.

2.2.2. Meteorological Dataset

The National Meteorological Information Center of China provided the monthly precipitation
and temperatures from 1980 (http://cdc.cma.gov.cn/home.do). The monthly precipitation maps were
produced with the thin-plate spline spatial interpolation provided by [37,38] and transformed to raster
images with a resolution of 1 km; this rainfall dataset has been used for the analysis of changes in
lake areas [39]. We did a projection transformation and spatially resampled to match the GIMMS
NDVI images.

2.2.3. Vegetation Types

Vegetation spatial distribution is shown in Figure 2. The dataset was originally produced by the
Institute of Botany, the Chinese Academy of Sciences [31], and we obtained it from Data Center for
Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn).
The main vegetation in our study area using the classification of Hou [28] is temperate steppe, except
for large areas of forest in the east of Hulunbuir. In Xilingol, desert steppe, typical steppe, and meadow
steppe located from west to east. There are two steppe types in Hulunbuir: typical steppe and meadow
steppe. We did not analyze areas outside the polygon which are mainly forests and croplands.
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2.2.4. Validating Breakpoint Timing in Google Earth Engine

For each pixel with a breakpoint detected by the BFAST method, time series Landsat images
(1984–2009) were visually interpreted, and disturbance years were collected using a tool built under
GEE. With this tool, the time series of NDVI can be plotted and a colored Landsat image can be
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displayed if a designated date is chosen. For the displayed NDVI, the mean value was calculated on
the basis of all Landsat pixels that are covered by the changed GIMMS pixel. The codes for the tool can
be found at (https://code.earthengine.google.com/22e70048312b89d26ba6c2effd946caa).

2.3. Methods

2.3.1. RESTREND

RESTREND is a pixel-based approach developed by Evans and Geerken [11] and further
modified by Wessels et al. [7] for distinguishing between natural variability and degradation
processes in water-limited ecosystems [5,40]. It calculates the relationship between the net primary
productivity (NPP) of vegetation and precipitation; hereafter we refer to this relationship as VPR
(vegetation-precipitation relationship). An ordinary least squares regression (OLSR) is calculated
between peak growing season NDVI (NDVImax), a proxy for NPP [7,8], and the optimal accumulated
precipitation. In our study area, the peak growing season NDVI is equal to the annual maximum
NDVI which occurred in summer. Optimal accumulation of precipitation is calculated pixel by pixel to
determine the combination of accumulation period (1–12 months) and offset period (1–3 months) that
produced the highest correlation coefficient with NDVImax. Predicted NDVImax is acquired by the
OLSR model, and the difference between predicted NDVImax and observed NDVImax at each time is
referred to as VPR-Residual.

Residual trend (RESTREND) of the VPR is then calculated by OLSR from the regression of the
VPR-Residuals with time [11].

yi = β0 + β1xi (1)

where yi is VPR-Residuals, xi is years, β0 is intercept and β1 is slope.
Trends present in the VPR-Residuals are independent of precipitation and an indicator of the

initiation or reversal of land change processes [11]. To apply RESTREND for analysis, a pixel must
meet three criteria [8]:

i. The VPR is significant and positive (slope > 0). Recommended values for significance are R2 > 0.3
at p < 0.05 significance level.

ii. A residual trend is gradual and consistent or at least monotonic for the entire time series [41].
iii. The VPR must remain consistent with time, which is defined as a VPR that is comparable

throughout the entire time series, i.e., no major structural changes occurring within the
ecosystem [7].

Hence, a standard RESTREND may fail to identify a trend when the rate and direction of change
vary within the time series [42]. Previous studies excluded those pixels when they cannot meet those
criteria [7,43].

2.3.2. TSS-RESTREND

The time series segmentation and residual trend (TSS-RESTREND) method was first proposed
by Burrell, Evans, and Liu [8] for analysis of vegetation trends in Australia. The main purpose of
TSS-RESTREND is to locate breakpoints of the time series of NDVI with the BFAST method [18,19].
Unlike the previous studies with BFAST [15,44], BFAST in TSS-RESTREND is not directly implemented
on time series NDVI but on complete VPR residuals, in which the seasonal component of BFAST is
switched off.

In each time segmentation, the Chow test [45] to the VPR-residuals is done to test the breakpoints’
impact on the primary productivity, represented by NDVImax. Chow test is based on the null
hypothesis that there is no change in the regression coefficient across a potential breakpoint and is
rejected when the F-statistic reaches a critical threshold (α = 0.05).

There are four situations when using TSS-RESTREND:

https://code.earthengine.google.com/22e70048312b89d26ba6c2effd946caa
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i. If a pixel has a significant VPR (α = 0.05) and no significant breakpoints in the VPR-residuals
(α = 0.05), it meets all the criteria for a standard RESTREND.

ii. If a significant breakpoint is detected in the VPR-Residuals, a Chow test is also applied to the
VPR. For a pixel with a significant breakpoint in the VPR-Residuals (α = 0.05) but not in the
VPR (α = 0.05), a segmented RESTREND is applied, as shown in Burrell et al. [8], in which a
multivariate regression between the VPR-Residuals, time and a dummy variable that is 0 before
the breakpoint and 1 after it:

yi = β0 + β1xi + β2zi+ β3xizi (2)

where x = years, z = value of the dummy variable (0 or 1). β0 is intercept, β1 is slope, β2 is the
offset at the breakpoint and β3 = the change in the slope at the breakpoint.

iii. If a pixel has a significant breakpoint in VPR, it may indicate a significant structural change to
the ecosystem during the study period [46]. Therefore, it is not valid to assume that the optimal
duration of precipitation is equivalent to either side of the breakpoint. Thus, the time series
NDVImax is separated and a new VPR is recalculated separately on either side of the breakpoint.
In order to make it possible to compare with different accumulation and offset periods across the
breakpoint, Burrell et al. [8] converted the optimal precipitation into a standard score:

zi =
xi − µ

σ
(3)

where z = standard score, xi = observed values, µ = mean of that accumulation period for the
entire time series, σ = standard deviation. Then a multivariate regression is fitted to the time
series standard scores:

yi = β0 + β1xi + β2zi+ β3xizi i = 1984, . . . , 2009 (4)

where x = the standardized precipitation in formula (3) for year i, z = value of the dummy variable
(0 or 1), β0 is intercept, β1 is slope, β2 is the offset at the breakpoint and β3 is the change in the
slope at the breakpoint. The total change of a pixel with a segmented VPR is calculated by
adding the residual change to the VPR break height (β2). The residual change is calculated with
segmented RESTREND.

iv. Pixels, where no significant model can be fitted, are classified as indeterminate.

Burrell et al. [8] gave a detailed algorithm description in their paper with a flow-chart; there is a
small typo in Burrell et al. [8], and we corrected this typo here that affected Equation (3).

2.3.3. Linear Trend Analysis (LTA)

Linear trend analysis (LTA) is one of the most widely used approaches to monitor vegetation
change using time series NDVI (NDVIts) data because it is a simple, intuitive way to identify continuous
inter-annual vegetation change trends [24,47]. However, applying this method over long time series
may be misleading as contrasting trends can potentially balance [5]. A trend in the raw LTA of NDVIts
was calculated with OLSR without considering precipitation influence.

yi = β0 + β1xi (5)

where yi is NDVIts and xi is year. Pixels with β0 > 0 are considered as a pixel in which vegetation
increased productivity and β0 < 0 as decreased productivity. The significance of the model was also
recorded and combined with slope (β0) to categorize pixels into different clusters indicating vegetation
change direction and magnitude as described by Li et al. [43].
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2.3.4. Comparison RESTREND, TSS-RESTREND, and LTA Results

We compared vegetation change direction and magnitude of standard RESTREND, TSS-RESTREND,
and traditional LTA as described by Li et al. [43]. Pixels were categorized into nine classes by the
direction of the change and its significance as shown by thresholds in Table 1.

Table 1. Category threshold for vegetation change.

Category ID Change Direction Significance

I1

slope > 0

α < 0.01
I2 0.01 ≤ α < 0.025
I3 0.025 ≤ α < 0.05

INC 0.05 ≤ α < 0.1

D1

slope < 0

α < 0.01
D2 0.01 ≤ α < 0.025
D3 0.025 ≤ α < 0.05

DNC 0.05 ≤ α < 0.1

NSC α > 0.1

3. Results

3.1. Vegetation Change Detection by TSS-RESTREND, RESTREND, and LTA

For TSS-RESTREND, 80% and 73% of the pixels were detected as unchanged in Xilingol and
Hulunbuir, respectively (Tables 2 and 3). For those pixels considered unchanged with TSS-RESTREND,
80% in Xilingol and 87% in Hulunbuir had decreased based on the LTA results. Hence, these led to
only 0.5% and 1% pixels considered as unchanged with LTA in Xilingol and Hulunbuir, respectively
(Tables 2 and 3). Because TSS-RESTREND and RESTREND methods consider annual rainfall variations
with greenness in arid areas and some pixels may fail to satisfy the relationship between NDVI and
rainfall values, there are still undetermined areas with the two methods when analyzing relationships
between rainfall and NDVI. In 9% (Xilingol) and 21% (Hulubuir) of the areas, trends cannot be detected
if we consider the climatic impact on greenness with TSS-RESTREND.

Table 2. NDVI change results between TSS-RESTREND and LTA in Xilingol.

TSS_RESTREND

No Change Decrease Increase Undetermined

80% 6% 5% 9%

LTA

No change Decrease Increase

0.5% 80% 19.5%

LTA

No change Decrease Increase Undetermined

0.5% 75.5% 24% 0

TSS_RESTREND

No Change Decrease Increase Undetermined

84.8% 7% 8% 0.2%
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Table 3. NDVI changes results between TSS-RESTREND and LTA in Hulunbuir.

TSS_RESTREND

No Change Decrease Increase Undetermined

73% 3% 3% 21%

LTA

No change Decrease Increase

1% 87% 12%

LTA

No change Decrease Increase Undetermined

1% 81% 18% 0

TSS_RESTREND

No Change Decrease Increase Undetermined

78.3% 4% 17% 0.7%

Changes in vegetation based on TSS-RESTREND and LTA reveal that an increase in NDVI
occurred in northwestern and southwestern Xilingol and a decrease occurred in the northeast (Figure 3).
The changed areas derived from TSS-RESTREND are less than those from LTA, but the spatial
distribution of change is similar. In Hulunbuir, degraded areas occurred mainly in the western and
southeastern areas based on LTA, whereas TSS-RESTREND suggested degraded areas were distributed
in the central and southeastern areas.
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Hulunbuir with the TSS-RESTREND method. (C,D) The results with the LTA. The redder the color, the
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3.2. Trend and Breakpoint Analyses with TSS-RESTREND

From 1984 to 2009 NDVI in most areas of both study areas remained unchanged based on
TSS-RESTREND (Figure 4). Following the rules in Table 1, severe degradation (D1, D2, and D3)
occurred in northeastern and southeastern Xilingol (Figure 4A) and southeastern Hulunbuir (Figure 4B).
Greening areas (I1, I2, and I3) are in the northwestern Xilingol and central Hulunbuir. TSS-RESTREND
does not work well in croplands, meadow steppe, and deciduous shrublands or forests (Figure 5).
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(A: Xilingol; B: Hulunbuir). We divided the significance of the linear regression of residual and time
into four levels (0.01, 0.025, 0.05, and 0.1) with the F-test and classified nine variations in residual
trends. The decreasing trend are D1 (p < 0.01), D2 (0.01 ≤ p < 0.025), D3 (0.025 ≤ p < 0.05), and DNC
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INC (0.05 ≤ p < 0.1). D1, D2, and D3 indicate obvious decreases in vegetative productivity, whereas I1,
I2, and I3 represent increases. DNC and INC represent observable decreasing and increasing trends,
respectively, with statistical significance between 0.05 and 0.1. The NSC refers to an insignificant
statistical relationship in the trend of residual variation (p > 0.1).
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Figure 5. NDVI change direction (decrease/increase/no change) in different vegetation types determined
by TSS-RESTREND. (A: Xilingol; B: Hulunbuir).

The years in which NDVI changed can be determined by BFAST as shown in Figure 6. In Xilingol,
a change was detected after 2000, and before 2000 in Hulunbuir. These years were further confirmed
by the Chow-test and some of these breakpoints were canceled due to no significant structural change
to the ecosystem when double checked in the Chow-test.
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3.3. Method Comparison

We evaluated the effectiveness of the TSS-RESTREND method by plotting spatial differences
between TSS-RESTREND and a standard RESTREND or a trend in the raw LTA (NDVIts) (see Figure 7).
In Hulunbuir, there is no significant difference between TSS-RESTREND and the standard RESTREND
analysis of NDVI change, but in Xilinggol, some pixels in western areas that are greening could be
underestimated by the standard RESTREND.
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Figure 7. NDVI change difference between different methods in Xilingol and Hulunbuir. (A,B) The
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NDVI time series; (C,D) the results of TSS-RESTREND minus NDVImax trend which indicates to what
extent of NDVImax trend is attributed to rainfall changes.



Remote Sens. 2019, 11, 1014 11 of 18

4. Discussion

4.1. Performance of TSS-RESTREND, RESTREND, and LTA

In areas with low interannual climatic variability, vegetation phenology is relatively stable,
which means that breakpoints detected in the growth cycle using BFAST can be attributed to
disturbances [18,19] or maximum NDVI regression methods like LTA can acquire abnormal deviation
caused by human activities. However, with high interannual climatic variability, drought can lead
to significant natural changes in phenology, which makes the separation of natural variability from
environmental change complex [8,10,48]. Our results indicate that the LTA method can overestimate
the land degradation in the grasslands of Xilingol and Hulunbuir. Evaluation of land degradation in
this area without considering climatic variability would be incorrect [24]. Therefore, there is a need
for grassland degradation studies to isolate climatic effects, especially precipitation in water-limited
ecosystems, before drawing conclusions from trends in VI time series [40]. When using TSS-RESTREND,
less than 1% of the pixels were selected with breakpoints detection in Xilingol (none in Hulunbuir)
compared with RESTREND. These pixels indicated that there were significant structural changes in
the ecosystem in the specified year. The similar results between RESTREND and TSS-RESTREND in
Hulunbuir may result because NDVI changes cannot be derived from coarse remote sensing data [49].
Using finer resolution NDVI dataset may improve the accuracy of the land degradation analysis and
include more spatial details. Future studies are needed to explore the optimal spatial resolution or
pixel size in the application of the TSS-RESTREND analysis.

Although precipitation is considered as the main climatic driver for vegetation growth in our
study area [25], partial and joint effects of precipitation and air temperature on vegetation growth could
be different over precipitation zones and types of vegetation. For example, in our study area, some
change of vegetation types such as temperate deciduous shrubland (33% undetermined), temperate
deciduous open woodland (29% undetermined), and temperate herbaceous/sedge swamp meadow
(22% undetermined) cannot be determined by TSS-RESTREND in Xilingol (see Figure 5). In addition, the
TSS-RESTREND method did not work in areas of meadow steppe with temperate herbaceous meadow
with 23% undetermined in Hulunbuir (see Figure 5), as found in other studies [9,40]. A possible reason
may be the high soil moisture along rivers or for the forest-steppe on the slopes of mountain ranges
with meltwater in spring [9,40,50]. However, this low undetermined percentage does not influence our
understanding of vegetation change in the study areas.

4.2. Validity of Breakpoint Detection

Compared with standard RESTREND, TSS-RESTREND can detect breakpoints in ecosystem
changes with vegetation and precipitation relationships. The improved detection is only valid if the
breakpoints are real and not artifacts caused by noise in the dataset [8]. Burrell, Evans, and Liu [10]
also analyzed and compared different vegetation dataset impacts on land degradation and found the
GIMMS3g dataset caused significant errors in the trend over some of Australia’s dryland regions due
to sensor transition. Those problematic transition periods are from September 1994 to January 1995,
November 2000 and January 2009 [8]. However, more than 95% of the breakpoints we detected are not
at these times. For example, we showed a result of TSS-RESTREND in Figure 8. The breakpoint for
this pixel is in the year of 1993. The total change is calculated by adding the VPR break height (BH) to
the residual change (rc) with a total change for the pixel of −0.0144, which indicates land degradation.
However, the standard RESTREND has no change for this pixel, which verified that when degradation
occurred in the middle of the time series, RESTREND may lead to unreliable results. Based on those
breakpoint results shown in Figure 8, we further checked the surface reflectance in the pixel using
Landsat images in GEE, as shown in Figure 9, which is the same place as Figure 8.
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Figure 8. An example pixel from western Xilingol with a breakpoint in the VPR. The geographic
location of the pixel is (113.189◦E, 43.405◦N, 113.26◦E, 43.335◦N). (A) NDVImax vs. time. The vertical
red dotted line shows the position of the detected breakpoint (break year = 1993). (B) The change in
the VPR before (orange) and after (purple) the breakpoint. The dotted grey line represents the VPR
that was fitted to the data by a standard RESTREND and the black bar represents the break height
(BH = 0.0246). (C) The segmented RESTREND applied using the segmented VPR. The red bar indicates
the residual change (rc = −0.039). The total change is calculated by adding the VPR break height (BH)
to the residual change (rc). So the total change is T.C. = −0.0144.
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Figure 9. A breakpoint example validated in GEE for the same place as in Figure 8. All the images were
acquired in August. The polygon boundary (black box) marks the approximate extent of the NDVI
GIMMS pixel. The break year was detected by TSS-RESTREND in 1993 marked with a red line in the
NDVI time series chart. The combination used to create RGB composites of Landsat images are Near
Infrared, Red, and Green. The decrease of NDVI and degraded vegetation could be observed in the
time series images.

Although Abel et al. [17] found that the location and timing of the breakpoints (i.e., actually
simulated key moments of degradation) were more often correctly detected when applying BFAST
on the SeRGS time series as compared to the RESTREND residuals, visual interpretation of Landsat
optical images around breakpoints, and NDVI values verified that those breakpoints are valid in our
study area. For the example presented in Figures 8 and 9, the response of VPR is changed because of
successive precipitation decreases after the year of 1998, as shown in Figure 10. The rainfall shown in
Figure 10 is the optimal accumulated precipitation calculated as described in Section 2.3.1.
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However, some areas in Hulunbuir suffered from fires before 1990 [51]. The TSS-RESTERND
method cannot identify those breakpoints due to relatively small areas of fire scars compared with
coarse spatial resolution vegetation dataset.

4.3. Land Degradation

Most parts of our study areas had stable vegetation greenness in the study period, which is
confirmed by other methods [52]. Although many recent studies have focused on the indicators which
are used to define grassland degradation, there is still debate regarding the definition of grassland
degradation at different temporal and spatial scales [53]. Remote sensing based methods can capture
the greenness trend of vegetation, but we cannot be sure that degradation did not happen even if the
stable greenness exists. Hulunbuir et al. [53] conducted field investigations and analyses to compare
species composition between different times and their results showed that grasslands in the study area
were seriously degraded. Analyses of desertification and grasslands above ground biomass (AGB)
on a shorter time scale indicated that the grassland ecosystem was recovering, whereas analyses of
species composition indicated that the grassland ecosystem was degrading. We also estimated AGB
based on remote sensing and field data for forest management [54] and in this case the grassland AGB
as an indicator of grassland degradation would be our future research direction.

Land degradation derived from the RESTREND method varies with the temporal scale due to the
computation of the NDVI-rainfall regression and the residual trends. Although the BFAST method for
TSS-RESTREND can detect break years throughout the study period, the results of TSS-RESTREND
also depend on the temporal scale due to BFAST method on residuals.

Since 2000, ecological programs in China have been in place to reduce land degradation
and relieve human pressure on land by converting cropland to grassland. Our study areas with
implemented ecological programs have more vegetation gain, cropland retirement [55] or livestock
grazing limitation [9]. Analytical investigations and field observations indicated increasing trends in
vegetation cover and biomass production in Xilingol because of decreases in livestock production due
to grassland restoration policies [56,57], in which vegetation greenness increased during the study
period over typical western steppe and desert steppe in Xilingol (see Figures 2 and 3). Another possible
reason for the increased greenness may result from shrub encroachment in these grasslands [58], and
shrubland pixels can represent higher NDVI values than grassland pixels. For the pixels with decreased
NDVI in both areas, the main driver comes from overgrazing over the study period [9]. Although
other human activities, such as urbanization, must have played a significant role in developing the
spatiotemporal pattern of those land degradation, where the abrupt land cover change occurred.
RESTREND based method cannot be applied to these areas because the relationship between the
variations in the precipitation and vegetation can collapse when those abrupt land cover changes



Remote Sens. 2019, 11, 1014 15 of 18

occurred. However, there was a decreasing trend of mining area in Xilingol and Hulunbuir thanks to
the closing of many small-run businesses after 2010 [56].

5. Conclusions

This paper explores for eastern grasslands in China (Xilingol and Hulunbuir) the use of
TSS-RESTREND, an extended version of the RESTREND methodology that considers breakpoint
detection to identify pixels with abrupt ecosystem changes which violate the assumptions of a
standard RESTREND.

Our analysis found that 6% and 3% of the pixels decreased in greenness between 1984 and 2009,
80% and 73% had no significant change and 5% and 3% increased. The remaining 9% and 21% were
found to be indeterminate. A standard RESTREND may underestimate the greening trend in Xilingol,
but both TSS-RESTREND and RESTREND analysis had no significant difference in Hulunbuir. Further
work should be conducted for land degradation with TSS-RESTRREND in our study area using higher
spatial resolution time-series remotely sensed images.

TSS-RESTREND has its limitations for the application of land degradation. It cannot be used in
urbanized areas because the relationship between the variation in the precipitation and vegetation can
collapse when this kind of land cover change occurred, which indicates that TSS-RESTREND cannot
be used in abrupt change detection but gradual change. The current time series dataset covers from
1984 to 2009 and allows breakpoints detected only between 1987 and 2005. Changes occurring within
the first three years, or the last three years, of the time series, cannot be detected by TSS-RESTREND,
which indicates that the break detection procedure needs a relative learning period during which
changes from one stable steady-state to another one occurred.
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