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Abstract: A Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS)/Light
Detection and Ranging (LiDAR)-Simultaneous Localization and Mapping (SLAM) integrated
navigation system based on graph optimization is proposed and implemented in this paper.
The navigation results are obtained by the information fusion of the GNSS position, Inertial
Measurement Unit (IMU) preintegration result and the relative pose from the 3D probability map
matching with graph optimizing. The sliding window method was adopted to ensure that the
computational load of the graph optimization does not increase with time. Land vehicle tests were
conducted, and the results show that the proposed GNSS/INS/LiDAR-SLAM integrated navigation
system can effectively improve the navigation positioning accuracy compared to GNSS/INS and
other current GNSS/INS/LiDAR methods. During the simulation of one-minute periods of GNSS
outages, compared to the GNSS/INS integrated navigation system, the root mean square (RMS) of
the position errors in the North and East directions of the proposed navigation system are reduced
by approximately 82.2% and 79.6%, respectively, and the position error in the vertical direction and
attitude errors are equivalent. Compared to the benchmark method of GNSS/INS/LiDAR-Google
Cartographer, the RMS of the position errors in the North, East and vertical directions decrease by
approximately 66.2%, 63.1% and 75.1%, respectively, and the RMS of the roll, pitch and yaw errors are
reduced by approximately 89.5%, 92.9% and 88.5%, respectively. Furthermore, the relative position
error during the GNSS outage periods is reduced to 0.26% of the travel distance for the proposed
method. Therefore, the GNSS/INS/LiDAR-SLAM integrated navigation system proposed in this
paper can effectively fuse the information of GNSS, IMU and LiDAR and can significantly mitigate
the navigation error, especially for cases of GNSS signal attenuation or interruption.
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1. Introduction

With the rapid development of autonomous driving and intelligent robots, the demand for
navigation information with high data rates, high precision and all-weather features continues to
increase, especially in complex urban environments. Thus, a single navigation technique can hardly
meet the requirements for practical applications, and the synthesis of multiple navigation techniques
has become the development trend in navigation. Among the various synthesized navigation
techniques, the Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) integrated
navigation system, which is dominated by the INS and supplemented by the GNSS, is the most
popular. The characteristics of the GNSS and the INS are distinctively complementary: (1) generally,
information from GNSS and INS are effectively integrated via Kalman filtering [1]; and (2) INS largely
compensates for the shortcoming of GNSS, which is vulnerable to interference, while GNSS provides
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the periodic correction information for INS; hence, the synergy of the two techniques improves the
navigation performance. However, in areas where the GNSS signal is not available, the GNSS/INS
integrated navigation system relies on the performance of INS alone and experiences drifting errors.
In addition, for the low-cost MEMS (Micro-Electro-Mechanical System)-Inertial Measurement Unit
(IMU), the navigation errors will accumulate and increase rapidly over time. In the context of low-cost
integrated systems, image-based methodologies have also been explored, aiming at investigating the
impact of drifts and errors experienced with such techniques, like in [2,3]. In the field of computer
vision and robotics, Simultaneous Localization and Mapping (SLAM) technology is widely used for
navigation in unfamiliar environments. The SLAM system locates itself mainly according to position
estimation and a map during movement and builds up incremental maps based on the self-localization
to achieve independent positioning and navigation [4]. In recent years many excellent SLAM systems
based on a single sensor have been developed, such as LG-SLAM [5], IMLS-SLAM [6], SUMA [7] and
LOAM [8]. VINS [9] uses a tightly coupled, nonlinear optimization-based method to obtain highly
accurate visual-inertial odometry by fusing preintegrated IMU measurements and feature observations.
vLOAM [10] presents a general framework for combining camera and Light Detection and Ranging
(LiDAR). However, the errors of these SLAM systems, which are reduced mainly by the closed-loop
correction method, will also increase with the moving distance. In large-scale outdoor motion, SLAM is
less likely to form a closed-loop. Additionally, SLAM cannot provide absolute navigation information.
Therefore, the combination of the GNSS/INS integrated navigation system and SLAM will effectively
mitigate the navigation drift when the GNSS signal is not available, reduce the dependence of SLAM
on closed-loop correction and provide absolute navigation information to fulfill the complementary
advantages of the three techniques.

Generally, cameras and LiDAR are the two most common sensors for SLAM, and each of the two
types of sensors has strengths and weaknesses. Compared to the camera, LiDAR, despite a higher
cost and lower resolution, can directly obtain the structure information of environments and is hardly
influenced by light or weather. Therefore, in this paper, mechanical rotating LiDAR is adopted.

In order to estimate pose change from LiDAR measurements, there are about three different
categories of scan matching method: feature-based scan matching, point-based scan matching and
mathematical property-based scan matching [11]. The feature-based scan matching is matching
with some key elements which can be geometric primitives such as points, lines, and polygons, or
a combination thereof in the LiDAR data. The point-based scan matching directly searches and
matches the corresponding points in the LiDAR data. The Iterative Closest Point (ICP) algorithm and
its variants [12,13] are the most popular methods to solve the point-based scan matching problem.
The mathematical property-based scan matching can use various mathematical properties, such as the
Normal Distribution Transform (NDT) [14] or the probability grid [15] to depict scan data changes.
The feature-based scan matching method is efficient and accurate. But, it relies on features extracted
from the environment. It may fail to work properly in outdoor or indoor unconstructed environments.
The point-based scan matching method is accurate and independent of environment features. But, it
takes a long time because of the inevitable iteration [16]. Thereby in this paper, the probability grid
scan matching is used for the point cloud matching in the outdoor environment.

For data fusion in SLAM, there are mainly two methods: filtering and graph optimization.
The former is better than the latter in terms of calculation speed but inferior in accuracy [17]. Qian [18]
and Gao [16] used the EKF (extended Kalman filter) to perform a combination of GNSS, INS and
LiDAR-SLAM. Shamsudin [19] used particle filtering to combine GNSS with LiDAR-SLAM. There has
been increasing research on graph optimization in recent years. Kukko [20] used the graph optimization
method to combine the results of the GNSS/INS with a single-line LiDAR. Hess [15] implemented
2D-LiDAR navigation based on graph optimization. Pierzchała [21] used graph optimized 3D
LiDAR-SLAM for woods construction. Cartographer [22] completed a fusion of GNSS, 3D-LiDAR and
IMU based on graph optimization. However, it was assumed that the vehicle was moving at a low
speed and moved smoothly. Therefore, gravity is used to solve the horizontal attitude (i.e., roll and
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pitch), and error modelling for the IMU bias was ignored; the estimation of the vehicle’s velocity was
also ignored.

Considering the limitations of Cartographer and based on the Cartographer codes, a
GNSS/INS/LiDAR-SLAM integrated navigation system is implemented in this paper based on graph
optimization. First, the MEMS-IMU mechanization is applied to predict the motion of the vehicle
and provide the searching initial value for probability map scan matching with LiDAR in the
front-end. In the back-end, the GNSS position provides the absolute position constraint, while the
IMU preintegration [9,23] is applied to increase the motion constraints, and the LiDAR-SLAM scan
matching provides the relative pose constraints. Then, three information sources are combined by graph
optimization to obtain the final navigation positioning results. In addition, to keep the parameters of
the graph optimization invariant with time, a sliding window is applied to ensure the relative stability
of the graph optimization parameter number.

The remainder of the paper is organized as follows. In Section 2, the mathematical model of the
GNSS/INS/LiDAR-SLAM integrated navigation system is described. In Section 3, the land vehicle tests
are introduced. The experimental results are discussed in Section 4. Finally, in Section 5, conclusions
and future prospects are presented.

2. GNSS/INS/LiDAR-SLAM Integrated Navigation System

The GNSS/INS/LiDAR-SLAM integrated navigation system, an overview of which is shown in
Figure 1, mainly is comprised of two parts: scan matching in the front-end and graph optimization
in the back-end. In the front-end scan matching process, the point cloud acquired by LiDAR is first
filtered by a voxel filter. Then, with the MEMS-IMU mechanization result, a node is formed, and the
initial search value appears. Subsequently, probabilistic map scan matching is conducted for the node,
and the node coordinate is obtained in the local coordinate system. Then, the node that meets certain
conditions is selected to be inserted into the probability submap, and finally, the probability submap
is updated. In the back-end graph optimization process, the cost functions are constructed with the
GNSS position observation, the result of the IMU preintegration between two adjacent nodes and the
relative pose constraints between the nodes and submaps. A sliding window is applied to ensure the
relative stability of the number of optimized variables.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 24 
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Figure 1. System overview of Global Navigation Satellite System (GNSS)/Inertial Navigation
System (INS)/Light Detection and Ranging (LiDAR)-Simultaneous Localization and Mapping (SLAM)
integrated navigation.

2.1. Coordinate Frame

The GNSS/INS/LiDAR-SLAM integrated navigation system involves multiple coordinate systems,
and information fusion in different coordinate systems is needed. The coordinate systems and
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transformation formula used in the GNSS/INS/LiDAR-SLAM integrated navigation system are
given below.

2.1.1. Coordinate System

1. Inertial Coordinate System (i-frame)
The inertial coordinate system is a coordinate system that is invariant in space. The Earth’s inertial

coordinate system is usually used to study the motion of the vehicles near the Earth’s surface.
2. Earth-Centered Earth-Fixed Coordinate System (e-frame)

The Earth-centered Earth-fixed coordinate system rotates with the Earth, taking the Earth’s
centroid as the coordinate origin, and the X axis points to the intersection of the equator and the prime
meridian. The Earth’s rotation axis is taken as the Z axis, and the North Pole is the positive direction.
Then, the Y axis is perpendicular to the X-Z plane, forming a right-handed coordinate system.
3. World Coordinate System (w-frame)

The world coordinate system is used to express the GNSS positioning results. The origin is the
initial GNSS position, the X-Y plane is the local horizontal plane, with the X axis being the tangential
line of the latitude line that points east, and the Y axis is the tangential line of the longitude line that
points North. The Z axis is perpendicular to the X-Y plane, forming a right-handed coordinate system.
4. IMU Coordinate System (b-frame)

The IMU coordinate system moves with the vehicle, with the IMU barycenter as the coordinate
origin, the X axis points to the right along the IMU horizontal axis, the Y axis points forward along
the IMU longitudinal axis, and the Z axis is perpendicular to the X-Y plane, forming a right-handed
coordinate system.
5. LiDAR Coordinate System (l-frame)

The LiDAR coordinate system moves with the vehicle, with the LiDAR measurement center as
the coordinate origin, the X axis pointing to the right along the LiDAR horizontal axis, the Y axis
pointing forward along the LiDAR longitudinal axis, and the Z axis being perpendicular to the X-Y
plane, forming a right-handed coordinate system.
6. Map Coordinate System (m-frame)

The map coordinate system is used by LiDAR-SLAM. In this frame, the origin is located where
the SLAM is initialized, the X-Y plane is the local horizontal plane, the direction of the X axis is
indeterminate, and the yaw between the b-frame and m-frame is 0◦ on initialization.

2.1.2. Transformation Among Coordinate Systems

All the coordinate transformations in this paper are rigid body transformations. The rigid body
transformation from the a-frame to b-frame is defined as follows:

Rb
a =

(
pb

a, qb
a

)
(1)

where pb
a and qb

a are the translation and quaternion from the a-frame to b-frame, respectively.
The rigid body transformation operation is defined as follows:

Ra
b=

(
Rb

a

)−1
=

(
−

(
Cb

a

)T
· pb

a,
(
qb

a

)−1
)

vb= Rb
ava = Cb

ava + pb
a

Ra
c= Ra

bRb
c =

(
Ca

bpb
c + pa

b, qa
b ⊗ qb

c

) (2)

where Cb
a is the direction cosine matrix of qb

a and va is a vector in the a-frame.



Remote Sens. 2019, 11, 1009 5 of 21

2.2. Front-End Scan Matching

2.2.1. Pose Estimate

In the m-frame, the pose estimate starts from the origin, and the initial yaw between the
b-frame and m-frame is set to 0◦. The roll and pitch are initialized by gravity when the vehicle
is at rest at the beginning. Then, the velocity, position and attitude are updated by the following
MEMS-IMU mechanization.
1. Velocity Update

The IMU measures the angular rate
~
ω

b
ib between the b-frame and i-frame and the specific force

~
f

b
.

The velocity differential equation of the strapdown inertial navigation in the e-frame can be obtained
by the Coriolis’s theorem [24]:

.
ve

= Ce
bfb + ge

− 2ωe
ie × ve (3)

where ve is the velocity in the e-frame; Ce
b is the direction cosine matrix of the attitude from the b-frame

to the e-frame; ge is gravity in the e-frame; and ωe
ie is the angular rate between the e-frame and

the i-frame.
The algorithm in this paper aims at the low-cost MEMS-IMU, which has a gyro bias stability

that is relatively large (10◦/h in this paper) and is incapable of sensing the Earth’s rotation (15◦/h).
Therefore, the Earth’s rotation can be ignored, i.e., assumingωe

ie = 0, and Equation (4) is projected to
the m-frame as follows:

.
vm

= Cm
b fb + gm (4)

After the integral of Equation (4), the velocity update equation is obtained:

vm
b(tk)
=vm

b(tk−1)
+

∫ tk

tk−1

[
Cm

b (t) f b(t)
]
dt +

∫ tk

tk−1

gmdt (5)

where vm
b(tk)

is the velocity of the IMU in the m-frame at tk.
For vehicles travelling at medium or low speeds (less than 100 m/s), the angular rate and specific

force can be assumed to be constant during the IMU sampling interval; that is, according to the single
sampling hypothesis [25], the discrete form of Equation (5) is as follows:

vm
b(tk)

= vm
b(tk−1)

+ Cm
b(tk−1)

∆vb(tk−1)

b(tk)
+ gm∆tk

∆vb(tk−1)

b(tk)
= ∆vb

f ,tk
+

1
2

∆θtk × ∆vb
f ,tk

(6)

where ∆vb
f ,tk

and ∆θtk are the IMU outputs in incremental form with a bias compensation from tk−1 to
tk.

∆vb
f ,tk

=

∫ tk

tk−1

[
f̃ b(t) − ba(t)

]
dt

∆θtk=

∫ tk

tk−1

[
ω̃

b
ib(t) − bg(t)

]
dt

(7)

where ba and bg are the biases of the accelerometer and gyroscope, respectively.
2. Position Update

The position differential equation in the m-frame is as follows:

.
pm

= vm (8)
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The velocity at tk has been updated, so the position update can be accomplished with the average
velocity:

pm
b(tk)
=pm

b(tk−1)
+ vm

b(tk−1)
∆tk +

1
2

gm∆t2
k +

1
2

Cm
b(tk−1)

∆vb(tk−1)

b(tk)
∆tk (9)

where pm
b(tk)

is the position of the IMU in the m-frame at tk.
3. Attitude Update

The attitude is updated by the quaternion as follows [24]:

qm
b(tk)

= qm
b(tk−1)

⊗ qb(tk−1)

b(tk)

qb(tk−1)

b(tk)
=

 cos ‖0.5Φtk‖

sin ‖0.5Φtk ‖

‖Φtk ‖
Φtk

 (10)

where qm
b(tk)

is the quaternion from the b-frame to the m-frame at tk; and Φtk is the equivalent rotation
vector of the b-frame from tk−1 to tk. According to the single sampling hypothesis [25], we have the
following equation:

Φtk ≈ ∆θtk (11)

2.2.2. Local Registration

The LiDAR (VLP-16) used in this paper is a mechanical rotary system with a sampling rate of
300–1200 RPM (revolutions per minute). The interval of the two adjacent data packages is approximately
1.3 ms, and one circle of the point cloud contains approximately 154–38 packages. A point cloud circle
is used in the scan matching. Therefore, the point cloud data packages need to be spliced to form a
circle of point clouds based on the sampling time of a certain package.

Because the amount of point cloud data is relatively large, which affects the speed of point cloud
splicing and scan matching, the voxel filter [26] is needed for point cloud downsampling.

Considering the vehicle motion during point cloud collection, motion compensation is required
during splicing: here linear interpolation is used, given the factor f =

tn−tk−1
tk−tk−1

(tk−1 ≤ tn ≤ tk), ω =

arccos
(
qm

b(tk−1)
· qm

b(tk)

)
, then the position and attitude in the m-frame of the data package at tn is

interpolated according to Equation (12) [27] with the position and attitude of the IMU in the m-frame
that was obtained in Section 2.2.1. Then, a start time for splicing is selected, and the position and
attitude of the data packages within one rotation range are transformed into the relative position and
attitude to the start time, as well as the corresponding point cloud. Finally, one circle of the point
cloud with the motion compensation, which is recorded as a node, is obtained. The flow of the local
registration is shown in Figure 2.

Rm
b(tn)

=

(
pm

b(tk−1)
+

(
pm

b(tk)
− pm

b(tk−1)

)
f ,

sin(1− f )ω
sinω

qm
b(tk−1)

+
sin fω
sinω

qm
b(tk)

)
Rm

l(tn)
= Rm

b(tn)
Rb

l

(12)
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2.2.3. Probability Map

When the scan point is added to the probability map, the scan point is converted into a grid point
(such as the dark grey square in Figure 3), which has a probability value that is set as phit. The points
on the line that connect the scan point and the scan origin, which has a probability value that is set as
pmiss, are also converted into grid points (such as the light grey squares in Figure 3). To reduce the
calculation load, only parts of the points on the line are converted. If a grid point has been assigned,
the probability value is updated as Equation (13) [28]:

odds(p) = p
1−p

Mapnew(x) = odds−1[odds(Mapold(x)) × odds(p)]
(13)

where Map is the mapping function of the coordinates for the probability value of the point in the
probability map; and x represents the coordinates of the point cloud in the m-frame.
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For the convenience of expressing a wide ranging map, as well as the later optimization of the
pose, multiple submaps, each of which includes a probability map and the pose of the probability map
in the m-frame, are applied in this paper.

In the front-end scan matching period, two active submaps (such as the k− 1th and kth submaps
in Figure 4) are maintained. The nodes (such as the green nodes in Figure 4) are matched with the
k− 1th submap, and then, those nodes will be simultaneously inserted into the k− 1th and kth submaps.
When the number of nodes added in the kth submap reaches a certain threshold n, the k− 1th submap
whose probability value will not be updated is fixed. The subsequent nodes (blue nodes in Figure 4)
will be added to the kth submap, while the k + 1th submap is created with the pose of the n+1th node
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in the kth submap. The blue nodes are also added to the k + 1th submap. Thus, there are always two
active submaps, and half of the areas in the two adjacent submaps overlap.
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The value of the threshold n directly affects the precision in the front-end scan matching and the
number of parameters in the back-end graph optimization. On the one hand, if it is too small, the
submap range will be too small, the probability map will be inaccurate in expression, and therefore,
the scan matching accuracy will be reduced. The number of submap parameters in the back-end
graph optimization will increase, which affects the optimization efficiency. On the other hand, if
the threshold is too large, the submap range will be too large, the probability map will be incorrect
in the expression because submap formation is mainly through the front-end scan matching of the
probability map, and the matching accuracy will decrease as the mileage distance increases. Therefore,
the threshold should be moderate. In addition, the value of this threshold is directly related to the
vehicle’s speed and sampling rate of LiDAR. In this paper, the vehicle’s speed is approximately 10 m/s,
and the sampling rate of LiDAR is 600 RPM, while the parameter n is set to 100; that is, a submap is
created approximately every 10 m.

2.2.4. Nonlinear Correlative Scan Matching

The optimization pose can be obtained by solving the nonlinear least squares objective function
(Equation (14)) with the initial pose of the node in the m-frame obtained in Section 2.2.2. Ceres [29] is
used as the nonlinear optimization solver in this paper.

argmin
Rm

l

K∑
k=1

(
1−Mapsmooth

(
Rm

l pl
k

))2

(14)

where K is the point number contained in the node; and pl
k is the coordinate of the kth point in the

l-frame; and Mapsmooth is a smooth version of the Map by the tricubic interpolation [30].
To reduce the number of nodes inserted into the probability map when the vehicle moves slowly

or in static, the pose of the current node is compared with the pose of the previous node inserted into
the probability map. Only when a certain pose or time change threshold is achieved will the node be
added to the probability map. In this paper, the thresholds of the changes in displacement, yaw and
time are 0.5 m, 1◦ and 0.5 s, respectively.

2.3. Relative Pose Estimation

The estimation of relative pose, solving the relative pose between all nodes and relevant submaps
(the node can be successfully matched in the submap), offers constraints for graph optimization. To
reduce the number of nodes, the nodes participating in graph optimization are selected from those
inserted into the probability map in Section 2.2.4 with a time interval of 1 s. When a node participates in
the construction of the searched submap, the relative pose between the node and submap is calculated
directly by the node pose and the submap pose in the m-frame obtained in the front-end. Otherwise,
scan matching is performed again in the submap. If successfully matched, then regard the node as a
closed-loop and increase its weight in the graph optimization. The loss function is added to avoid
a false loop. The distance search step is the resolution of the submap, and the yaw search step is
the angle at which one grid is rotated by the longest distance of the points in the node. Within the
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distance and yaw search thresholds, a set of possible position searches and yaw searches is formed
according to the search step. Because the number of the set is relatively large, to quickly find the most
suitable solution, the branch and bound method [15,31] is adopted. Similar to Section 2.2.4, the result
of the search matching is taken as the initial value, the final node pose is obtained, and the relative
displacement and attitude of the node in the submap are further obtained.

2.4. Graph Optimization

The nonlinear optimization method is adopted in the back-end, with the parameter to be estimated
being χ (Equation (15)).

χ=
[
xt1 , xt2 · · · xtN , yt1

, yt2
· · · ytM

, Rw
m

]
xtk=

[
Rm

b(tk)
, vm

b(tk)
, ba(tk), bg(tk)

]
, k ∈ [1, N]

ytk
=

[
Rm

s(tk)

]
, k ∈ [1, M]

(15)

where xtk is composed of the pose and velocity of the IMU in the m-frame and the bias of the
accelerometer and gyroscope at tk; N is the number of nodes; ytk

is the pose of submap in the m-frame
at tk; and M is the number of submaps.

The cost functions are as follows:

argmin
χ



∑
i∈α

E2
gnss

(
xti , Rw

m, pw
g(ti)

, lbg, σp

)
+

N−1∑
k=1

E2
imu

(
xtk , xtk+1 , ztk

tk+1
, σz

)
+

∑
i ∈ β
j ∈ κ

E2
lidar

(
xti , yt j , Rb

l , R
s(t j)

l(ti)
, σi j

)


(16)

where E2
gnss is the GNSS cost function; pw

g is the GNSS positioning result in the w-frame; lb
g is the

lever arm of the GNSS antenna; σp is the standard deviation of pw
g ; α is the set of nodes with the

GNSS positioning result; E2
imu is the IMU preintegration cost function; ztk

tk+1
is the preintegration result

between the tk node and the tk+1 node; σz is the standard deviation of z; E2
lidar is the LiDAR cost

function; R
s(t j)

l(ti)
is the relative pose of the node l(ti) and the submap s

(
t j
)
; σi j is the standard deviation

of R
s(t j)

l(ti)
; β is the set of nodes; and κ is the set of submaps.

2.4.1. Sensor Calibration

The sensor calibration is important in multi-sensor fusion. The lever arm of the GNSS antenna lb
g

and the translation pb
l between the IMU and the LiDAR are measured with a tape measure. For the

quaternion qb
l between the IMU and the LiDAR, it is added toχ and estimated according to Equation (32)

by using approximately 15 min of data in good GNSS signal area.

2.4.2. GNSS Cost Function

The latitude, longitude and height given by the GNSS solution are first converted into the e-frame
coordinates. Then, the e-frame coordinates are converted into those in the w-frame [32]. Finally, the
absolute position modified cost function of the GNSS at ti is formed in the w-frame as Equation (17):

E2
gnss

(
xti , Rw

m, pw
g(ti)

, lb
g,σp

)
= e

(
xti , Rw

m, pw
g(ti)

, lb
g

)T(
σ2

p

)−1
e
(
xti , Rw

m, pw
g(ti)

, lb
g

)
e
(
xti , Rw

m, pw
g(ti)

, lb
g

)
= Rw

m

(
Rm

b(ti)
lb
g

)
− pw

g(ti)

(17)
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In this paper, the sampling rate of the GNSS is 1 Hz, so the GNSS solution result is at the integer
second moment. To make x exist at the integer second moment, the data package close to the integer
second moment is selected as the splicing starting point for the point cloud splicing in Section 2.2.2,
and the difference between the package time and the integer second moment is ignored.

2.4.3. IMU Preintegration Cost Function

According to Equations (6), (9) and (10), the recursion relationship of the position, velocity and
attitude of the IMU in the m-frame between ti−1 and ti can be obtained as Equation (18):

vm
b(ti)

= vm
b(ti−1)

+ Cm
b(ti−1)

vb(ti−1)

b(ti)
+ gm∆ti

pm
b(ti)

= pm
b(ti−1)

+ vm
b(ti−1)

∆ti +
1
2 gm∆t2

i +
1
2 Cm

b(ti−1)
vb(ti−1)

b(ti)
∆ti

qm
b(ti)

= qm
b(ti−1)

⊗ qb(ti−1)

b(ti)

(18)

Then, the preintegration form (Equation (19)) is built up according to Equation (18) [9].

vb(ti−1)

b(ti)
= Cb(ti−1)

m vm
b(ti)
−Cb(ti−1)

m

(
vm

b(ti−1)
+ gm∆ti

)
pb(ti−1)

b(ti)
= Cb(ti−1)

m pm
b(ti)
−Cb(ti−1)

m

(
pm

b(ti−1)
+ vm

b(ti−1)
∆ti +

1
2 gm∆t2

i

)
qb(ti−1)

b(ti)
= qb(ti−1)

m ⊗ qm
b(ti)

(19)

where pb(ti−1)

b(ti)
= 1

2 vb(ti−1)

b(ti)
∆ti, vb(ti−1)

b(ti)
and qb(ti−1)

b(ti)
are the preintegration form of the increments in position,

velocity, and attitude, which are independent of the pose at the starting point of the integration and
are only related to the original output and the IMU bias. Therefore, the preintegration form of the
increments in position, velocity, and attitude between the tk−1 node and the tk node can be obtained by
the recursive formula Equation (20):

vb(tk−1)

b(tk−1)
= 0, pb(tk−1)

b(tk−1)
= 0, qb(tk−1)

b(tk−1)
= I

vb(tk−1)

b(ti+1)
= vb(tk−1)

b(ti)
+ Cb(tk−1)

b(ti)
vb(ti)

b(ti+1)

pb(tk−1)

b(ti+1)
= pb(tk−1)

b(ti)
+ 1

2 Cb(tk−1)

b(ti)
vb(ti)

b(ti+1)
∆ti+1

qb(tk−1)

b(ti+1)
= qb(tk−1)

b(ti)
⊗ qb(ti)

b(ti+1)

(20)

where ti is the IMU sampling moment between tk−1 and tk, ti ∈ [tk−1, tk].
The IMU data at tk−1 and tk are obtained by linear interpolation. Assuming that the bias between

the two adjacent nodes does not change, the original outputs of the IMU between tk−1 and tk are
compensated for using the bias at tk−1 by Equation (7).

So the preintegration result ztk−1
ti

is showed as Equation (21):

ztk−1
ti

=
[

pb(tk−1)

b(ti)
vb(tk−1)

b(ti)
qb(tk−1)

b(ti)

]T
(21)

Then the covariance of ztk−1
tk

is discussed. Because qb(tk−1)

b(ti)
is over-parameterized, its error term can

be defined as Equation (22) [9]:

qb(tk−1)

b(ti)
≈ q̂b(tk−1)

b(ti)
⊗

 1
1
2δθ

b(tk−1)

b(ti)

 (22)

where δθb(tk−1)

b(ti)
is the error of q̂b(tk−1)

b(ti)
in the form of equivalent rotation vector.
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The accelerometer observation error δfb and gyroscope observation error δωb
ib include the bias

and white noise:
δfb= ba + wa

δωb
ib= bg + wg

(23)

where wa and wg are the white noises of the accelerometer and gyroscope observations, respectively.
The bias error is modeled as the first-order Gauss Markov process [25], which is shown as

Equation (24):
δ

.
ba = −δba/τa + wca

δ
.
bg = −δbg/τg + wcg

(24)

where τ and wc are the correlation time and white noise of the first-order Gauss Markov
process, respectively.

The differential equation for the error terms of the preintegration result can be derived from
Equation (20) and Equation (24) [33], which is shown as Equation (26):

δ
.
ztk−1

ti
= F(ti)δztk−1

ti
+ G(ti)w(ti) (25)

where

F(ti) =



0 I 0 0 0

0 0 −Cb(tk−1)

b(ti)

[
fb(ti)×

]
Cb(tk−1)

b(ti)
0

0 0 −

[
ω

b(ti)

ib(ti)
×

]
0 I

0 0 0 −1/τa 0
0 0 0 0 −1/τg


δztk−1

ti
=

[
δpb(tk−1)

b(ti)
δvb(tk−1)

b(ti)
δθ

b(tk−1)

b(ti)
δba δbg

]T

G(ti) =



0 0 0 0

Cb(tk−1)

b(ti)
0 0 0

0 I 0 0
0 0 I 0
0 0 0 I


w(ti) =

[
wa wg wca wcg

]T

(26)

The discrete form of Equation (25) is Equation (27) [34]:

δztk−1
ti+1

= Φi+1,iδztk−1
ti

+ Wti (27)

where
Φi+1,i≈ F(ti+1)∆ti+1 + I

Wti=

∫ ti+1

ti

Φi+1,τG(τ)w(τ)dτ
(28)

The variance matrix Ptk−1 of δztk−1
tk−1

is set to 0, and P is updated as follows [34]:

Pti+1= Φi,i−1Pti Φ
T
i,i−1 + Qti

Qti
=

1
2

[
Φi,i−1G(ti−1)qti−1

G(ti−1)
T + G(ti−1)qti−1

G(ti−1)
T

ΦT
i,i−1

]
∆ti

(29)

where Q is the variance matrix of W; and q is the variance matrix of w.
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When the bias estimate changes slightly, a first-order approximation of pb(tk−1)

b(tk)
, vb(tk−1)

b(tk)
and qb(tk−1)

b(tk)

can be used to correct the preintegration result as Equation (30) instead of re-propagation [9].

~
v

b(tk−1)

b(tk)
= vb(tk−1)

b(tk)
+ Φv

ba
δba + Φv

bg
δbg

~
p

b(tk−1)

b(tk)
= pb(tk−1)

b(tk)
+ Φ

p
ba
δba + Φ

p
bg
δbg

~
q

b(tk−1)

b(tk)
= qb(tk−1)

b(tk)
⊗

 1
1
2 Φ

q
bg
δbg


(30)

where Φv
ba

is the sub-block matrix in Φk,k−1 whose location is corresponding to δv
δba

.The same meaning
is also used for Φv

bg
, Φ

p
ba

, Φ
p
bg

, Φ
q
bg

.
Finally, the IMU preintegration cost function is obtained with Equation (31):

E2
imu

(
xtk−1 , xtk , ztk−1

tk
,σz

)
= e

(
xtk−1 , xtk , ztk−1

tk

)T(
σ2

z

)−1
e
(
xtk−1 , xtk , ztk−1

tk

)

e
(
xtk−1 , xtk , ztk−1

tk

)
=



Cb(tk−1)
m

(
pm

b(tk)
− pm

b(tk−1)
− vm

b(tk−1)
∆tk +

1
2 gm∆t2

k

)
−

~
p

b(tk−1)

b(tk)

Cb(tk−1)
m

(
vm

b(tk)
− vm

b(tk−1)
+ gm∆tk

)
−

~
v

b(tk−1)

b(tk)

2
[((

qm
b(tk)

)−1
⊗ qm

b(tk−1)

)
⊗

~
q

b(tk−1)

b(tk)

]
xyz

ba(tk) − ba(tk−1)

bg(tk) − bg(tk−1)


(31)

where σ2
z is the variance covariance matrix of the preintegration variable, σ2

k = Ptk . [q]xyz is the
equivalent rotation vector of q.

2.4.4. LiDAR Cost Function

The relative pose between the node l(ti) and the submap s
(
t j
)

and variance matrix are calculated
in Section 2.3. The LiDAR cost function is obtained with Equation (32) [22]:

E2
lidar

(
xi, y j, Rb

l , R
s(t j)

l(ti)
,σi j

)
= e

(
xi, y j, Rb

l , R
s(t j)

l(ti)

)T(
σ2

i j

)−1
e
(
xi, y j, Rb

l , R
s(t j)

l(ti)

)

e
(
xi, y j, Rb

l , R
s(t j)

l(ti)

)
=


(
Cm

s(t j)

)−1[
pm

b(ti)
+ Rm

b(ti)
pb

l − pm
s(t j)

]
− p

s(t j)

l(ti)[(
qm

b(ti)
⊗ qb

l

)−1
⊗ qm

s(t j)
⊗ q

s(t j)

l(ti)

]
xyz


(32)

2.4.5. Sliding Window

In the back-end graph optimization, the submaps and nodes will remarkably increase with time,
considering the amount of optimization calculation. Therefore, it is necessary to limit the number of
optimization variables and selectively remove some historical variables while adding new variables.

The sliding window [35] is applied in this paper to ensure that the computation amount does not
increase as the optimization variable increases. A fixed number of submaps and variables of related
nodes are saved in the sliding window. When a submap is added, the oldest submap and related node
variables in the sliding window are discarded; thus, the number of submaps in the sliding window
remains fixed.

However, if the variables are directly removed, there will be a loss of information, and the nodes
associated with the discarded submap may also be related to other submaps in the sliding window.
Therefore, the direct discarding method eliminates these constraints.
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The cost function e in the graph optimization is nonlinear, and the nonlinear least squares problem
can be obtained by linear iteration as follows:

Hδχ = y (33)

where H=JTWJ and y=JWe; J is the Jacobian matrix; and W is the weight matrix.[
Ha Hb
HT

b Hc

][
δχa
δχb

]
=

[
ya
yb

]
(34)

χa must be marginalized, while χb is retained. After Scherer’s elimination [36], we obtain
Equation (35).

Hd= Hc −HT
b H−1

a Hb[
Ha Hb
0 Hd

][
δχa
δχb

]
=

[
ya

yb −HT
b H−1

a ya

] (35)

According to Equation (35), the residual δχb of the reserved variable χb can be obtained. In
this process, the information of the marginalized variable χa is utilized; that is, the constraint is not
discarded, and a marginalize cost function (Equation (36)) is added to the graph optimization to
introduce constraints on marginalized variables [37].

E2
marg

(
Hd,χb,

~
χb, δχb

)
= e

(
Hd,χb,

~
χb, δχb

)T
e
(
Hd,χb,

~
χb, δχb

)
e
(
Hd,χb,

~
χb, δχb

)
= Hd

(
χb −

~
χb

)
+ δχb

(36)

where
~
χb is the estimated value of χb in the residual calculation.

The size of the sliding window affects the efficiency and precision of the graph optimization, and
this sizing is necessary to ensure an adequate amount of submaps. The sliding window size used in
this paper is 5.

3. Experiment

To verify the performance of the proposed GNSS/INS/LiDAR-SLAM integrated navigation system,
land vehicle tests were conducted in Wuhan on September 7, 2018. In addition to VLP16 and the
tested system (NV-POS1100), the vehicle was equipped with a higher precision inertial integrated
navigation system (LD-A15) as the reference system in the tests, as shown in Figure 5. Table 1 gives
the technical parameters of the two systems. The sampling rate of GNSS was 1 Hz, the sampling
rate of LiDAR was 600 RPM, and the sampling rate of IMU was 200 Hz. All the test data has been
shared on OneDrive (https://whueducn-my.sharepoint.com/:f:/g/personal/changlesgg_whu_edu_cn/

EsN45ma2spBMmC37pafR3Q0BdeMuD_hb1uBc3gsQERu-uw?e=KOwhwe).
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Table 1. Technical Parameters of LD-A15 and NV-POS1100.

IMU
Bias Random Walk

Gyro. [◦/h] Acc. [mGal] Angular [◦/
√

h] Velocity [m/s/
√

h]

LD-A15
(Reference system) 0.02 15 0.003 0.03

NV-POS1100
(Tested system) 10 1000 0.2 0.18

In the case of continuous GNSS position correction, the GNSS/INS integrated navigation system
carries out observational updates with the GNSS position. The navigation accuracy, especially the
position accuracy, is mainly determined by the GNSS positioning accuracy. Therefore, the accuracy
assessment of the GNSS/INS integrated navigation system is achieved by investigating the navigation
error during GNSS signal interruption. In this paper, the accuracy of the GNSS, IMU, and LiDAR-SLAM
integrated navigation system was evaluated in the same way.

Three tests (approximately one hour for each test) were carried out in an open-sky environment, and
one test was conducted in urban areas. The test trajectories are shown in Figures 6 and 7. The reference
system (LD-A15) data were processed with the PPK (Post Processed Kinematic)/INS smoothing
integration method. The results were converted to the center of the tested system (NV-POS1100) as
the reference value of its position and attitude. Then, one minute of GNSS outage every six minutes
was intentionally introduced into the PPK results of the reference system to simulate the GNSS
signal interruption (all satellites’ signals were lost and recovered at the same time). Thereafter, the
GNSS/INS/LiDAR-SLAM integrated method described above was performed with the PPK result
involving GNSS outages, the tested system data and the VLP16 data. For the purpose of comparison,
the GNSS/INS integration method and the Cartographer’s GNSS/LiDAR/IMU integrated navigation
method were also conducted. Then, the navigation errors of the three methods during the GNSS outage
were compared. Finally, the same comparative analysis was carried out with the data collected in urban
areas, where signal attenuation and outage occur frequently, as shown in Figure 8. The performances
of the three methods can be compared by checking the positioning drifts in the real GNSS signal
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4. Results and Discussion

The position and attitude errors of the three methods with the one minute’s GNSS outage
simulation test #2 are shown in Figures 9–11. The grey span in the figures marks the periods of
simulating the GNSS outages. Based on the position and attitude errors in the GNSS outages, the
following can be observed:

(1). For the horizontal position error (i.e., in the North and East directions), the proposed
GNSS/INS/LiDAR-SLAM integrated navigation system was the smallest, and the GNSS/INS
integrated navigation system was the largest. The vertical position error of the proposed
GNSS/INS/LiDAR-SLAM integrated navigation system was similar to the GNSS/INS integrated
navigation system, and Cartographer had the largest vertical position error. In the sixth outage
when the vehicle was at rest, the Cartographer and GNSS/INS/LiDAR-SLAM integrated navigation
system significantly reduced the horizontal positioning drift with the aid of the LiDAR-SLAM
compared to the GNSS/INS integrated navigation system.

(2). Cartographer had the largest attitude error, especially in the roll and pitch, which is because
Cartographer assumes low dynamic motion of the vehicle and uses gravity to solve the
horizontal attitude (similar to the inclinometer principle). The attitude error of the proposed
GNSS/INS/LiDAR-SLAM integrated navigation system was equivalent to that of the GNSS/INS
integrated navigation system.
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In the three open-sky tests, a total of 26 GNSS outages were simulated. Based on the error statistics
in Table 2, the following information can be obtained by comparison with the GNSS/INS integrated
navigation system:

(a) The position error RMS in the North, East and vertical directions of the proposed
GNSS/INS/LiDAR-SLAM navigation system was reduced by 82.2%, 79.6%, and 17.2%, respectively.
The Cartographer’s North and East position error RMS was reduced by 47.4% and 44.8%,
respectively, but the vertical position error RMS is degraded by 2.3 times.

(b) The aid of the LiDAR-SLAM did not significantly improve the attitude accuracy in the
GNSS/INS/LiDAR-SLAM integrated navigation system. The RMS values of the Cartographer’s
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roll, pitch and yaw errors were increased by 9.5, 13.7, and 7.2 times, respectively, because of the
dedicated algorithm design for low speed and smooth motion, which does not fit the test cases in
this paper.

Table 2. Errors statistics for the GNSS outage simulation tests.

Position Error [m] Attitude Error [◦]
N E D R P Y

Proposed
GNSS/INS/LiDAR-SLAM

RMS 0.943 1.114 0.721 0.151 0.182 0.213
MAX 3.212 3.161 1.112 0.234 0.253 0.323

GNSS/INS RMS 5.298 5.469 0.871 0.136 0.175 0.225
MAX 12.475 11.328 2.185 0.197 0.217 0.562

Cartographer RMS 2.789 3.019 2.898 1.438 2.589 1.865
MAX 4.835 4.439 4.169 2.320 3.602 2.896

The relative position errors (i.e., percentage of position error over travel distance) in the GNSS
outages are shown in Figure 12. The left y axis corresponding to the dotted lines in the figure is
the relative position error of the three methods, and the right y axis corresponding to the strip is
the travel distance in the GNSS outage. In the 16th outage (that is, the sixth outage in test #2, as
shown in Figures 9–11), the vehicle was at rest, and the relative position error was not calculated.
The average relative position errors of the GNSS/INS/LiDAR-SLAM integrated navigation system,
GNSS/INS integrated navigation system and Cartographer were 0.26%, 1.46%, and 0.92% of the travel
distance, respectively. The aid of LiDAR-SLAM effectively reduces the relative position error in the
GNSS outages.
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Based on the GNSS outage simulation tests, the aid of LiDAR-SLAM can effectively reduce
the position accuracy when the GNSS is unavailable. The horizontal position accuracy of the
GNSS/INS/LiDAR-SLAM integrated navigation system and Cartographer was better than that of the
GNSS/INS integrated navigation system. However, the Cartographer’s height and attitude error was
greater than that of the GNSS/INS integrated navigation system. The reason is that Cartographer
assumes that the vehicle moves at a low speed with a small acceleration; therefore, gravity is used to
estimate the horizontal attitude, and the modelling for the bias of the IMU is ignored. Thus, during the
tests in this paper, the horizontal attitude error and the vertical position error of Cartographer were
relatively large.

In addition to the open-sky tests with simulated GNSS outage results, the trajectories of the
three methods and the reference truth in the urban area test are shown in Figure 13. According to
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Figure 8, there were approximately 150 s of poor satellite signals in the test, and the GNSS positioning
quality is generally unstable. The position and attitude errors are shown in Figures 14–16, and the
statistics for these errors are shown in Table 3. Similar to the three GNSS outage simulation tests, the
GNSS/INS/LiDAR-SLAM integrated navigation system had the best positional accuracy. Because of
the poor quality of GNSS positioning for a long time, the GNSS/INS integrated navigation system had
a large yaw drift error in addition to the large position error compared to the GNSS/INS/LiDAR-SLAM
integrated navigation system and Cartographer. Therefore, the aid of LiDAR-SLAM can also improve
the yaw accuracy for very tough scenarios.
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Figure 16. Position and attitude errors of Cartographer in the urban area test. 

Table 3 Error statistics for the urban area test. 

  Position Error [m] Attitude Error [°] 
  N E D R P Y 

Proposed GNSS/INS/LiDAR-

SLAM 

RMS 0.615 1.105 0.198 0.099 0.083 0.166 

MAX 1.635 3.328 0.707 0.215 0.142 0.323 

GNSS/INS 
RMS 2.031 11.757 2.389 0.116 0.160 1.375 

MAX 10.338 45.485 8.499 0.223 0.253 2.910 

Cartographer 
RMS 1.051 1.395 0.463 0.780 2.042 0.867 
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Table 3. Error statistics for the urban area test.

Position Error [m] Attitude Error [◦]
N E D R P Y

Proposed
GNSS/INS/LiDAR-SLAM

RMS 0.615 1.105 0.198 0.099 0.083 0.166
MAX 1.635 3.328 0.707 0.215 0.142 0.323

GNSS/INS RMS 2.031 11.757 2.389 0.116 0.160 1.375
MAX 10.338 45.485 8.499 0.223 0.253 2.910

Cartographer RMS 1.051 1.395 0.463 0.780 2.042 0.867
MAX 2.891 5.166 1.488 2.517 3.427 1.637

A solution of GNSS/LiDAR/INS navigation is demonstrated in this paper and verified by
the real-world tests. There are not too much complicated theoretical conclusions, such as the
observability, which should be validated by controllable simulation data have been proposed in
this paper. And because in the simple and controllable simulated environment, error models and
parameters are clear, the algorithms always get a good result than in real scenarios and it’s not
persuasive. Consequently, to indicate the performance of this solution, the data collected in real-world
scenarios is convincing and this is the only data source in this paper. In addition, the system in this
paper requires the raw LiDRA data, which is not easy to simulate.

The results of the four vehicle tests (three open-sky and one urban street) have shown that the
position and attitude accuracy of the proposed GNSS/INS/LiDAR-SLAM integrated navigation system
is the best, especially in a weak or blocked GNSS signal environment. Cartographer has the largest roll,
pitch and elevation errors because the motion model of the algorithm is only suitable for low-speed
motion. Due to the lack of aiding information, the GNSS/INS integrated navigation system gradually
degrades the position and attitude when GNSS is not available, and LiDAR-SLAM assistance can play
a significant role in maintaining navigation accuracy.

5. Conclusions

In this paper, a GNSS/INS/LiDAR-SLAM integrated navigation system is proposed.
The MEMS-IMU mechanization is applied for pose estimation. Through graph optimization, the GNSS
position, IMU preintegration results and the relative pose obtained from LiDAR scan matching are fused.
In addition, the use of a sliding window ensures that the computational load of the graph optimization
does not increase with time. The vehicle tests show that the GNSS/INS/LiDAR-SLAM integrated
navigation system can effectively reduce the position errors in the horizontal directions during the GNSS
outage periods compared with the GNSS/INS integrated navigation system. For the position error in
the vertical direction and the attitude error, the two systems perform similarly. In addition, compared
with the benchmark method of GNSS/INS/LiDAR-Google Cartographer, the use of the IMU information
in the proposed algorithm is more reasonable and sufficient, thus improving both the position and
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attitude accuracies. Finally, the relative position error of the proposed GNSS/INS/LiDAR-SLAM
method during the GNSS outage was reduced from 1.46% (GNSS/INS) to 0.92% (Cartographer) to
0.26% of the travel distance.

For future works, the GNSS/INS/LiDAR integrated navigation system in this paper cannot yet
eliminate the dynamic objects from the environment. Therefore, it is necessary to add the recognition
and elimination mechanism of dynamic objects in the environment. Furthermore, a procreated
background map may be added to improve the robustness and navigation positioning accuracy of the
integrated navigation system, such as for applications for autodrive and mobile robots.
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