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Abstract: Hyperspectral pansharpening is an effective technique to obtain a high spatial resolution
hyperspectral (HS) image. In this paper, a new hyperspectral pansharpening algorithm based on
homomorphic filtering and weighted tensor matrix (HFWT) is proposed. In the proposed HFWT
method, open-closing morphological operation is utilized to remove the noise of the HS image,
and homomorphic filtering is introduced to extract the spatial details of each band in the denoised
HS image. More importantly, a weighted root mean squared error-based method is proposed to
obtain the total spatial information of the HS image, and an optimized weighted tensor matrix based
strategy is presented to integrate spatial information of the HS image with spatial information of the
panchromatic (PAN) image. With the appropriate integrated spatial details injection, the fused HS
image is generated by constructing the suitable gain matrix. Experimental results over both simulated
and real datasets demonstrate that the proposed HFWT method effectively generates the fused HS
image with high spatial resolution while maintaining the spectral information of the original low
spatial resolution HS image.

Keywords: Hyperspectral pansharpening; homomorphic filtering; weighted tensor matrix;
hyperspectral image; open-closing morphological

1. Introduction

Depending on the number of acquired bands, remote sensing imaging technology has developed
from collecting panchromatic (PAN) and color images to multispectral (MS) images, and it can now
capture hyperspectral (HS) images with dozens of hundreds of bands. A PAN image with very high
spatial resolution is a single-band grayscale image acquired in the visible range. It is able to obtain the
shape feature of objects, but cannot distinguish colors. A color image consists of three bands which are
red, green and blue, and displays the colors of objects. However, it is difficult to distinguish the features
in similar colors. An MS image not only obtains spatial features, but also obtains spectral information
in several bands, which is more capable of distinguishing categories of different features. However,
the rough spectral resolution of MS images may not meet the requirements in some applications, and it
is hard to realize fine feature detection [1]. An HS image with a higher spectral resolution on the order
of nanometers can provide finer classification [2], which has been applied to many fields [3–7] and
some practical applications, such as vegetation study [8], precision agriculture [8], regional geological
mapping [9], mineral exploration [10], and environment monitoring [11]. Due to technical limitations,
the spatial resolution of an HS image is low.
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As both high spatial and spectral resolutions are important in practical applications, obtaining a
high spatial resolution HS (HRHS) image is crucial. One effective way is to perform hyperspectral
pansharpening, which fuses a high spatial resolution PAN (HRPAN) image with a low spatial resolution
HS (LRHS) image. Figure 1 shows the concept of hyperspectral pansharpening.
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Many hyperspectral pansharpening algorithms were developed, among which hyperspectral
pansharpening methods using Bayesian and matrix factorization have been proposed in recent
years. The Bayesian-based approaches include Bayesian naive Gaussian prior [12], Bayesian sparsity
promoted Gaussian prior [13], and HySure [14]. These algorithms utilize the posterior distribution,
and are based on maximum a posteriori estimation to fuse LRHS and HRPAN images [15]. The
matrix factorization approach generates a fused HRHS image by using the nonnegative matrix
factorization (NMF) under some constraints to estimate endmember and abundance matrices [16].
The matrix factorization approach is well represented by the nonnegative sparse coding (NNSC) [17]
and constrained nonnegative matrix factorization (CNMF) [18] methods. The main challenge in
hyperspectral pansharpening is to effectively improve the spatial resolution while preserving the
original spectral information. The Bayesian and matrix factorization approaches are able to achieve
good results on this challenge, but have a high computational cost.

Component substitution (CS) and multi-resolution analysis (MRA) approaches are two classical
hyperspectral pansharpening approaches which have simple and fast implementation. For the CS class,
intensity-hue-saturation (IHS) transform [19,20], principal component analysis (PCA) transform [21,22],
Gram–Schmidt (GS) [23], and adaptive GS (GSA) [24] are the most representative methods. The
CS class extracts spatial details of the HS image, and replaces the extracted spatial details with the
HRPAN image. Regardless of superior spatial performance, the CS class suffers from serious spectral
distortion [25]. The typical algorithms of the MRA technique are smoothing filter based intensity
modulation (SFIM) [26], Laplacian pyramid [27], modulation transfer function generalized Laplacian
pyramid (MTF-GLP) [28], and MTF-GLP with high pass modulation (MTF-GLP-HPM) [29]. The
MRA methods generally utilize a multi-resolution decomposition to extract spatial details which are
imported into the HS image. Compared with the CS methods, the MRA methods generate less spectral
distortion, but usually have a larger computational burden [30]. Recently, several algorithms based
on the CS and MRA approaches have been proposed, such as the Sentinel-2A CS and MRA based
sharpening algorithm [31], the multiband Filter estimation (MBFE) algorithm [32], and the guided filter
PCA (GFPCA) algorithm [33]. Moreover, several intelligent processing-based methods have also been
proposed, and examples include deep two-branches convolutional neural network (Two-CNN-Fu) [34],
Bidirectional Pyramid Network [35], and 3D-convolutional neural network (3D-CNN) [36].
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The CS and MRA approaches mostly extract the spatial information of the HRPAN image and
inject it into the LRHS image, but without considering the spatial information of the LRHS image.
Due to the incomplete spatial information injection, the CS and MRA approaches may result in
distortion. To address this problem, we propose a novel hyperspectral pansharpening method by
combining homomorphic filtering with a weighted tensor matrix. An optimized weighted tensor
matrix-based method which considers the structure information of the LRHS and HRPAN images
is proposed to generate more comprehensive spatial information. In addition, to extract the spatial
structure information of the LRHS images, open-closing morphological operation is first used for
noise removal, and homomorphic filtering is then introduced to extract the spatial details of each
band. Finally, a weighted root mean squared error based method is proposed to obtain the total spatial
component of the LRHS image from extracted spatial details of each band, and the Laplacian pyramid
networks super-resolution algorithm is adopted to enhance the spatial resolution of the obtained
spatial component. Comparative analysis was used to demonstrate the applicability and superiority of
the proposed method in both spectral and spatial qualities.

As stated above, a new hyperspectral pansharpening method based on homomorphic filtering and
weighted tensor matrix is proposed in this paper. The main novelties of the proposed hyperspectral
pansharpening method are concluded in the following aspects.

1. A novel HS image spatial component extraction strategy is proposed. Open-closing morphological
operation and homomorphic filtering are first introduced to remove the noise and extract the
spatial details of each band of the HS image, respectively. Then, a weighted root mean squared
error-based method is proposed to obtain the total spatial component of the HS image.

2. An optimized weighted tensor matrix-based method is proposed to integrate the spatial component
of the HS image with the spatial component of the PAN image. The weighted structure tensor
matrix that represents the structural information of multiple images is applied to hyperspectral
pansharpening for the first time. The classical methods which mostly extract the spatial information
of the PAN image inject the incomplete spatial information, and may lead to distortion. Unlike
there classical methods, the proposed optimized weighted tensor matrix-based method generates
the spatial information not only from the PAN image but also from the HS image, and can reduce
the distortion caused by the insufficient spatial information.

The remainder of this paper is organized as follows. Section 2 describes the weighted structure
tensor matrix and homomorphic filtering. In Section 3, the proposed homomorphic filtering and
weighted tensor matrix-based hyperspectral pansharpening algorithm is presented. Experimental
results and discussion are provided in Section 4, and conclusions are drawn in Section 5.

2. Related Work

2.1. Weighted Structure Tensor Matrix

For an image I, the structure tensor matrix M can be decomposed as:

M = ∇I·∇IT =

[
I2
x IxIy

IxIy I2
y

]
=

[
e1 e2

][ v1 0
0 v2

][
e1 e2

]T
(1)

where Ix = ∂I/∂x and Iy = ∂I/∂y are the horizontal and vertical partial derivatives of the image,

∇I = [ Ix Iy ]
T

, ()T is the transpose operation, v1, v2, e1 and e2 are the two eigenvectors and the
corresponding eigenvalues, respectively. As shown in Equation (1), the tensor matrix M which is a
symmetric and semi-definite positive matrix has eigen-decomposition, and it has been exploited in
some fields, such as texture synthesis [37], image regularization [38], denoising [39], and recognition
systems [40]. The eigenvalues obtained by decomposing the tensor matrix are utilized to describe the
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structure information of the image. For the multiple images [I1, I2, . . . , In], the structural information is
coupled from all images by employing the linear combination:

Mw =
1
n

n∑
l=1

Ml =
1
n

 ∑n
l=1 (∂Il/∂x)2 ∑n

l=1 ((∂Il/∂x)(∂Il/∂y))∑n
l=1 ((∂Il/∂x)(∂Il/∂y))

∑n
l=1 (∂Il/∂y)2

 (2)

where Mw is the weighted structure tensor matrix, Ml is the structure tensor matrix of the lth image,
∂Il/∂x and ∂Il/∂y are the horizontal and vertical partial derivatives of the lth image, respectively. The
weighted tensor matrix Mw is also a symmetric and semi-definite positive matrix, and can be proceeded
the eigen-decomposition.

2.2. Homomorphic Filtering

Homomorphic filtering which is a type of frequency domain filtering can compress the image
brightness range and enhance the image contrast. Homomorphic filtering has been applied to some
image processing problems [41–43] and is based on an image imaging model:

f = fH· fL (3)

where f represents an image, fH represents the high frequency reflectance component, and fL represents
the low frequency illumination component. Homomorphic filtering aims to reduce the low frequency
component of an image. Logarithmic transformation is utilized to separate the two components:

ln( f ) = ln( fH) + ln( fL) (4)

After applying the Fourier transform:
F = FH + FL (5)

where F, FH and FL denote the Fourier transform of ln( f ), ln( fH) and ln( fL), respectively. Then, the
high-pass filter H is applied to Equation (5) as

S = F·H = FH·H + FL·H (6)

where S is the filtered result. The final image is obtained by the inverse Fourier transform and the
exponential operation:

fh f = exp(s) = exp(=−1(S)) (7)

where fh f denotes the homomorphic filtered image, s denotes the inverse Fourier transform of S, and
=
−1 denotes the inverse Fourier transform.

3. Proposed Method

3.1. Hyperspectral Image Preprocessing

Figure 2 shows the schematic of the proposed homomorphic filtering and weighted tensor
(HFWT) matrix-based hyperspectral pansharpening algorithm. Let the LRHS image be represented by
XHS

LR ∈ Rm×n×B, and the HRPAN image be denoted by XPAN
∈ RM×N×1, where m× n and M×N are the

size of the LRHS and the HRPAN images, respectively, and B is the number of the LRHS image bands.
The fused HRHS image is represented by XHS

HR ∈ RM×N×B.
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The open-closing operation which belongs to the mathematical morphology operation is an
effective denoising processing operation [44,45]. The effects of denoising using the open operation
and closed operation alone are usually not very good, since they may cause amplitude deflection. By
contrast, the open-closing operation has the better denoising effect. The open operation is first applied
on the image, and the selected structure element is larger than the noise size to remove the background
noise. Then, the closed operation is utilized to remove the noise of the image obtained in the previous
step. The open-closing denoising operation is suitable for the images which have less small details.
Since the LRHS image has the low spatial resolution, the fine spatial details are few. The open-closing
operation is applicable to removing noise with high interference in the LRHS image. The open-closing
morphological operation is applied as:

(XRNH
LR )

k
= ((XHS

LR )
k
◦ S1)•S2 (8)

for k = 1, 2, . . . , B, where XRNH
LR denotes the denoised LRHS image, (XHS

LR )
k

and (XRNH
LR )

k
denote the kth

band of the LRHS image and the denoised LRHS image, respectively, and S1 and S2 are the structure
elements. Here, ◦ represents the opening operation which first uses the erosion operation and then the
dilation operation, and • denotes the closing operation which does in reverse. The erosion and dilation
operations obtain the local minimum and maximum of the image, respectively. Equation (8) can be
expressed in detail as:

(XOHS
LR )

k
= (XHS

LR )
k
◦ S1 = ((XHS

LR )
k
ΘS1) ⊕ S1 = max

j∈S1
{[min

j∈S1
((XHS

LR )
k
(i + j) − S1( j))] + S1( j)} (9)
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((XHS
LR )

k
◦ S1))•S2 = (XOHS

LR )
k
•S2 = min

j∈S2
{[max

j∈S2
((XOHS

LR )
k
(i + j) − S2( j))] + S2( j)} (10)

for k = 1, 2, . . . , B, where Θ and ⊕ denote the erosion and dilation operations, respectively.

3.2. Hyperspectral Image Spatial Information Extraction

Homomorphic filtering is a filtering method that transforms the nonlinear problem into a linear
problem. It transforms the nonlinear multiplicative mixed problem into an additive model by the
logarithmic transformation, and then uses linear filtering to process it. The homomorphic filtering
suppresses the low frequency illumination component and enhances the high frequency reflectance
component. For an HS image, the high frequency component of each band is considered as the spatial
component for each band. To obtain the spatial information for each band, we apply homomorphic
filtering to each band of the denoised LRHS image. Through the use of homomorphic filtering, the low
frequency component of each band of the denoised LRHS image is suppressed, and the high frequency
component is extracted. Therefore, in this research, homomorphic filtering is applied to each band of
the denoised LRHS image to extract the spatial component of each band. The homomorphic filtering
processing is based on the following image imaging model:

(XRNH
LR )

k
= (XRNH

LR_H)
k
·(XRNH

LR_L)
k

(11)

for k = 1, 2, . . . , B, where XRNH
LR_H represents the high frequency component of the denoised LRHS image,

XRNH
LR_L represents the low frequency component, and (XRNH

LR_H)
k

and (XRNH
LR_L)

k
represent the kth band

of XRNH
LR_H and XRNH

LR_L, respectively. Based on Equation (4)-(6), Logarithmic transformation, Fourier
transform, and high-pass filtering operations are applied to Equation (11):

(SLR)
k = [=(ln (XRNH

LR_H)
k
)]·H +=[ln (XRNH

LR_L)
k
]·H (12)

for k = 1, 2, . . . , B, where SLR is the high-pass filtered imageh, (SLR)
k is the kth band of SLR,= represents

Fourier transform, and H is the high-pass filter, defined as:

H(x, y) = (βH − βL)[1− exp(−(D2(x, y)/D2
0)] + βL (13)

where D0 is the cut-off frequency, D is the distance between (x, y) and the center, βH and βL are the
high and low frequency gains. Figure 3 shows the 3-D mesh of the high-pass filter. Since homomorphic
filtering aims to reduce the low frequency component and extract the high frequency component, βH is
greater than 1 and βL is smaller than 1. By adjusting the value of the cut-off frequency D0, the sharpness
of the transition between βL and βH can be controlled. In practice, the values of these parameters
are generally determined empirically. In this paper, empirically, βH, βL, and D0 are set to 2, 0.25, 40,
respectively. SLR is the high-pass filtered image in which the low frequency component has been
weakened. Then, the spatial component of each band is obtained by applying the inverse Fourier
transform and the exponential operation to SLR.

(XI
LR)

k
= exp[=−1((SLR)

k)] (14)

for k = 1, 2, . . . , B, where XI
LR denotes the spatial component of each band of the denoised LRHS image,

(XI
LR)

k
denotes the kth band of XI

LR, and =−1 denotes the inverse Fourier transform.
After introducing homomorphic filtering to obtain the spatial component of each band of the

denoised LRHS image, a weighted root mean squared error (RMSE)-based method is presented to

extract the spatial intensity information of the HS image. Let ILR =
∑B

k=1 λk(XI
LR)

k
denote the total

spatial information of the LRHS image, where [λ1,λ2, . . . ,λB] is the weighted vector. To determine the
values of the weighted vector, we utilize the RMSE index to measure the deviation of two images. A
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smaller value of RMSE indicates a better result, and the optimal value is 0. In the RMSE-based method,
the spatial information of the PAN image is considered, and the RMSE value between the total spatial
information ILR and the PAN image XPAN is calculated. The smallest value of RMSE is computed to
obtain the optimal values of the weights [λ1,λ2, . . . ,λB]:

min(

√√√√
1
T

T∑
i=1

[(
B∑

k=1

λk(XI
LR)

k
)

i

− (↓ XPAN) i]

2

(15)

where T = m × n represents the total pixel number of one band of the LRHS image, ↓ represents
down-sampling operation, ↓ XPAN represents that the PAN image is down-sampled to the size of

the LRHS image, (↓ XPAN) i and (
∑B

k=1 λk(XI
LR)

k
)i represent the values of the ith pixel in ↓ XPAN and∑B

k=1 λk(XI
LR)

k
, respectively. The laplacian pyramid networks (LapSRN) [46] super-resolution method

can effectively improve the spatial resolution of an image, and has the advantages of parameter sharing,
local skip connections, and multi-scale training. So it is adopted to super-resolve the spatial information
of the LRHS image ILR for an IHR with super-resolution spatial information.
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3.3. Panchromatic Image Preprocessing and Total Spatial Information Acquisition

To make the spatial information of the PAN image clearer, the Laplacian of Gaussian (LOG) [47]
image enhancement algorithm is applied to the PAN image, which uses a Gaussian filter to reduce
noise followed by a Laplace operator for enhancement. Let IPAN

s represent the enhanced PAN image.
The HS and PAN images contain the different and complementary information for a scene. To

acquire the total spatial information, we should consider simultaneously the spatial structure details of
these two images, and then propose an optimized weighted tensor matrix-based method. IHR and
IPAN

s include the spatial structure information of the HS and PAN images, respectively. Based on
Equation (2), for the multiple images [IHR, IPAN

s ], the weighted structure tensor matrix at pixel p is
given by:

MHP
w,p = 1

2

 (∂(IHR,p)/∂x)2 + (∂(IPAN
s,p )/∂x)

2
(∂(IHR,p)/∂x)(∂(IHR,p)/∂y) + (∂(IPAN

s,p )/∂x)(∂(IPAN
s,p )/∂y)

(∂(IHR,p)/∂x)(∂(IHR,p)/∂y) + (∂(IPAN
s,p )/∂x)(∂(IPAN

s,p )/∂y) (∂(IHR,p)/∂y)2 + (∂(IPAN
s,p )/∂y)

2

 (16)

where MHP
w denotes the obtained weighted tensor matrix, MHP

w,p denotes MHP
w at pixel p, ∂(IHR,p)/∂x,

∂(IHR,p)/∂y, ∂(IPAN
s,p )/∂x, and ∂(IPAN

s,p )/∂y are the x and y partial derivatives of IHR and IPAN
s at pixel

p, respectively. The weighted tensor matrix MHP
w,p is semi-definite, and it can be decomposed as:

MHP
w,p =

[
ew11,p ew21,p
ew12,p ew22,p

][
vw1,p 0

0 vw2,p

][
ew11,p ew21,p
ew12,p ew22,p

]T

= vw1,pew1,p(ew1,p)
T + vw2,pew2,p(ew2,p)

T
(17)
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where ()T is the transpose operation, vw1 and vw2 are the two eigenvalues, vw1,p and vw2,p are the two

eigenvalues at pixel p, ew1,p = [ ew11,p ew12,p ]
T

and ew2,p = [ ew21,p ew22,p ]
T

are the eigenvectors
corresponding to the two eigenvalues at pixel p, respectively.

The two eigenvalues generally have a larger value and a smaller value. We assume that vw1 is the
larger eigenvalue. When vw1 ≈ vw2 ≈ 0, vw1 > vw2 ≈ 0, and vw1 > vw2 > 0, the structure region of this
pixel are flat area, edge area, and corner, respectively. We test on some images to study the eigenvalues
of weighted tensor matrix. Figure 4 shows the two eigenvalues at each pixel of the weighted tensor
matrix for the Salinas scene data. It can be seen that for many pixels, the smaller eigenvalues shown in
Figure 4d are approximately 10−5, and are very small. By experimenting on other numerous images,
we have also discovered that the smaller eigenvalues are mostly very small. Thus, the approximation
of MHP

w,p is expressed as:

M̃
HP
w,p =

[
ew11,p ew21,p
ew12,p ew22,p

][
vw1,p 0

0 0

][
ew11,p ew21,p
ew12,p ew22,p

]T

= vw1,pew1,p(ew1,p)
T (18)

where M̃
HP
w,p is the approximation of MHP

w,p. Based on Equation (1), the structure tensor matrix satisfies that

M = ∇I·∇IT. The weighted gradient Gw at pixel p satisfies that M̃
HP
w,p = Gw,p·(Gw,p)

T= vw1,pew1,p(ew1,p)
T.

So, Gw,p is deduced as Gw,p =
√vw1,p·ew1,p. Since the direction of the eigenvector corresponding to

vw1 is not unique, the direction of the weighted gradient Gw,p is also not unique. We specify the
direction of the weighted gradient Gw,p as the gradients average of the individual multiple source
images [IHR, IPAN

s ]:

Gw,p =
√

vw1,p·ew1,p·sign
〈
ew1,p,

1
2
(∇IHR,p +∇IPAN

s,p )
〉

(19)

where ∇IHR,p = [ ∂(IHR,p)/∂x ∂(IHR,p)/∂y ] and ∇IPAN
s,p = [ ∂(IPAN

s,p )/∂x ∂(IPAN
s,p )/∂y ], 〈·, ·〉

represents the inner product of two vectors, and sign(·) represents the sign function. Once the
weighted gradient Gw,p is acquired from the multiple images [IHR, IPAN

s ], an optimization model is
proposed to obtain the total spatial information IHP

T as:

min‖(∇IHP
T ) −Gw‖

2
(20)

where ∇IHP
T = [ ∂IHP

T /∂x ∂IHP
T /∂y ], ∂IHP

T /∂x, and ∂IHP
T /∂y denote the x and y partial derivatives

of IHP
T . Equation (20) is an unconstrained optimization problem, and we solve it by the conjugate

gradient method. Equation (20) can effectively ensure that the total spatial information IHP
T contains

the spatial structure details of both the HS and PAN images.
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3.4. Fused High Spatial Resolution Hyperspectral Image Generation

The LRHS image XHS
LR is interpolated to the scale of the HRPAN image. By constructing a suitable

gain matrix R, the total spatial information IHP
T is injected into the interpolated HS image to generate

the fused HRHS image XHS
HR. For the gain matrix R, it is beneficial to preserve the ratio of each HS pair

band unchanged to reduce the spectral distortion. Thus, R should satisfy that Rk
∝

(XHS
IN )

k

(1/B)
∑B

k=1 (X
HS
IN )

k ,

where XHS
IN is the interpolated HS image, (XHS

HR)
k

and Rk are the kth band of XHS
IN and R, respectively.

Then, a tradeoff parameter ε is defined to regulate the amount of the injected details to reduce the
spatial distortion. This process can be expressed as:

(XHS
HR)

k
= (XHS

IN )
k
+ Rk

·IHP
T = (XHS

IN )
k
+ ε·

(XHS
IN )

k

(1/B)
∑B

k=1 (X
HS
IN )

k
·IHP

T (21)

for k = 1, 2, . . . , B, where XHS
HR is the fused HRHS image, and (XHS

HR)
k

is the kth band of XHS
HR.

4. Experimental Results and Discussion

4.1. Datasets and Experimental Setup

In order to evaluate the effectiveness of the proposed HFWT hyperspectral pansharpening method
(named as HFWT), experiments were performed on two simulated hyperspectral datasets which were
a Washington DC and a Salinas scene, and one real hyperspectral dataset, the Hyperion dataset. The
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Salinas scene hyperspectral dataset was collected by Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) [48], and the Washington DC dataset was acquired by the Spectral Information Technology
Application Center of Virginia. The used real dataset is provided by the EO-1 spacecraft. The
EO-1 spacecraft has a Hyperion instrument which provides the real LRSH images and an Advanced
Land Imager (ALI) instrument acquires the HRPAN images [48]. Table 1 lists the characteristics of
each dataset.

Table 1. Characteristic of the datasets.

Dataset Reference HS
Size

Simulated
Size

Reference HS
Spatial
Resolution (SR)

Simulated
SR

Band
Number

Spectral
Range

Washington
DC

200 × 200
PAN 200 × 200

3 m
PAN 3 m

191 0.4–2.5 µm
HS 50 × 50 HS 12 m

Salinas scene 200 × 200
PAN 200 × 200

3.7 m
PAN 3.7 m

204 0.4–2.4 µm
HS 50 × 50 HS 18.5 m

Dataset Real HS Size Real PAN
Size Real HS SR Real PAN

SR
Band
Number

Spectral
Range

Hyperion 100 × 100 300 × 300 30 m 10 m 174 0.4–2.5 µm

The proposed HFWT method is compared with several state-of-the-art hyperspectral
pansharpening methods: Gram-Schmidt (GS) [23], guided filter principal component analysis
(GFPCA) [33], coupled nonnegative matrix factorization (CNMF) [18], Bayesian sparsity promoted
Gaussian prior (Bayesian) [13], and HySure [14]. Four typical quantitative evaluation indexes are
adopted: cross correlation (CC) [49], spectral angle mapper (SAM) [50], root mean squared error
(RMSE), and erreur relative globale adimensionnelle desynthèse (ERGAS) [51]. The CC and SAM
measure the spectral and spatial distortion, respectively. The larger value of CC and the smaller
value of SAM indicate the better fusion result. The RMSE and ERGAS are the global indexes that
measure both the spatial and spectral performance, and their value ranges are all (0,1), with 0 being the
optimal value.

In order to perform the objective fusion evaluation of the simulated hyperspectral datasets, the
available HS image is used as the reference HS image. The simulated LRHS image and HRPAN image
are generated according to Wald’s protocol [52,53]. The reference HS image is blurred and down
sampled 4 times to obtain the simulated HS image. The simulated PAN image is obtained by averaging
the visible light band of the reference HS image.

For the real datasets, the real LRHS and HRPAN images are available, and the reference high
resolution HS image is not available. In order to test the objective quality of the real hyperspectral
images, the real LRHS image is served as the reference image. The real LRHS and HRPAN images
available are degraded, and the two degraded images are fused to obtain a fused image. This fused
image is compared to the real LRHS image to evaluate the objective quality.

In the proposed HFWT method, we define a tradeoff parameter ε which regulates the amount
of the injected details and ensures spatial performance. In practice, the optimal value is determined
based on experience. By adjusting different values of ε, the optimal value can be determined by the
fusion result. In this paper, by experience, the values of tradeoff parameter ε are set as 0.25, 0.05 and
0.2 for the Washington DC, Salinas scene and Hyperion dataset, respectively.

4.2. Validity Discussion of the Open-Closing Denoising Operation

To verify the effectiveness of the open-closing HS image denoising operation, the proposed HFWT
method was conducted on the Washington DC dataset with different denoising processing. The
compared denoising algorithms contain average filtering, Gaussian filtering, open operation, closed
operation, and open-closing operation. Table 2 shows the fusion performance of different image
denoising processing. As outlined in Table 2, the HFWT method without HS image denoising had



Remote Sens. 2019, 11, 1005 11 of 18

the worst fusion results. The proposed methods with each HS image denoising preprocessing have
the better fusion results compared with the proposed method without HS image denoising, which
demonstrates that the HS image denoising preprocessing is significative and effective. By contrast, the
proposed HFWT method with the open-closing operation achieves the best fusion performance, and it
demonstrates that the open-closing operation is an effective HS image denoising preprocessing.

Table 2. Performance of the HFWT method with different HS image denoising processing. (The best
values of each index are marked in bold.)

Index No Denoising Average Gaussian Open Closed Open-Closing

RMSE 0.0125 0.0119 0.0123 0.0121 0.0123 0.0112
SAM 6.8506 6.8507 6.8506 6.8507 6.8506 6.8506
CC 0.9156 0.9176 0.9176 0.9175 0.9176 0.9176
ERGAS 25.5071 25.4812 25.4822 25.5052 25.4880 25.4804

4.3. Experiments on Simulated Hyperspectral Datasets

Figure 5 shows the fusion experimental results for the Washington DC dataset, where Figure 5(a1)
shows the reference HS image, and the subjective fused HS images of each method are displayed in
Figure 5(b1–g1). Moreover, Figure 5(a2) shows the enlarged subareas of the reference HS image, and
the two enlarged subareas of each fused image are shown in Figure 5(b2–g2). The reference error image
is shown in Figure 5(a3), and the error images between each fused HS image and the reference HS
image are reported in Figure 5(b3–g3). Except for the first column, each column in Figure 5 shows the
experimental results corresponding to each method. By visually comparing the fused HS images with
the reference HS image, the fused result of the GS method suffers from serious spectral distortion. For
example, the two enlarged subareas of the GS method are distorted seriously. The GFPCA approach
generates fuzzy spatial details in some regions, such as the enlarged subareas shown in Figure 5(c2).
This is because the spatial information of the GFPCA approach is injected insufficiently. As depicted
in Figure 5(d1,d2), the spatial information of the fused image is well enhanced using the CNMF
method, but some slight spectral distortion is appeared in the roof of the buildings. A closer inspection
revealed that the HySure method seems to generate some distortion in the circular building in the
upper left corner. By contrast, the fused HS images obtained by the Bayesian and HFWT methods
achieve superior performance in terms of both spectral and spatial aspects. In order to further compare
the performance of each fusion method, the third row of Figure 5 shows the error images of different
methods. The error image is the difference (absolute value) of pixel values between the fused HS
images and the reference HS image. We can see that, the GS, GFPCA and CNMF methods have larger
differences, the HySure and Bayesian approaches generated relatively smaller differences, and the
proposed HFWT approach shows the smallest differences in most areas, which demonstrates the
excellent fusion capacity of the proposed method.
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Figure 5. Experimental results obtained by each method for Washington DC dataset. (a1–a3) Reference
image; (b1–3) GS; (c1–3) GFPCA; (d1–d3) CNMF; (e1–e3) HySure; (f1–f3) Bayesian; (g1–g3) HFWT.
(First row (a1): reference HS image; First row (b1–g1): fused HS images; second row: enlarged subareas;
third row (a3): reference error image; third row (b3–g3): error images between each fused HS image
and the reference HS image.)

Similar to the previous experiments, for the Salinas scene dataset, the fused results are shown
in Figure 6. Figure 6(a1–a3) show the reference HS image, the enlarged subareas of the reference HS
image, and the reference SAM image, respectively. Figure 6(b1–g1) in the first row show the subjective
pansharpened results of each algorithm, and Figure 6(b2–g2) in the second row display each enlarged
subarea. The SAM images of each approach are shown in Figure 6(b3–g3). The reference SAM image
of enlarged subarea is shown in Figure 6(a4), and the SAM images of enlarged subarea obtained by
each method are shown in Figure 6(b4–g4). The spectral distortion caused by the GS method is very
obvious, and the degree of spatial enhancement is also not acceptable for the GS method, as depicted on
Figure 6(b1,b2). Compared with the GS approach, the GFPCA method performs better in terms of the
spectral quality. However, the fused HS image obtained by the GFPCA approach shows an indistinct
area in the left region of Figure 6(c1). Despite having a preeminent spatial quality, the CNMF method
generates significant spectral distortion in the triangle region in the lower half of Figure 6(d1). From
the visual analysis, the HySure, Bayesian and HFWT methods effectively improve spatial performance
while maintaining spectral information, and the HFWT method shows better spectral quality compared
with the HySure and Bayesian methods in some regions, such as the upper area of the enlarged subarea.
The SAM images and the SAM images of the enlarged subareas of different approaches are shown
in the third and fourth rows of Figure 6, to further verify the fusion performance of the proposed
method. It can be seen that the proposed HFWT method yields the lowest SAM values for most regions.
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These results demonstrate that the proposed HFWT algorithm performs well in both the spatial and
spectral aspects.
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third row (a3): reference SAM image; third row (b3–g3): SAM images between each fused HS image
and the reference HS image; fourth row (a4): reference SAM image of enlarged subarea; fourth row
(b4–g4): SAM images of enlarged subarea.)

In addition to visual inspection, the performance of each algorithm for the Washington DC and
Salinas scene datasets is analyzed quantitatively in Table 3, where the best results for each quantitative
index are marked in bold. As can be seen from Table 3, the objective quantitative results are roughly
consistent with the subjective qualitative effects. Same as the subjective results, the GS and GFPCA
algorithms produce worse objective performance compared with other algorithms. The HySure
approach obtains the best RMSE value for the Washington DC dataset and the optimal ERGAS value
for the Salinas scene dataset. Most of the quality indexes generated by applying the proposed HFWT
method are the best, in which the SAM, CC and ERGAS values are the best for Washington DC, and
the RMSE, SAM and CC indexes are ranked first for the Salinas scene.
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Table 3. Objective quality evaluation of each method for the simulated datasets. (The best values of
each index are marked in bold.)

Dataset Index
Method

GS GFPCA CNMF HySure Bayesian HFWT

Washington DC

RMSE 0.0114 0.0139 0.0116 0.0097 0.0117 0.0112
SAM 7.1069 9.8467 7.6438 6.8601 7.2586 6.8506
CC 0.8856 0.8179 0.8879 0.9018 0.8954 0.9176

ERGAS 36.0732 37.7303 34.3126 26.5678 29.3497 25.4804

Salinas scene

RMSE 0.0426 0.2224 0.0162 0.0163 0.0167 0.0138
SAM 3.7807 2.9814 1.7586 1.7039 1.8015 1.5460
CC 0.8542 0.9429 0.9544 0.9583 0.9515 0.9625

ERGAS 4.3301 3.0843 2.6346 2.4451 2.9079 2.5312

4.4. Experiments on Real Hyperspectral Datasets

Figure 7 shows the pansharpened images of each method for the Hyperion dataset to confirm the
fusion performance of the proposed HFWT method in the real dataset. Figure 7a–c show the real HS,
real PAN, and interpolated HS images, respectively. The GS method shown in Figure 7d generates
obvious spectral distortion, especially in the wharf area. In spite of good spatial improvement,
the spatial details shown in the fused images obtained by using the GS and HySure approaches
are too sharp. Spectral quality of the GFPCA and Bayesian methods seems be acceptable, but the
GFPCA and Bayesian methods perform poorly from the spatial aspect. By contrast, the subjective
effects of the CNMF and HFWT approaches are the best, and the HFWT method yields better spatial
capacity compared to the CNMF method. The objective quality evaluation for the Hyperion dataset
are presented in Table 4. As reported in Table 4, the HFWT method provides the best quantitative
evaluation results in terms of the RMSE, SAM, CC, and ERGAS indices, which indicates that the HFWT
method successfully maintains the spectral information of the original LRHS image and improves the
spatial resolution.Remote Sens. 2019, 11, 1005  14 of 18 
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Table 4. Objective quality evaluation of each method for the real dataset. (The best values of each index
are marked in bold.)

Index
Method

GS GFPCA CNMF HySure Bayesian HFWT

RMSE 0.0426 0.0451 0.0368 0.0398 0.0387 0.0358
SAM 11.1037 15.6849 12.2755 12.8308 12.9605 9.1809
CC 0.9296 0.9241 0.9631 0.9443 0.9504 0.9821

ERGAS 15.3536 16.3011 11.1116 12.3441 12.2353 11.1109

4.5. Computational Complexity Analysis and Time Comparisons

The proposed HFWT algorithm contains simple sequential statements, several loop statements
without nesting, and a two-layer loop statements with nesting (In the proposed HFWT algorithm, the
program statement of Equation (19) which are applied on each pixel is a two-layer loop statements).
The simple sequential statement is naturally O(1) time, and the loop statement without nesting is O(n)
time. The two-layer loop statement is O(n2). According to the summation rule of algorithm complexity,
the total algorithm complexity is O(n2 + n + 1) = O(n2). The proposed HFWT algorithm which is
O(n2) time belongs to the polynomial time, and is considered a fast algorithm. The computing time (in
seconds) of each method for three datasets is shown in Table 5. The experiments in this paper were all
performed using MATLAB R2015b, and tested on a PC with an Intel Core i5-7300HQ CPU @ 2.50 GHz
and 8 GB of memory. The GS and GFPCA methods are very efficient, but the fusion performance of
the GS and GFPCA methods is unsatisfactory. The proposed HFWT method is faster than the CNMF
algorithm, and takes much less computing time than the HySure and Bayesian algorithms. The time
cost of the proposed HFWT is acceptable.

Table 5. Computing time (seconds) of each method.

Dataset
Method

GS GFPCA CNMF HySure Bayesian HFWT

Washington DC 1.1764 2.3455 8.8369 43.3926 70.5347 6.9068
Salinas scene 2.3953 4.8471 8.9498 55.4224 71.4972 7.1413

Hyperion 2.6618 7.5118 23.3787 117.1729 158.7151 10.6448

5. Conclusions

This paper presents a novel hyperspectral pansharpening method based on the merger of the
homomorphic filtering and weighted tensor matrix. The proposed HFWT algorithm introduces the
open-closing morphological operation and homomorphic filtering to remove noise and extract spatial
information of each band of an HhS image, respectively. Moreover, we propose a weighted RMSE-based
method to obtain the total spatial information of the HS image. In order to generate the adequate
spatial information from both the HS and the corresponding PAN images, an optimized weighted
tensor matrix based method is proposed. Specifically, the weighted tensor matrix, eigenvalues and
eigenvectors are deduced and analyzed to obtain the weighted gradient, and an optimization model is
presented to acquire the integrated spatial information. Compared with the state-of-the-art methods,
experiments performed on the Washington DC, Salinas scene and Hyperion datasets demonstrate the
proposed method performs superiorly in terms of both subjective and objective assessment.
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