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Abstract: In the past few decades, global navigation satellite system (GNSS) technology has been widely
used in structural health monitoring (SHM), and the monitoring mode has evolved from long-term
deformation monitoring to dynamic monitoring. This paper gives an overview of GNSS-based dynamic
monitoring technologies for SHM. The review is classified into three parts, which include GNSS-based
dynamic monitoring technologies for SHM, the improvement of GNSS-based dynamic monitoring
technologies for SHM, as well as denoising and detrending algorithms. The significance and progress
of Real-Time Kinematic (RTK), Precise Point Position (PPP), and direct displacement measurement
techniques, as well as single-frequency technology for dynamic monitoring, are summarized, and the
comparison of these technologies is given. The improvement of GNSS-based dynamic monitoring
technologies for SHM is given from the perspective of multi-GNSS, a high-rate GNSS receiver, and
the integration between the GNSS and accelerometer. In addition, the denoising and detrending
algorithms for GNSS-based observations for SHM and corresponding applications are summarized.
Challenges of low-cost and widely covered GNSS-based technologies for SHM are discussed, and
problems are posed for future research.
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1. Introduction

Buildings are one of the most active places for human activities, so the safety of buildings is closely
related to people’s lives and property. The quality of the building, or external factors such as overload,
earthquakes, etc., have an impact on the structure of the building, which seriously threatens people’s
lives and property. Therefore, the monitoring of these structures is of great significance.

The process of implementing a damage identification strategy for aerospace, civil and mechanical
engineering infrastructure is referred to as structural health monitoring (SHM) [1–3]. SHM is related
to people’s well-being, and it has been proposed for decades. In Moss et al. [4] and Mita et al. [5],
SHM has been deeply explored, and the conditions that the SHM system needs to meet have been
identified. Three of these conditions are listed here: structural monitoring of external influences,
deformation structure monitoring due to long-term factors, and assessment of structural integrity after
earthquakes. From the above, it can be concluded that the SHM system must meet the requirements
of dynamic monitoring and long-term monitoring. In Brownjohn et al. [6], the motivation of SHM is
comprehensively introduced, the problems faced in SHM applications are listed, and SHM is considered
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to be a continuous system identification of structural model parameters using time-dependent data.
The SHM data signal may come from vibration or from slow quasi-static changes, which requires
monitoring techniques in the SHM with monitoring capabilities of long-term, slow-moving, and
short-term vibration [6,7]. The development of SHM is limited by many factors, such as system
reliability, data storage and data overload, environmental factors, observation noise, data mining, and
information presentation.

Global navigation satellite system (GNSS)-based deformation monitoring technology meets both
the long-term monitoring and short-term monitoring requirements of structures. Compared with
traditional monitoring technology, GNSS-based deformation monitoring has the following advantages:

• No need for visibility between monitoring points.
• Real-time monitoring.
• Weather independence.
• High precision.
• Dynamic deformation monitoring.
• Long-term deformation monitoring.

Due to these advantages, this positioning technology has been widely applied to deformation
monitoring, and its applications to SHM have been systematically summarized in many articles.

In Ogaja et al. [8], the progress of Global Positioning System (GPS) technology in structural
monitoring between 1997 and 2006 was reviewed: from early low-frequency monitoring to subsequent
high-frequency monitoring, from early trials to later production applications. The trend of the GPS
receiver sampling rate from 10 Hz to 100 Hz during these 10 years was given. The complementary
relationship between the GPS technology and accelerometer in structural monitoring was analyzed.
At the same time, the frequency coverage of the accelerometer and GPS in SHM was given. GNSS-based
monitoring technology has been widely applied to bridge structure monitoring, from initial testing
to current production applications, and typical examples of successful applications in recent years
were listed. Natural factors and increasing traffic flow increase the load on the bridge, which requires
structural health monitoring after the bridge is completed. The structural response is an important
parameter in bridge health monitoring which can be used to identify possible problems by comparing
it with design criteria [9,10]. In Yi et al. [9], the GPS-based technologies related to bridge health
monitoring were summarized, and some activities of GPS-based bridge health monitoring were
introduced. The development of dynamic monitoring techniques for bridge displacement changes
caused by wind, pedestrians, vehicles and temperature changes was presented. Cases of GPS and
other sensor integration for bridge dynamic monitoring, such as GPS and accelerometer integration,
as well as GPS and total station integration, were given. Problems of GPS-based bridge dynamic
monitoring, such as poor satellite geometries, tropospheric and ionospheric delays, multipath effects
and multi-rate sensor fusion strategies, etc., were studied. In addition, in Im et al. [11], the development
history of GPS-based SHM and some typical application cases were given. GPS-based SHM evolved
from a static to dynamic process, and various data processing strategies were developed during the
application process. The improved scheme of single-frequency receiver positioning technique and
multi-path mitigation techniques were given respectively. Several schemes for evaluating the accuracy
of GPS-based dynamic monitoring, such as accelerometers, electric sine wave exciters and motion
simulators, were proposed. Data fusion algorithms of GPS and other sensors, as well as the deep
application of GPS-based in SHM, were investigated. The advantages of GPS over traditional sensors
and the problems faced by GPS-based SHM applications were discussed.

However, most of the reviews mentioned above are based on milestone applications; there
are few reviews based on the development of GNSS. Over the past decade, GNSS has undergone
tremendous changes: the popularity of network real-time kinematic (RTK), more available GNSS
constellations, such as GLONASS, Galileo, Beidou and regional augmentation systems, and more
available signals [12]. According to the GNSS user technology report [13], the majority of current
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receivers support multi-GNSS, except for the reserved legacy ones using single or dual GNSS
(GPS/GPS+GLONASS) for applications with low-performance requirements, or where multi-GNSS is
not available due to local regulations. As of April 7, 2019, the civil signals provided by each GNSS and
satellites in orbit are detailed in Table 1. Although there are so many GNSS constellations now, various
augmentation systems and other technologies are still necessary to address the concerns of most users
regarding accuracy, availability, and integrity [12,14]. High-rate (1 Hz or higher) [15,16] GNSS receivers
are available for SHM, and several new GNSS measurement methods have been proposed to measure
displacement directly rather than through the change of position.

Table 1. Signal and orbit detail of different global navigation satellite system (GNSS) Constellations
(April 7, 2019).

System Satellites in
Operation Regime(s) Orbital Height Civil Signals

GPS 31 MEO 20,180 km L1 C/A, L2C, L5, L1C

GLONASS 24 MEO 19,130 km L1OF, L2OF, L3OC

Galileo 22 MEO 23,222 km E1, E5a, E5b

Beidou 33
GEO
IGSO
MEO

GEO-35,786 km
IGSO-35,786 km
MEO-21,528 km

B1I, B2I, B3I, B1C, B2a

MEO: medium earth orbit, GEO: geosynchronous earth orbit, IGSO: inclined geosynchronous orbit.

In addition, GNSS positioning accuracy is affected by many factors, such as the atmosphere,
multipath, and observation noise. Therefore, denoising and detrending techniques must be adopted to
extract the information we are concerned about. What’s more, the coverage of GNSS-based dynamic
monitoring applications is expanding, and the requirements for a real-time, highly-reliable and low-cost
system are more stringent.

Therefore, this paper aims at reviewing the GNSS-based dynamic monitoring technologies for
SHM from the perspective of the development of GNSSs. In the following, Section 2 introduces
GNSS-based dynamic monitoring technologies for SHM; Section 3 presents the technologies to improve
GNSS-based dynamic monitoring for SHM; Section 4 details the denoising and detrending algorithms
applied to GNSS measurement; finally, Section 5 summarizes the main points of the review, focusing
on the progress of GNSS-based dynamic monitoring technologies.

2. GNSS-Based Dynamic Monitoring Technologies for Structural Health Monitoring (SHM)

In this paper, GNSS-based dynamic monitoring technologies are mainly classified into three
categories: real-time kinematic (RTK), precise point position (PPP), and direct displacement
measurements. RTK is widely applied to deformation monitoring and is the most mature technology
compared to the other GNSS-based monitoring technologies. PPP technology has been a research hotspot
in recent years. Direct displacement measurement is an innovative application of GNSS technology.

Pseudoranges and carrier phases are the basic GNSS observations used for positioning. The basic
observation equations of pseudoranges and carrier phases are listed as follows [17]:

Ri = ρ+ cδtr − cδts
− δIΦi + δtrop + δMR + εRi

Φi = ρ+ cδtr − cδts + δIΦi + δtrop − λiNi + δMΦ + εΦi

}
(1)

where i represents the ith frequency; λi is the wavelength of the carrier phase; Ri is the pseudorange
observation; c is the speed of light in vacuum; δtr is the receiver clock error; δts is the satellite clock error;
Φi is the carrier-phase observation; ρ is the geometric distance between receiver and satellite; δtrop is the
tropospheric delay between receiver and satellite; δIΦi is the ionospheric delay between receiver and
satellite; Ni is the integer ambiguity; δMR is the pseudorange multipath error; δMΦ is the carrier-phase
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multipath error; εRi is the pseudorange random measurement noise; εΦi is the carrier-phase random
measurement noise; The ionospheric error has the same absolute value but opposite sign on code- and
carrier-phase measurements [18].

2.1. Real-Time Kinematic (RTK)

In RTK, the coordinates of the target point are determined by calculating the baseline vector between
the target point and the reference point. Normally, the coordinate of the reference point is determined
accurately by GNSS or other methods. Relative positioning requires simultaneous observation of the
target and reference points [17]. The basic concept of relative positioning is demonstrated in Figure 1.
A denotes the reference point, B denotes the unknown point, and bAB denotes the baseline vector.
The relationship between the three can be described as [17]:

XB = XA + bAB (2)

where XB, XA denote the position of point A and point B.
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Figure 1. Basic concept of relative positioning [17].

Single difference observation and double difference observation are widely used as combined
observations to eliminate satellite clock error, receiver clock error, integer ambiguity, and other
parameters. The single difference observation for satellite j across receiver A and B in Figure 1 can be
derived from the basic observation as [19]:

∇Ri
j
AB = Ri

j
B −Ri

j
A

∇Φi
j
AB = Φi

j
B −Φi

j
A

 (3)

The following single difference observation can be obtained by substituting the formula 1 into
formula 3.

∇Ri
j
AB = ∇ρAB

j + c∇δtrAB −∇δIΦiAB
j +∇δtropAB

j +∇δMRAB
j +∇εRiAB

j

∇Φi
j
AB = ∇ρAB

j + c∇δtrAB +∇δIΦiAB
j +∇δtropAB

j
− λi∇NiAB

j +∇δMΦAB
j +∇εΦiAB

j

 (4)

where ∇ denotes the single difference operator between receiver A and B; the satellite clock error item
can be eliminated from the single difference observation.
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The double difference observation equation of relative positioning among receivers A, B and
satellites k, j can be derived from the single difference observation in the same way [19]:

∆∇Ri
jk
AB = ∆∇ρAB

jk
− ∆∇δIΦiAB

jk + ∆∇δtropAB
jk + ∆∇δMRAB

jk + ∆∇εRiAB
jk

∆∇Φi
jk
AB = ∆∇ρAB

jk + ∆∇δIΦiAB
jk + ∆∇δtropAB

jk
− λi∆∇NiAB

jk + ∆∇δMΦAB
jk + ∆∇εΦiAB

jk

 (5)

where ∆∇ denotes double difference operator; the double-differenced observation not only eliminates
the satellite clock-bias item but also eliminates the receiver error item. Also, for double difference
observation, the atmospheric effects in the equation can be mostly eliminated if it is a short-baseline
case. In actual work, satellites with longer observation times and higher elevation angles are generally
selected as the reference satellites, and then the single-difference observations of the remaining satellites
are respectively subtracted from the single-difference observations of the reference satellites to form a
double-differenced observation equation [17]. The double-differenced observation equation should be
linearized for further processing.

After forming the observation model, the integer ambiguity resolution (AR) method should
be conducted. Integer AR is the key to high-precision positioning. The LAMBDA (Least-squares
Ambiguity Decorrelation Adjustment) [20] method is usually adopted to complete this procedure. The
GNSS AR process is divided into four steps [21–24]:

i. A standard least-squares adjustment is performed regardless of the integer constraints on the
ambiguities. The ‘float’ solution can be obtained.

ii. The float ambiguities are used to compute the corresponding integer ambiguities using the
integer least-square method.

iii. A test is performed to decide whether to accept the calculated integer ambiguities.
iv. The so-called fixed solution can be achieved by correcting the float solution of all other

parameters with the integer ambiguities.

2.1.1. Application

RTK has been the most widely used GNSS technology in SHM for more than two decades and is
also the most mature GNSS technology in SHM applications. Typical application scenarios for RTK in
SHM include bridge and super high-rise building monitoring. Figure 2 shows a typical deployment
scenario for RTK in bridge dynamic monitoring.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 49 

 

∆∇R௜୅୆௝௞ = ∆∇𝜌஺஻ ௝௞ − ∆∇𝛿𝐼஍௜஺஻ ௝௞ + ∆∇𝛿௧௥௢௣஺஻ ௝௞ + ∆∇𝛿𝑀ோ஺஻ ௝௞ + ∆∇𝜀ோ௜஺஻ ௝௞∆∇Φ௜୅୆௝௞ = ∆∇𝜌஺஻ ௝௞ + ∆∇𝛿𝐼஍௜஺஻ ௝௞ + ∆∇𝛿௧௥௢௣஺஻ ௝௞ − 𝜆௜∆∇𝑁௜஺஻ ௝௞ + ∆∇𝛿𝑀஍஺஻ ௝௞ + ∆∇𝜀஍௜஺஻ (5) 

where ∆∇  denotes double difference operator; the double-differenced observation not only 155 
eliminates the satellite clock-bias item but also eliminates the receiver error item. Also, for double 156 
difference observation, the atmospheric effects in the equation can be mostly eliminated if it is a short-157 
baseline case. In actual work, satellites with longer observation times and higher elevation angles are 158 
generally selected as the reference satellites, and then the single-difference observations of the 159 
remaining satellites are respectively subtracted from the single-difference observations of the 160 
reference satellites to form a double-differenced observation equation [17]. The double-differenced 161 
observation equation should be linearized for further processing. 162 

After forming the observation model, the integer ambiguity resolution (AR) method should be 163 
conducted. Integer AR is the key to high-precision positioning. The LAMBDA (Least-squares 164 
Ambiguity Decorrelation Adjustment) [20] method is usually adopted to complete this procedure. 165 
The GNSS AR process is divided into four steps [21–24]: 166 

i. A standard least-squares adjustment is performed regardless of the integer constraints on the 167 
ambiguities. The ‘float’ solution can be obtained. 168 

ii. The float ambiguities are used to compute the corresponding integer ambiguities using the 169 
integer least-square method. 170 

iii. A test is performed to decide whether to accept the calculated integer ambiguities. 171 
iv. The so-called fixed solution can be achieved by correcting the float solution of all other 172 

parameters with the integer ambiguities. 173 

2.1.1. Application 174 
RTK has been the most widely used GNSS technology in SHM for more than two decades and 175 

is also the most mature GNSS technology in SHM applications. Typical application scenarios for RTK 176 
in SHM include bridge and super high-rise building monitoring. Figure 2 shows a typical deployment 177 
scenario for RTK in bridge dynamic monitoring. 178 

 179 

Figure 2. Typical deployment scenario for real-time kinematic (RTK) use in bridge dynamic 180 
monitoring. 181 

For super-high building’s dynamic monitoring, an RTK-based online structural monitoring 182 
system has been implemented for the 66th floor of the Republic Plaza Building in Singapore. The 183 
system is composed of three main subsystems [25]:   184 

1) A base station equipped with a geodetic GPS dual-frequency receiver was installed at a 185 
stable place nearby.  186 

2) Two dual-frequency receivers were installed on the 66th floor of the Republic Plaza 187 
Building as rover stations.  188 

Figure 2. Typical deployment scenario for real-time kinematic (RTK) use in bridge dynamic monitoring.

For super-high building’s dynamic monitoring, an RTK-based online structural monitoring system
has been implemented for the 66th floor of the Republic Plaza Building in Singapore. The system is
composed of three main subsystems [25]:

(1) A base station equipped with a geodetic GPS dual-frequency receiver was installed at a stable
place nearby.
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(2) Two dual-frequency receivers were installed on the 66th floor of the Republic Plaza Building as
rover stations.

(3) A control center PC for running the monitoring software.

To aid local design code development, RTK was used to monitor super high-rise buildings
to capture the dynamic response of buildings in the event of strong winds or distant earthquakes.
The results were combined with accelerometer data to obtain the entire load frequency spectrum of
the building.

For bridge dynamic monitoring, a series of experiments were conducted by the Surveying and
Space Geodesy (IESSG) of the University of Nottingham to study GNSS-based technologies for bridge
deformation monitoring [26–30]. An experiment was carried out on the suspended footbridge in
Nottingham, which was measured by a combination of RTK and accelerometer. The sampling rates
of GPS receivers and accelerometers are 10 Hz and 200 Hz, respectively. The reference station was
installed on the shore near the bridge. An adaptive finite-duration impulse response (FIR) filter (AF)
was employed to decompose the signal and noise. Spectral analysis and cross-correlation methods
were used to analyze the characteristics of the multipath, as well as the relationship between the
output of the adaptive filtering algorithm and input. The results demonstrate that this method can
separate the multipath and random noise of the receiver from the real motion of the bridge [31].
Meng [32] conducted in-depth research on technologies using GPS-RTK and accelerometers for real-time
deformation monitoring of bridges. Additionally, a series of experiments were conducted to verify the
feasibility of the method and theory, including a controlled experiment on campus, experiments on
the Suspension Footbridge in Nottingham Wilford, along with the London Millennium Bridge. The
influence of the distribution of GPS satellites at that time on positioning accuracy was analyzed. There
was a significant correlation between positioning accuracy and the geographic location of the receiver.
In mid-latitude or high-latitude regions, the positioning accuracy of the north–south component is not
as good as the positioning accuracy of the east–west component. To improve the positioning accuracy,
signals from GLONASS were introduced. Pseudo-satellite technology was also proposed, and the
simulation results show a significant improvement in GPS positioning accuracy. The AF method
previously mentioned was introduced to mitigate noise [32–34] and will be detailed in Section 4.1.

2.1.2. The Limitations of RTK-Based Dynamic Monitoring

Over the past 20 years, RTK technology has been widely applied to SHM, and there are many
successful applications, such as those mentioned above. However, from the perspective of the widespread
application of SHM, cost, technical limitations, etc., the RTK technique still has many shortcomings:

• The reference station needs to be deployed at a stable place.
• When the reference station is also in the deformation zone, the method fails.
• The operation process is complicated and needs to be operated by professional surveying and

mapping personnel.
• The reference and rover stations need to be observed at the same time, otherwise, no results will

be obtained.
• The quality of the base station observation cannot be completely guaranteed, which will affect the

positioning accuracy of the rover.
• The reference station receiver will increase monitoring costs.
• The rover’s positioning accuracy depends on the distance to the reference station [35,36]

Traditional RTK technology cannot meet the requirements of large-scale production applications
in traditional surveying and SHM. As an extension of RTK technology, network RTK technology can
make up for the shortcomings of traditional RTK.
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2.1.3. Network RTK

Network RTK is a high precision, real-time, carrier phase-based positioning technology.
The regional error correction model of network RTK is calculated using data from continuous

operating reference stations (CORS) to provide position correction [35–39]. There are many ways to
implement network RTK, of which the virtual reference station (VRS) is most commonly used. The
purpose of the VRS technique is to convert the observation data obtained at the actual reference stations
into observation data at the VRS position. The position of the user is then determined by the relative
positioning between the VRS point and the user [17,40,41]. The VRS field set-up is shown in Figure 3.
where A, B, C are reference stations; R is the rover station; V denotes the VRS. The observations of VRS
can be obtained by the following formula [17]:

Φs
r(XV, t) = Φs

r(XA, t) +
1
λs [ρ

s
r(XV, t) − ρs

r(XA, t)] + ∆s
r(XV, t) (6)

where r denotes receiver, s denotes satellite; Φs
r(XV, t) is the VRS carrier phase observation for rover’s

relative positioning; XV is the coordinate of VRS which can be set as the approximate coordinate of the
user; Φs

r(XA, t) is the carrier phase observation of reference station A; λs is the wavelength; ρs
r(XA, t) is

the geometric distance from the reference station to the satellite; ρs
r(XV, t) is the geometric distance

from the VRS to the satellite; ∆s
r(XV, t) contains orbital errors, ionospheric errors, tropospheric errors,

etc., which can be estimated by the reference stations. Once the observation of the VRS is obtained, the
user’s position can be obtained by relative positioning. The main steps of implementing VRS are listed
as follow [35].

(1) Data from the reference station network is transferred to the server for computing the models of
orbital, ionospheric, tropospheric errors in ∆s

r(XV, t).
(2) The carrier phase ambiguities of the network baselines can be fixed and the actual error of network

baselines can be calculated.
(3) The approximate position of the user receiver obtained by standard point positioning (SPP) with

code measurements is usually adopted as the coordinate of the VRS XV.
(4) The VRS coordinate XV is transferred to the server, and linear or more sophisticated models are

used to predict the errors ∆s
r(XV, t) at the VRS.

(5) The observation of VRS is generated by Equation (6) and transmitted to the user receiver in
standard format.

(6) The relative positioning is adopted to calculate the position of user receiver.

Network RTK services are generally provided by service providers. Users generally obtain
network RTK services in the form of leases. Compared with the traditional RTK, it has the following
advantages:

• Users do not need to set up a reference station, the operation is simpler and faster.
• All users use a unified reference coordinate frame.
• Network RTK coverage is broader than that of traditional RTK [35].
• Network modeling for atmospheric correction.
• If the reference station is dense enough, the accuracy of the traditional RTK short baseline can

be achieved.
• If there is a problem with one of the reference stations, the service can continue to be available.

Network RTK has higher reliability and availability [42].
• Reduced user costs from a broad application perspective.
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RTK and postprocessing kinematic (PPK) technologies have long been used for monitoring of
structures. However, network RTK has many advantages over traditional RTK, as mentioned above.
Therefore, some scholars have tried to study network RTK for dynamic monitoring.

In Yu et al. [43], to verify the feasibility of network RTK in dynamic monitoring, laboratory and
field experiments were designed and implemented respectively. The field test site was still the Welford
Suspension Bridge in Nottingham, but the purpose was different from the previous one. Two GS10
receivers acted as rover stations, eliminating the effects of different receivers, and they received the
same signal from a splitter connected to an antenna. Traditional RTK and Network RTK were adopted
to position for the two receivers respectively. The differential corrections were provided by nearby
reference station receiver and CORS service respectively. At the same time, the Kistler K-BEAM 8392A2
three-axis accelerometer data were collected for verification. The variation of the bridge was identified
from the noisy network RTK result by the designed wavelet filtering scheme, and the vibration
frequency was detected by Fourier transformation and wavelet spectrum analysis respectively. The
findings demonstrate that Network RTK is a potential method for bridge dynamic monitoring. With
hardware upgrades and algorithm optimization, it will be a useful tool for SHM [43,44].

Compared with traditional RTK, network RTK with wider coverage is more suitable for SHM.
However, the current dynamic monitoring research based on network RTK is not detailed enough, and
many problems remain to be studied, such as the impact of network density, the impact of monitoring
location. Compared with the traditional RTK, network RTK is more flexible and can provide users
with additional service for real-time ionospheric correction [42]. Table 2 summarizes the applications
using RTK for dynamic monitoring. The information of experimental scene, aim, and measurement
method are presented.
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Table 2. Applications based on RTK for structural health monitoring (SHM).

Aim Experimental Scene Measurement Method Literature

Implementation of online
structural monitoring using

RTK-GPS

A mechanical shaker and the
Republic Plaza Building of

Singapore
RTK-GPS

Ogaja et al. [25]

Real-time monitoring of the
Humber Bridge

Field monitoring data of the
Humber Bridge Ashkenazi et al. [26,27]

Deflection monitoring of bridges
by high-rate GPS Platform and bridge trials Roberts et al. [29]

Monitoring the deflections of large
bridges using kinematic GPS and

triaxial accelerometers
Nottingham Suspension

Footbridge Trials

RTK-GPS and Accelerometer Roberts et al. [28]

Multipath mitigation for
structural deflection monitoring RTK-GPS Dodson et al. [31]

Real-time bridge deflection and
vibration monitoring using an

integrated system
RTK-GPS/accelerometer/pseudolite Meng et al. [33]

Measurement of the dynamic
displacements and of the modal

frequencies
A short-span pedestrian bridge RTK-GPS and Accelerometer Moschas et al. [45]

Assessment of the measurements
of low and high sampling

frequencies of real-time GPS for
structural movement monitoring

Mansoura railway bridge in
Mansoura City, Egypt and

Yonghe long-span bridge in
China

RTK-GPS

Kaloop et al. [46]

Dynamic performance analysis of
the towers of a long-span Bridge

Yonghe long-span bridge in
China Kaloop et al. [47]

A steel highway bridge
monitoring and movement

identification

Talkha highway steel bridge in
Mansoura city, Egypt Elnabwy et al. [48]

To validate the feasibility of the
network RTK for the measurement

of bridge dynamic responses

Laboratory Experiments and
full-scale experiments were
conducted on the Wilford

suspension

Network RTK Yu et al. [43]

2.2. Precise Point Position (PPP)

With precision satellite orbit and clock information, PPP can be used to achieve centimeter-level
high-precision positioning [49–53]. The ionosphere-free combination observation equations of PPP are
demonstrated as follows [52]:

`P =
R1 f 2

1
f 2
1 − f 2

2
−

R2 f 2
2

f 2
1 − f 2

2
= ρ+ c∆δ+ ∆Trop

`Φ =
λ1Φ1 f 2

1
f 2
1 − f 2

2
−
λ2Φ2 f 2

2
f 2
1 − f 2

2
= ρ+ c∆δ+ ∆Trop +

λ1N1 f 2
1

f 2
1 − f 2

2
−
λ2N2 f 2

2
f 2
1 − f 2

2

 (7)

where `P is the ionosphere-free combination observation of pseudoranges; `Φ is the ionosphere-free
combination observation of carrier phases; R1 and R2 are the pseudorange observations; Φ1 and Φ2 are
the carrier-phase observations; f1 and f2 are the frequencies; λ1 and λ2 denote wavelengths; ρ is the
geometric distance from the station to the satellite; c is the speed of light in vacuum; ∆δ is the station
receiver clock offset; ∆Trop is the tropospheric delay; N1 and N2 are the integer ambiguities; ρ can be
expressed as a function of satellite coordinate

(
XS, YS, ZS

)
and receiver coordinate (x, y, z):

ρ =

√
(XS − x)2

+ (YS − y)2
+ (ZS − z)2 (8)

The same AR process as mentioned in the Section 2.1 is also required, although the observation
model is different [22]. To improve the accuracy of PPP and optimize the calculation results of PPP, the
model must be refined. The model’s refined content contains satellite antenna offset, phase winding
correction, solid tide correction, ocean loading, earth rotation parameters, etc. For details please refer
to the related references [52,54,55].
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PPP is an approach that performs precise position determination using a single receiver without a
reference station [49]. Many studies on the application of PPP in dynamic displacement monitoring
have been carried out. To validate the performance of PPP in dynamic displacement monitoring, the
Inertial Measurement Unit (IMU) or RTK is usually adopted as the reference.

In Xu et al. [56], to study the accuracy of high-rate PPP for the measurement of seismic wave
motions in a short period, inertial measurement unit (IMU) data was adopted as the reference for
experiments. The experiments are designed by taking many factors into consideration, such as the
high sample rate to cover the frequency of large strong motion, and choke ring antenna to mitigate
the effect of the multipath. The experimental platform is shown in Figure 4. The GPS data from
experiments is processed by the software package Positioning And Navigation Data Analyst (PANDA)
developed by the GNSS Research Center, Wuhan University. To compare the PPP displacement
with the displacement from the IMU, the acceleration is integrated twice to obtain the displacement
waveform. The integration process is performed by the software provided by the instrument maker.
The results show that within a certain confidence interval, an accuracy of 2–4 mm in the horizontal
direction and a vertical accuracy of 1.5–2 cm can be achieved in a short time.
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In Yigit et al. [57], to assess the high-rate GNSS PPP method for detecting dynamic vertical
displacement response of engineering structures, a series of oscillation tests were carried out.
The experimental setup is as shown in Figure 5. The steel bar is fixed by the heavy concrete blocks and
the rover receiver is fixed to the steel bar with the reference receiver set up nearby. Relative positioning
between the reference and the rover receiver is adopted as the reference in this study. The three steel
bars of different size are of different modal frequencies and can be calculated by taking into account the
mass of the rover GNSS receiver. The GNSS data collected by the rover receiver on the bar is processed
by an online PPP service named CSRS-PPP, developed by the Geodetic Survey Division of the NRCan
(NRCan-GSD). The process is performed by using different GNSS orbit and clock products (EMU,
rapid and IGS Final) in the kinematic mode. The displacement results show that the overall difference
between PPP and relative positioning is within 10 mm and there is no obvious difference between PPP
results using the IGS-Final and EMU ultra-rapid products in capturing dynamic oscillation.
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At present, PPP-based dynamic monitoring for SHM is based on IGS precise ephemeris and
clock products. The PPP-based dynamic monitoring for SHM based on real-time data stream service
remains to be studied. Applications on dynamic monitoring using PPP are summarized as Table 3.
The information of experimental scene, aim, and verification scheme are presented.

Table 3. Applications based on precise point position (PPP).

Aim Experimental Scene Verification Scheme Literature

Mining deformation monitoring IGS sites Xu et al. [58]
Hu et al. [59]

Measure seismic wave motions GPS data and IMU data from
shake table IMU Xu et al. [56]

Validation of performance of
real-time kinematic PPP for

deformation monitoring

Displacement monitoring test
measured by telescopic pole Martín et al. [60]

PPP sliding window algorithm for
deformation monitoring

Simulation data and earthquake
data Song et al. [61]

Precise dynamic displacements
detection Field experiments Different processing

scenarios Paziewski et al. [62]

High-rate PPP for detecting
dynamic vertical displacement ContT & RTK Bar experiment Yigit et al. [57,63]

PPP assessment of PPP accuracy
for displacement waveforms Acc & RTK Experiment based on

oscillator Moschas et al. [64]

Epoch-wise station displacement GPS seismology Rapture model Shi et al. [65]

Response analyses of Greece’s
earthquake based on GNSS-PPP GPS seismology Frequency domain

analysis Kaloop et al. [66]

Acc: Accelerometer, ContT: Controlled Test, IGS: International GNSS Service.

2.3. Displacement versus Position

The application of GPS in deformation monitoring is often used as a means of positioning to
determine long-term or real-time deformation of structures. But for deformation, people are paying
more attention to relative changes. Three methods for detecting displacement changes with direct
displacement measurements are listed here.

2.3.1. Variometric Approach for Displacements Analysis Stand-Alone Engine (VADASE)

A method called Variometric Approach for Displacements Analysis Stand-Alone Engine (VADASE)
was proposed to measure seismic waves [67]. The displacement variation is obtained by the difference
between adjacent epochs of the high-frequency data. This method can be implemented by carrier



Remote Sens. 2019, 11, 1001 12 of 45

phase observation and broadcast ephemeris. Compared to traditional methods, reference station and
precise ephemeris are not required in this method for monitoring real-time relative changes [67–73].
The core formula is as follows:

α[λ∆Φs
r]L1+ β[λ∆Φs

r]L2 = (es
r ◦ ∆ξr + c∆δtr) +

(
[∆ρs

r]OR − c∆δts+

∆Ts
r)+ +

(
[∆ρs

r]EtOl + ∆ps
r

)
+ ∆ms

r + ∆εs
r

(9)

where α =
(

f 2
L1/

(
f 2
L1 − f 2

L2

))
and β =

(
− f 2

L2/
(

f 2
L1 − f 2

L2

))
are the coefficients of the ionosphere-free

combination; ∆ denotes the difference between consecutive epochs (t, t + 1); λ is the carrier phase
wavelength; Φs

r is the carrier phase observation between the receiver and the satellite; Li(i = 1, 2)
denotes the carrier phase; es

r is the unit vector from the satellite to the receiver; ∆ξr is the displacement
between consecutive epochs; ◦ is the scalar product operator; c is the speed of light in vacuum; δtr is
the receiver clock error; [∆ρs

r]OR is the geometric range between the receiver and the satellite for the
satellite’s orbital motion and the Earth’s rotation; δts is the satellite clock error; Ts

r is the tropospheric
delay between the receiver and the satellite; [∆ρs

r]EtOl is the variation of the solid Earth tide and ocean
loading; ps

r is the sum of other effects; ms
r is the multipath; εs

r is the noise; For detailed derivation
process, please refer to the relevant reference [67].

There are four unknown parameters: ∆ξr and ∆δtr, and the other parameters can be compensated
by models. To calculate the unknown parameters, at least four visible satellites are required in
successive epochs. When the satellites number is greater than four, the least squares method is adopted
to obtain the optimal solution. Assume that n satellites are viewed by the receiver both at epochs t and
t + 1, the linearized observation modal of Equation (9) can be expressed as:

y = Ax + b + v (10)

where y[n× 1] is the observation vector:

yn×1 =



α
[
λ∆Φ1

r

]
L1

+ β
[
λ∆Φ1

r

]
L2

α
[
λ∆Φ2

r

]
L1

+ β
[
λ∆Φ2

r

]
L2

...
α
[
λ∆Φi

r

]
L1

+ β
[
λ∆Φi

r

]
L2

...
α[λ∆Φn

r ]L1 + β[λ∆Φn
r ]L2


(11)

A[n× 4] is the design matrix:

An×4 =



e1
rX e1

rY e1
rZ 1

e2
rX e2

rY e2
rZ 1

...
...

...
...

ei
rX ei

rY ei
rZ 1

...
...

...
...

en
rX en

rY en
rZ 1


(12)

x[4× 1] is the unknown parameter vector:

x4×1 =

[
∆ξr

∆δtr

]
=


∆X
∆Y
∆Z

∆δtr

 (13)
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b[n× 1] contains the known term:

bn×1 =



[
∆ρ1

r

]
OR
− c∆δt1 + ∆T1

r[
∆ρ2

r

]
OR
− c∆δt2 + ∆T2

r
...[

∆ρi
r

]
OR
− c∆δti + ∆Ti

r
...

[∆ρn
r ]OR − c∆δtn + ∆Tn

r


(14)

v[n× 1] is the noise of the observation; the weight matrix of the observation is decided by the
cosine of the satellite zenith angle (Zs

r):

Wn×n =


cos2

(
Z1

r

)
0 · · · 0

0 cos2
(
Z2

r

)
· · · 0

...
...

. . .
...

0 0 · · · cos2(Zn
r )

 (15)

The least square estimation of the unknown parameters can be achieved:

x̂ =
(
ATWA

)−1
ATW(y− b) (16)

When the displacement variation of each epoch is estimated, they can then can be regarded as the
measured velocity, and the velocity can be integrated to obtain the displacement. Experiments have
shown the potential of the VADASE method to detect displacement between adjacent epochs although
the broadcast ephemeris is adopted, and the accuracy reaches the centimeter level. The main drawback
of this method is the requirement for continuity between the data [67]. Many scholars have studied the
applications of this method in seismology, and this method has been continuously improved.

Initially, simulation data were used to validate the algorithm. In Colosimo et al. [67], a carrier
phase observation data stream that was shifted by Bernese software in actual GPS observations was
used to test the method. The results calculated by this method are compared with the results calculated
using the precision ephemeris. The results show that the horizontal and vertical velocity estimation
accuracy of the method can reach 1–2 mm/s by using real-time GPS broadcast products. Next, the
actual seismic GPS observation data are used to further verify the algorithm. In Colosimo et al. [67],
Branzanti et al. [69], and Benedetti et al. [68], to verify the feasibility of this method in seismology, some
actual seismic data was used to evaluate the method. The results show the potential of VADASE for
real-time displacement and velocity, especially if implemented directly into the GPS receiver firmware.
If this method can be implemented into the GPS receiver firmware, GPS would become a completely
reliable system that supports monitoring slow deformation and vibration [67–69]. Furthermore, to
verify the performance of the algorithm in single frequency case. In Benedetti et al. [68], to evaluate the
accuracy that can be achieved with L1-only VADASE, and study the relationship between VADASE
and sampling frequency, different sample rate data are processed by VADASE, the results are compared
with the results from relative positioning and accelerometers. The results show that the accuracy of
L1-only VADASE is slightly worse than the original VADASE, and the waveform reconstructed by
this method becomes worse and worse as the sampling rate decreases, but the VADASE results are
consistent with the L1-only VADASE results.

In addition, VADASE can also be applied to structural monitoring [74–76]. In Benedetti et al. [76],
to exploit the performance of the low-cost GPS receiver uBlox 6 for small amplitude oscillatory
motion monitoring, a one-direction vibrating table was used to assess the performance. The data was
collected with vibration frequencies of 1.7 Hz, 2.0 Hz, 2.2 Hz, 2.7 Hz and amplitudes of 2 cm and 3 cm,
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respectively. Due to the 5 Hz limit of the uBlox 6 sampling frequency, even in the lowest frequency test,
there is an aliasing effect, resulting in an underestimation of about 30% of the oscillation amplitude and
overall accuracy of about 30% of the reference solution [76]. In Ashcroft et al. [74], the VADASE-based
automatic monitoring solution has been integrated into the GNSS receiver board for real-time dynamic
monitoring of velocity and displacement without any time delay. The reference station type receiver
Leica GR10/25 and the monitoring type Leica GM10 have this function. In the dynamic test, the velocity
sensitivities in the east, north, and upper directions are 3.6 mm/s, 3.6 mm/s and 8 mm/s respectively;
in the case of 1 Hz, the mean value of the dynamic displacement error in the east and north directions
are 3.4 mm and 7.2 mm respectively; in the case of 10 Hz, the mean value of dynamic displacement
error in the east and north directions are 5.8 mm and 3.5 mm, respectively.

The VADASE estimated displacement may be affected by two different factors: velocity false
spikes due to outliers and trends in the displacement time series mainly due to broadcast orbit and
clock errors [67,73]. In Fratarcangeli et al. [73], to solve these problems, a VADASE improvement
solution called A-VADASE-LOO was proposed. This improved method has been applied to the seismic
data actually collected recently. The processing results are compared with the post-processing PPP
results and the Istituto Nazionale di Geofisica e Vulcanologia (INGV) static solution results. The results
show that the consistency of A-VADASE-LOO and PPP in the horizontal component is better than
1 cm, and the vertical component is about 2 cm. The consistency of A-VADASE-LOO and INGV in the
horizontal component is 0.5–1 cm, and the vertical component is 1–1.5 cm [73]. The VADASE method
was born in GPS seismology and has been applied and developed in seismology.

Table 4 summarizes applications using VADASE for dynamic monitoring. The information of
experimental scene, aim, method, application domain and verification scheme are presented.

Table 4. Applications based on the Variometric Approach for Displacements Analysis Stand-Alone
Engine (VADASE) for SHM.

Aim Experimental Scene Application
Domain Method Verification

Scheme Literature

Real-time GPS
seismology with a

stand-alone receiver

Simulation data and
real earthquake data

GPS
seismology VADASE

Colosimo et al. [67]

Exploiting the
VADASE algorithm

Earthquake data of
GPS and accelerometer Accelerometer Benedetti et al. [68]

Near real-time,
tsunami early warning

system

Earthquake data from
IGS sites

PPP and
differential
positioning

Branzanti et al. [69]

High-rate multi-GNSS
observations for

real-time capture of
seismic waves

GPS and BDS data of
an earthquake

Postprocessed GPS
PPP and strong

motion data
Geng et al. [71]

Performance
evaluation of VADASE

using very high-rate
GPS

Moderate and large
earthquakes

Postprocessed GPS
PPP Shu et al. [72]

GPS seismology for a
moderate magnitude

earthquake

High-rate GPS data of
an earthquake

PPP, differential
positioning, VADASE

Strong motion
accelerometer Hung et al. [70]

VADASE enhancement GPS data of an
earthquake Improved VADASE PPP Fratarcangeli et al. [73]

VADASE onboard a
stand-alone GNSS

receiver

Static tests and
controlled dynamic

tests
Structural

monitoring VADASE
ASHCROFT et al. [74]

Different low-cost
sensors for small

amplitude oscillatory
motion monitoring

One-direction
vibrating table

High-speed,
high-resolution

camera
Benedetti et al. [76]

2.3.2. Phase Residual Method (PRM)

A single-frequency phase residual method (PRM) was proposed to detect vertical displacement [77].
The change detection of this method is also not based on the change of absolute position. It utilizes
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double-difference phase observation; therefore, a reference station is required. The formula for
calculating the double-difference phase is as follows [78]:

λi∆∇φi
jk
AB(t) = ∆∇ρAB

jk(t) −λi∆∇NiAB
jk + ∆∇δIφiAB

jk(t) + +∆∇δtropAB
jk(t)+

∆∇δdφiAB
jk(t) + ∆∇εφiAB

jk (17)

where t denotes time or epoch; ∆∇δdφiAB
jk(t) is any other time dependent phase disturbance; Refer to

Section 2.1 for the meaning of other symbols. The phase residual is derived as:

R(t) = λi∆∇φi
jk
AB(t) − trend(t) (18)

where R(t) is the phase residual; trend(t) is the trending element which can be fitted to the polynomial
function by previous double-difference phase observations.

To detect the oscillation in the vertical direction, there are certain requirements for the selection
of the satellites: one satellite, called the measuring satellite, must be overhead and the other satellite,
called the reference satellite, must be close to the horizon [77]. Satellites’ space configuration in relation
to the antenna is as Figure 6. In the Figure, DUM is the abbreviation of the device under measurement.
With such configuration, the phase variation due to vertical displacement of the antenna will be
minimal for the reference satellite but maximal for the measuring satellite. The antenna motion will not
appear clearly in the raw residuals because of the components mentioned in Equation (6). To extract
the antenna motion, eliminating all high-frequency noise caused by unexpected elements and reducing
most of the low-frequency error caused by multipath, fast Fourier transformation (FFT) bandpass filter
is adopted to clean up the data, leaving only the frequency describing the displacement [77].
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Processing steps of PRM are summarized as follows:

• Select a pair of satellites as reference satellite and measurement satellite according to the criteria.
• Compute the double difference carrier phase observation by Equation (17).
• Compute the phase residual by Equation (18).
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• Perform FFT band filtering to clean the phase residuals.

Please refer to the reference [77] for details.
To verify the feasibility of PRM for different sized bridges’ dynamic monitoring, a number of

experiments have been carried out. In Larocca et al. [79], the first application of the method was on
a cable-stayed girder bridge built in 1967 in New Brunswick, Canada. Total station measurement
data was used for verification in the experiment. The results show that the GPS data collected and
processed by the PRM method well-matched the results obtained by total station measurement. This
method has great potential for dynamic monitoring of medium-span bridges. In Larocca et al. [80], to
verify that the GPS analyzed under PRM is available for dynamic monitoring of large structures, a test
was conducted to monitor the Pierre-Laporte Suspension Bridge. A comparison was made between
the improved GPS-OTF algorithm and the processing results obtained with PRM. Although the data
and satellite selection strategies of the two algorithms are different, the calculated natural frequencies
of the bridges are consistent. In Larocca et al. [81,82], to verify the feasibility of GPS monitoring for the
structure of reinforced concrete road bridges, a series of experiments were carried out. This is also part
of the continuous development of the previously proposed PRM method to increase the GPS detection
threshold so that it could also be used for the dynamic monitoring of small reinforced concrete highway
bridges. During the experimental period, the traffic remained open, and the data collected by GPS was
processed by PRM, and continuous wavelet transformation was used for analysis. The finite element
method (FEM) was applied to the bridge as a check. The results verify the consistency and feasibility
of the dynamic performance for the concrete bridge monitored by this method [81,82]. So far, the PRM
method has been verified on large, medium and small bridges.

2.3.3. Signal Processing Method (SPM)

Direct GNSS signal processing method (SPM) is another direct displacement detection method. [62].
The method is also based on the double-difference observations, and the displacement of the

monitored point in the north, east, and upper directions between adjacent epochs can be calculated.
The main formula is as follows:
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(19)

where Ln,ti(n = 1, 2) is the filtered carrier phase double difference observation of nth frequency at
epoch ti; elik and el j

k are the elevation angles from the rover station to satellites; A j
k and Ai

k are the
azimuths from the rover station to satellites; (Nk,ti , Ek,ti , Uk,ti) is the epoch-wise topocentric coordinate;
coordinate; to estimate this coordinate, at least three double difference observations are required. The
implementation of SPM mainly includes the following steps:

(1) Compute the double difference carrier phase observation at time ti.
(2) High-pass filtering of the double-difference carrier phase observation sequence to remove

long-term trend:
Ln,ti = f iltered

(
λn∆∇φn

ij
kl(t)

)
ti

(20)

where λn∆∇φn
kl
i j(t) is the double difference carrier phase observation between receivers k, l and

satellites i, j at time t.
(3) Calculate the azimuth and elevation angle of the satellite relative to the receiver at time t to form

an observation equation.
(4) Estimate (Nk,ti , Ek,ti , Uk,ti ) by the least squares method.

For detailed derivation, please refer to the reference [62].
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To study the accuracy of high-frequency RTK, PPP, SPM for dynamic detection under multiple
constellations and different baseline length, a series of experiments were conducted. The results show
that the method can provide reliable and consistent displacements with PPP and RTK. Compared
with the traditional method, this method loses absolute position information and therefore cannot be
used for long-term deformation monitoring. However, this method is not sensitive to the length of the
baseline between rover and reference stations.

2.3.4. The Comparison of the Three Displacement Measurement Methods for SHM

Compared with the traditional positioning method for building dynamic monitoring, the
above-mentioned methods have the following advantages:

• Easy implementation.
• Low computational overhead.
• No need to consider multi-system system bias.
• No need to consider multi-system frequency offset.

The three methods mentioned above all use the non-positioning pattern for dynamic monitoring,
but they are not identical in principle and application, and there are similarities and differences. The
comparison of the three is shown in Table 5.

Table 5. The comparison of the three displacement measurement methods for SHM.

VADASE PRM SPM

Need reference station No Yes Yes

GNSS receiver type
Single frequency
Multi-frequency

Multi-GNSS

Single frequency
Multi-frequency

Multi-GNSS

Single frequency
Multi-frequency

Multi-GNSS

Receiver sampling
frequency requirement High-rate High-rate High-rate

observations Carrier phase Double-differenced
phase Double-differenced phase

Principle Difference between epochs Select the phase residuals
of two special satellites Difference between epochs

Number of satellites
At least four common

satellites in consecutive
epochs

Two satellites in two
special directions

At least four common satellites
in consecutive epochs

Denoising or detrending Yes Yes Yes

2.4. Single Frequency

The ionospheric error of data obtained from a single-frequency receiver cannot be corrected like a
dual-frequency receiver. Single-frequency GPS-RTK is affected by the ionospheric delay, but research
on it has never stopped due to its low cost [36,83]. To reduce the influence of the ionospheric error
on single-frequency receivers, many scholars have studied the use of GNSS networks to correct the
ionospheric errors of single-frequency receivers [36,84,85].

In Jiang et al. [84], a precise positioning service of the single-frequency receiver was implemented
based on a non-differential CORS network model. This service is based on the undifferenced network
RTK (URTK) [86]. The double difference ambiguities among the reference stations in the network
and the corresponding carrier phase residual can be obtained by using relative positioning. Then,
the double difference ambiguity can be converted to the undifferenced ambiguity using the URTK
model. The local ionospheric and tropospheric disturbance can be modeled for a single frequency
receiver by using the undifferenced observation residuals of reference stations. The service model
was verified in the CORS network in Shanxi Province and Hubei Province, China. The findings show
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that once the ambiguity is fixed, a single-frequency user can quickly obtain the absolute position with
centimeter-level precision.

More attention should be paid to the low-reliability problem of single frequency positioning [83].
The initialization of single-frequency GPS RTK takes a few minutes, depending on the observation
environment and the number of visible satellites [87,88]. In Cosser et al. [87], a study was conducted
to verify the feasibility of using single-frequency GPS-RTK for bridge deformation and vibration
monitoring. The experiment was carried out at the Wilford Suspension Footbridge over the River Trent
in Nottingham. Single- and dual-frequency rover receivers connected via a splitter to the same antenna
were used for comparison. Multipath effects and cycle slips were removed by adaptive filtering.
When the dual-frequency reference station was located close to the rover station, the single-frequency
rover can get accurate results. However, when the reference station was farther away from the
rover station—about 3.6 km—the integer ambiguity of the rover can only be determined after setting
the initial coordinate. This study at least illustrates the possibility of single-frequency GPS-RTK in
bridge dynamic monitoring. A summary of the relevant studies about single-frequency GNSS for
SHM is provided in Table 6. The information of experimental scene, aim, measurement method, and
verification scheme are presented.

Table 6. Applications based on single-frequency GNSS for SHM.

Aim Experimental Scene Verification Scheme Measurement
Method Literature

Single frequency GPS
deformation
monitoring

A bridge deformation
monitoring network with
four stations and another

more complicated network
in the southwest of USA

Single frequency
RTK

Huang et al. [83]

Verify the feasibility of
using single-frequency

GPS-RTK for bridge
deformation and

vibration monitoring.

Zero baseline trials and
field bridge trials Dual frequency RTK Cosser et al. [87]

Real-time PPP method
of single frequency
receiver based on

CORS network

CORS network in Shanxi
Province and Hubei

Province, China

Dual frequency
positioning result

calculated by using
GAMIT

Jiang et al. [84]

Verify the feasibility of
single-frequency

PPP-RTK

GPS Network Perth in
Australia

The high-grade
dual-frequency

positioning result

Single-frequency
PPP-RTK Odijk et al. [85]

2.5. Comparison of Different Technologies for Dynamic Monitoring

As a traditional surveying technology, RTK is widely applied to SHM. However, its measurement
accuracy will decrease with the increasing distance between the rover station and the reference station,
and this method may fail when the reference station and the rover station are both located in the
deformation area. Network RTK technology will provide wider coverage, and research about its
application in SHM is at the early stage. As another precision positioning technology, PPP is widely
used in seismology. The reference station is not required, but precise ephemeris is a must. However,
there is no unified method to obtain real-time precise ephemeris. The research and application of
dynamic monitoring based on PPP usually adopt post-processing. In addition, PPP technology itself
has the problem of long initialization time. Compared with dual-frequency receivers, the price of
single-frequency receivers is much lower, which is the reason why the research on single-frequency
receivers has never stopped. The direct displacement measurement methods cannot obtain coordinates
of monitoring stations but can obtain displacement changes in monitoring stations. In addition, these
methods are not affected by inter-system and inter-frequency biases in multi-constellation system
integration. The comparison of different technologies for dynamic monitoring is summarized in Table 7.
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The improvement of GNSS-based dynamic monitoring for SHM from multi-GNSS, hardware as well
as integration with other sensors is introduced in the next section.

Table 7. Comparison of different dynamic monitoring technologies for SHM.

Method Pos mea Ref stat Research
status Pros Cons

RTK
RTK

3 3

Applications
[25–27,47,48]

Mature
technology

Limited coverage
The problem that the

reference station is also in the
deformation area

Network RTK Early-stage
research [43]

Wide coverage
Reliable Needs service providers

Single frequency
RTK

Research
[83,87] Low-cost

Needs ionospheric
corrections from reference

stations

PPP
PPP

3 7

Applications
[56,66]

No reference
station required

Real-time data stream is
needed

Long initialization timeSingle frequency
PPP

Research
[84,85] Low-cost

GNSS & Accelerometer 3
Applications
[32,45,89–93]

Robust
Complementary

advantages

Data processing is relatively
complex

Displacement
Measurement

VADASE

7

7
Applications

[67–75,94]
The integration
of multi-GNSS

systems is easier

Absence of absolute position,
drifts

PRM 3
Applications

[77–82,95]

SPM 3
Research

[62]

Pos mea: Position measurement; Ref stat: Reference station.

3. Improvement of GNSS-Based Dynamic Monitoring Technologies for SHM

With the development of multi-GNSSs, the increasing of receiver sampling rates and the integration
of GNSSs with other sensors, the GNSS-based dynamic monitoring technologies for SHM have
been improved.

3.1. Multiple Constellations

In recent years, with the rapid development of GNSSs, more satellites and signals are available
for navigation and positioning. On January 10, 2019, at 16:45, in Wuhan University, the user’s visible
satellites from different constellations are shown in Figure 7. More importantly, advances in multi-GNSS
systems will address or partially address some of the issues in GNSS-based dynamic monitoring, such
as the impact of deficient satellite geometry on dynamic monitoring.

The geometry between the receiver and the satellites affects positioning accuracy. When natural or
artificial obstacles block the signal, it is difficult to obtain the desired positioning result. To solve this problem
in deformation monitoring, many scholars have studied the use of pseudolites technology to improve the
geometry between the receiver and satellites. Pseudolite is a ground-based satellite signal transmitter that
improves the availability of signals [33,96–99]. Compared with the pseudolite, multi-constellation can
improve the geometry between the receiver and satellites without additional investment.

There are currently two multi-constellation GNSS relative positioning combination models: one is
loosely combined model and the other is the tightly combined model [100]. The loose combination
means that different GNSSs choose their own satellite as the pivot satellite and the double-difference
observation equation cannot be formed across systems, while the tight combination means that
different GNSSs choose a common pivot satellite and the double-difference observation equation can
be formed across systems [100,101]. For tight combinations, even if only one satellite is available in
a constellation, it will be fully utilized as long as the total number of available satellites meets the
requirements. To utilize differential positioning of the same frequency between different constellations,
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the inter-system bias (ISB) between different constellations and receivers of different types should
be calibrated first. The inter-system bias is the difference between the delay in the receiver that the
different GNSSs’ signals experience [102,103].
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In Odijk et al. [103], to calibrate the ISB of overlapping frequencies from different GNSS
constellations phase and code mixed observation models between GPS and Galileo were introduced.
The differential ISBs between the GPS and Galileo of the receiver were calculated by a zero baseline
calculation. The findings show that the differential ISB is only apparent between receivers of different
types, and there is no differential ISB between the baselines of receivers of the same type. The results
of the short baseline show that the calculated differential ISB can significantly improve the AR success
rate of receivers of different types. In Odijk et al. [104], similarly, the receiver differential ISBs of the
overlapping frequency between GPS and Galileo, Galileo and Beidou, as well as GPS and QZSS were
calculated separately using a similar method.

The method mentioned above is used to calculate the ISB between GNSSs with overlapping
frequencies. In Gao et al. [100], for different frequencies of different GNSS systems, to eliminate the
differences between systems an inter-system difference model of different frequencies was proposed.
Once the differential ISBs in the model are estimated, they can be used to enhance the system’s
availability in harsh environments. In the case of simulating the visibility of certain satellites, the
collected data was processed using a traditional differential model and inter-system differential model,
respectively. The results show that the inter-system difference model can significantly improve the
positioning precision and reliability compared with the traditional difference model.

For PPP, the positioning technology is improved from the perspectives of initialization time and
positioning accuracy. In Cai et al. [105], quad-constellation (GPS, BeiDou, GLONASS, Galileo) PPP
model is proposed to simultaneously process the observations from all four GNSSs. The result shows
that the quad-constellation PPP significantly improves the positioning accuracy and convergence time
in comparison with the single-constellation and dual-constellations. In Li et al. [106], the accuracy
and reliability of multi-GNSS (GPS, GLONASS, BeiDou, and Galileo) real-time precise positioning is
investigated. The results show that the convergence time is reduced by 70% and the positioning accuracy
is improved by 25% compared with the GPS-only method. In addition, as the cutoff elevation increases,
the accuracy of multi-GNSS PPP is hardly decreased. Even as the cutoff height reaches 40 degrees, the
accuracy of the horizontal component can still reach a few centimeters, which significantly improves
its applicability in a constrained environment. In Geng et al. [107], a composite strategy is introduced
to resolve GPS and GLONASS undifferenced ambiguities simultaneously to speed up initializations of
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real-time PPP. The result shows that the average initializing time can be reduced from over 25 mins
with GPS-only to about 6 mins with the GPS and GLONASS.

Similar to multi-GNSS RTK, there are many biases that should be taken into consideration in
multi-GNSS PPP. By dealing with these biases, the convergence time of PPP is obviously reduced and
the accuracy is slightly improved. Various types of biases in GNSS are reviewed, and the corresponding
processing methods for these biases are proposed [108]. In Liu et al. [109], to assess PPP integer
AR using GPS, GLONASS and BeiDou constellations, the fractional cycle bias (FCB) was estimated
first. Then, the undifferenced PPP AR at each station was conducted to assess the contribution of
using multi-GNSSs. The results show that the correct rate of AR increased significantly from 51.7%
to 98.3%. A similar study was performed in Pan et al. [110]. In Geng et al. [111,112], a method was
proposed to estimate station-specific phase biases (ISPBs). Then resolvable ambiguities between GNSSs
(inter-system) instead of within GNSSs (intra-system) are formed for a more efficient partial AR. The
average initialization time was reduced from 649 to 586 s. In addition, a preliminary theoretical
framework to implement tightly coupled GNSS PPP model was provided.

Compared with single-constellation, multi-constellation means improved geometry between
receiver and satellites and more available signals. Availability and reliability are improved, especially
in harsh environments. Further research should be undertaken to explore multi-GNSS displacement
measurement methods as well as integration with other sensors.

3.2. High-Rate GNSS Receiver

In SHM, the displacement, as well as the frequency of structures, are required to be measured [29].
SHM includes long-term deformation monitoring and short-term vibration detection. Experiments
show that GNSS is not only suitable for long-term monitoring, but also for frequency measurement of
structures, especially with the emergence of high-rate receivers.

3.2.1. Error Characteristics

To gain insight into high-rate GNSS receivers’ error characteristics, many experiments were
conducted [113–118].

In Moschasa et al. [114,119], static data from high-rate GNSS receivers of different types were
collected to analyze the short-term measurement error characteristics of these receivers. The experiments
were carried out in short baseline mode and the data was processed by using the Leica Geo Office
(LGO) software in kinematic mode. Then the time series were decomposed into short- and long-period
components by using a long-window high-pass moving average (running-average) filter for further
analysis. The spectrum analysis shows that the low-frequency component, colored noise, will decay
with the observation duration, and the high-frequency observation is mainly affected by white noise,
which indicates that the high-frequency GNSS is suitable for structural dynamic monitoring.

On the other hand, the effects of GNSS receiver parameters on noise and correlation in high-rate
measurements were studied [113,117]. In Moschas et al. [113], experiments with static GPS antennas
and experiments with oscillating GPS antennas were conducted separately. In the above two sets
of experiments, the phase-locked loop (PLL) bandwidth value of the GPS receivers of each set of
experiments was set to 25, 50 and 100, respectively. By setting different PLL bandwidth values, the
influence of this parameter on the correlation and noise of GNSS positioning results was studied.
The results show that as the PLL bandwidth value increases, the noise of GNSS positioning results
increases and the correlation decreases. For 100 Hz data collected using a pre-set PLL bandwidth equal
to 100 Hz, the bandpass filtering method was used to filter out the noise to obtain the desired result,
which is useful for monitoring high-frequency structural vibrations.

All of the studies mentioned above show that high-rate GNSS can be used to detect high-frequency
components of structural vibrations [113,117].
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3.2.2. Application

High-rate GNSS receivers essentially broaden the detection range of the frequency, which is
of great significance for SHM. To study the applicability of high-rate GNSS for structural dynamic
detection and seismology, a number of experiments were conducted.

To verify high-rate GNSS receivers for seismology, a series of controlled trials have been carried
out [56,64,117]. In Moschas et al. [64], a series of free oscillation experiments were performed to assess
the 10 Hz PPP for obtaining displacement waveforms. The experiments were based on an oscillator
with a single degree of freedom (SDOF) carrying a GPS antenna and several other sensors, including
an accelerometer. The oscillator was forced to a movement and then was left to oscillate until still.
The assessment includes the sensitivity of high rate PPP for oscillations, the detection accuracy of the
amplitude of oscillations, and the spectral coverage of the PPP record. The relative positioning was
conducted for comparison using the TRACK software. The PPP processing was carried out using
GIPSY-OASIS software and the online CSRS facility by the Natural Resources of Canada (CSRS),
respectively. The results demonstrate that the waveforms of dynamic displacements can be reliably
recorded, an overall accuracy about 5 mm can be achieved, and oscillations of frequency at least up
to 4 Hz can be identified. In addition, many studies were conducted for seismology based on real
high-rate GNSS data of earthquakes [65,72,90], which is of great sense for earthquake early warning.
In Shi et al. [65], station displacements during the 12 May 2008 Mw 8.0 Wenchuan earthquake were
derived from the 1 Hz GPS data collected during the earthquake. The data collected from the stations
of the CORS network around the earthquake was processed by PNADA software in PPP mode. The
data collected from the previous day was also processed to evaluate both the effect of multipath and
other unmodeled errors, and the sidereal filter was applied in the position domain to mitigate the effect
of the multipath. The results show that station oscillations caused by the earthquake of about 2 cm in
amplitude can be detected reliably, and the estimated displacements are in agreement with the result
obtained from the recently published rapture model.

Measurements of building vibration frequencies can be used to validate some computational
models, such as the Finite Element (FE) model [29]. Therefore, the extraction of frequency information
is important for the verification of building models. In addition, for a small bridge of 10 meters, its
amplitude may reach several millimeters, and the vibration frequency may be 10 Hz [29,115], and
traditional low-rate GNSS measurements cannot meet the requirements of many buildings with high
modal frequencies. Various experiments were carried out to verify the high-rate GNSS for structure
displacement detection [29,57,62,115]. In Roberts et al. [29], at the University of Nottingham, a series
of experiments were conducted to demonstrate that high-rate receiver observations can be used for
structural monitoring. In all experiments, the high-rate JNS100 receiver and the geodetic receiver Leica
SR510 were connected to the same antenna via a splitter for comparison. Zero baseline experiments and
short baseline experiments were carried out to assess the noise level of high-rate receivers under static
observations. The results show that the high-rate JNS100 receiver measurement error is consistent with
the geodetic receiver Leica SR510. To evaluate the two receivers’ noise level in dynamic status, platform
and bridge trials were carried out. The configuration of the bridge experiment was similar to the
platform experiment, except for an accelerometer that was used for additional verification. The results
show that the high-rate JNS100 measurement results are consistent with the Leica SR510 measurement
results and the accelerometer integration results. In Yi et al. [115], similar work was carried out
at the Dalian University of Technology, except for using the bridge FEM model as verification in
field experiments. First, to study the noise characteristics of the receiver, a static experiment was
performed. In this experiment, a short baseline consisting of two receivers were used for observation.
The observation lasted for two days. The results show that the GNSS positioning noise contains many
frequency components in the form of broadbands, and the main energy-intensive disturbances are
distributed in the low-frequency region without an obvious periodic trend. Care must be taken when
the frequency of the monitored building is in a low-frequency region of less than 1.5 Hz. To evaluate
the dynamic measurement accuracy of high-rate GPS receivers, a dynamic evaluation experiment
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was carried out. The results show that the high-rate GPS receiver can respond sensitively to dynamic
vibrations. On-site assessment of the dynamic monitoring performance of high-rate GPS receivers was
conducted at the Dalian BeiDa Bridge in China. To verify the high-frequency dynamic monitoring
characteristics of the high-rate receiver, a series of data was collected on the bridge. The frequencies
extracted from the high-frequency GPS receiver’s measurement under ambient vibration excitation
conditions are consistent with the frequencies calculated by the FEM, and one of the frequencies is
greater than 10 Hz. The displacement value of the high-rate GPS receiver measurement is consistent
with the calculated value of the FEM when a bus passes through the bridge. The same approach
leads to the same conclusion when a fleet passes. All experiments have proved that high-rate GPS
receivers can quantitatively describe bridge vibration, which is conducive to building verification and
design. High-rate GPS receivers can be applied to measure high frequencies motions up to 10Hz and
can provide 3D displacement information as well as frequency information of engineering structures,
which is good for buildings’ structural health and integrity monitoring.

A summary of the relevant studies mentioned above is provided in Table 8. The information of
experimental scene, aim, sample rate, method, and verification scheme are presented.

Table 8. Applications based on high-rate receiver for SHM.

Aim Sample Rate Method Experimental Scene Verification
Scheme Literature

Noise characteristics of
short-duration,

GPS-records
10 Hz

Correlation analysis and
spectral analysis of

displacement time-series

Static observation

Moschasa et al.
[114,119]

Noise characteristics and
implications for

monitoring networks
2–50 Hz RTK Genrich et al.

[118]

PLL bandwidth and
noise in GPS

measurements
100 Hz

Correlation analysis and
spectral analysis of

displacement time-series

Moschas et al.
[113]

Epoch-wise station
displacement 1 Hz PPP

GPS seismology

Rapture model Shi et al. [65]

Broadband
displacements 1 Hz Loose integration Acc Bock et al. [90]

Evaluation of the
variometric approach 1 Hz, 50 Hz VADASE PPP Shu et al. [72]

Assessment of high-rate
GPS for seismology 100 Hz Correlation analysis of

position Shake table ContT Häberling et al.
[117]

High-rate PPP for
detecting dynamic

vertical displacement
10 Hz PPP Bar experiment ContT & RTK Yigit et al. [57]

Precise dynamic
displacements detection 50 Hz PPP, RTK, SPM Static observation Paziewski et al.

[62]

Measure seismic wave
motions 10–50 Hz PPP GPS data and IMU

data from shake table IMU Xu et al. [56]

Assessment of PPP
accuracy for

displacement waveforms
10 Hz PPP Experiment based on

oscillator Acc & DGPS Moschas et al.
[64]

Structural deflection
monitoring 10 Hz, 50 Hz RTK Bridge Acc Roberts et al.

[29]

Assessment of high-rate
GPS receivers for

deformation monitoring
of bridges

50 Hz, 100 Hz RTK Bridge Acc, FEM Yi et al. [115]

Acc: Accelerometer, ContT: Controlled Test.

3.3. GNSSs & Accelerometers

As a traditional dynamic monitoring tool, accelerometers can be used to accurately identify high
frequency vibrations in structures. More importantly, it is an independent system with less external
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interferences [28,32]. Due to the high sampling frequency, the accelerometer is capable of extracting the
acceleration response of a structure with a high natural frequency [33,120], so the accelerometer plays
an important role in analyzing the structural response due to load conditions. Since the displacement
through acceleration measurement is obtained indirectly through two integration processes, the error
of displacement increases rapidly with time [93,121].

As a deformation monitoring technology, GNSSs can perform long-term and short-term monitoring
of structures [32,90]. The real-time position of monitoring points can be obtained by GNSSs, and the
displacement can be obtained by position difference. However, GNSS positioning precision is affected
by factors such as the multipath effect, atmospheric error, observation noise, satellite geometry [121],
etc., its sampling frequency is also limited, and the dynamic monitoring sensitivity is not as good
as the accelerometer. Accelerometers and GNSSs have their own advantages and disadvantages.
The combination of the two can make up for the deficiencies of a single system and greatly increase
the reliability and productivity of the entire system by providing more measurements [32,121].
The integration of the two faces issues such as time synchronization and data fusion.

3.3.1. Time Synchronization

Accelerometers usually act as part of the IMU, so the time synchronization problem between
GNSS and accelerometers is also the problem between GNSS and IMU. Time synchronization between
IMU and the GNSS is the primary issue that needs to be addressed before data fusion [122–126].

In the early stages of GPS and accelerometer integration studies for deformation monitoring, the
time synchronization problem between the accelerometer and GPS was solved by cross-correlation [32].
Cross-correlation is a common method for estimating the time delay between two signals [127,128].
The cross-correlation function is defined as follows:

Rx1,x2(τ) = E[x1(t)x2(t− τ)] (21)

where E denotes the mathematical expectation operator; x1 and x2 are the two signals; τ is the time
delay to be estimated. When Rx1,x2 reaches the maximum value, the corresponding τ is estimated
as the time delay. This method was also used to check the consistency between the synchronization
results of other methods and the reference [125].

However, the cross-correlation method cannot meet the requirements of real-time dynamic
monitoring. The one pulse per second (1PPS) output of GPS receiver was introduced to solve the time
synchronization problem of multi-sensor system. The main processing idea of this problem is to output
a PPS from the GPS receiver as input to other sensors in the multi-sensor system as the reference time
for others [124,125]. The main formula is as follows:

tgps
imu = tgps

pps +
(
tc
imu − tc

pps

)
(22)

where tgps
imu is the GPS time of IMU; tgps

pps is the GPS time of the PPS; tc
imu is the computer time of IMU; tc

pps
is the computer time of PPS; for more details, please refer to the references [123–126]. While the time
between the consecutive PPS is one second, the actual alignment with the GPS second is unknown.
There are offsets between different receivers’ PPS [129]. The message from the receiver and counter are
used to establish a link between the GPS time and the IMU time [124,125]. In applications where GNSSs
and accelerometers are combined for deformation monitoring, many applications’ synchronization
schemes use the PPS output of an additional GNSS receiver as the reference time of the accelerometer
to achieve time synchronization [44,45,93].

3.3.2. Integrated Design of the GNSS Antenna and Accelerometer

The lever arm effect is one of the main error sources for the GNSS/INS integrated navigation
system. To suppress the lever arm effect between the GNSS antenna and the accelerometer in structural
monitoring system, an integrated design of GNSS antenna and accelerometer was proposed [28].
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The GNSS antenna and the accelerometer are connected to the base. The accelerometer is mounted
on the device inside and below the cage. The disc is connected by three bolts in the middle. When
the pedestal bubble is centered, the GNSS antenna, accelerometer, and pedestal center are coaxial,
ensuring that multiple sensors monitor the same point, as shown in Figure 8.Remote Sens. 2019, 11, x FOR PEER REVIEW 27 of 49 
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3.3.3. Data Fusion

The data fusion methods of GNSS and accelerometer for dynamic monitoring can be classified into
the isolated method and coupled method. Here, the isolated method refers to denoising, component
extraction and checking using the correlation between the two signals. The coupled method is based
on a rigorous mathematical derivation, the most representative of which is Kalman filtering.

Isolated Method

The displacement calculated from double integration of acceleration can be used to denoise the
GPS positioning result. In Meng. [32], AF as already mentioned in Section 2.1.1 and will be detailed in
Section 4.1, was introduced to deal with data fusion problems between accelerometers and GPS. The
displacement calculated from the acceleration using the AF algorithm can be further used to mitigate
receiver noise in GPS positioning results and detect true bridge movement. Due to the multipath error
in the GPS positioning result, data fusion cannot be directly performed, so AF is applied to mitigate
the multipath error. However, the detectable frequency range of the accelerometer assisted AF method
cannot be widened and is limited to the detectable frequency range of the original GPS.

The absolute position can be achieved by GNSSs at each epoch, but the sampling rate is limited.
The accelerometer has a high sampling frequency, but the calculated displacement is obtained by double
integration, and is not suitable for low-frequency deformation monitoring. The combination of the two
provides dynamic monitoring of structures with low and high frequencies [93,121]. In Chan et al. [93],
to verify the accuracy and effectiveness of the combined algorithms using AF and empirical mode
decomposition (EMD), a series of experiments based on a motion simulation table were performed.
The types of vibrations in the experiment include white noise random waves, sinusoidal waves and
wind-induced dynamic responses of the Di Wang building. The experimental results show that GPS
is sensitive to multipath, and the monitoring of high frequency dynamic response is limited by the
sampling rate. Accelerometers are not suitable for low frequency displacement monitoring. However,
the combination of the two can handle these problems very well, and the overall displacement accuracy
is significantly improved.

In addition, the acceleration data can be served as a check or constraint for the data process of
GNSSs. In Moschas et al. [45], a short-span pedestrian bridge was monitored by GPS and acceleration,
and the externally constrained multi-step filtering technology was adopted for data fusion to obtain
the dynamic displacement and modal frequency of the bridge. Essentially, instead of merging GPS
and accelerometer data, acceleration data acted as an external condition to constraint and evaluate
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the entire process. The method consists of three steps. Firstly, the short-term components of the GPS
measurements are calculated based on the supervised learning filter, and the accelerometer records are
used for verification. Secondly, spectral analysis is performed on the first step results, the oscillation
frequency is identified, and accelerometer data is used to evaluate the results of the spectral analysis.
The frequency identified by this step will be used as the frequency of the next bandpass filter. Finally,
the second filtering is performed, and the frequency range identified by the second step is used, and
filtering is performed using a Chebyshev type filter to remove GPS observation noise. The test was
carried out on a steel pedestrian footbridge crossing the Kifissos Avenue in Athens, Greece. During the
test, a group of pedestrians jumped in the middle of the bridge to trigger the vibration. The results
show that the method can detect the dynamic displacement of the order of >6 mm, and the estimated
modal frequency is very consistent with the estimation results of accelerometer data.

Table 9 summarizes the above applications using GNSSs and accelerometers for dynamic
monitoring. The information of experimental scene, fusion method, detail and limitations are presented.

Table 9. Applications using GNSS and accelerometer in isolated mode for SHM.

Experimental Scene Fusion Method Detail Limitations Literature

Bridge monitoring AF
Acceleration aided the AF
approach to isolate relative
movements of the bridge

Detectable
frequency is

limited by the
original GPS

Meng. [32]

Motion simulation
table tests and super

high-rise building
monitoring data

Method based on
AF and EMD

Enhanced the
measurement of static and

dynamic accuracy

Algorithm
implementation is

complicated
Chan et al. [93]

Dynamic displacement
of steel pedestrian

footbridge

A multi-step
filtering procedure

Accelerometer was used to
constrain and assess the

filtering procedure

Accelerometer
information is not

fully utilized
Moschas et al. [45]

Kalman Filtering

Among the data fusion algorithm mentioned above, the accelerometer observations are either
adopted as check values or as reference values for denoising GPS measurements. The drift caused by
acceleration integration can be eliminated by means of mean removal or other detrending methods,
but when permanent deformation occurs, erroneous results are obtained. In contrast to the isolated
method, a multi-rate Kalman filter was proposed for data fusion of displacement and acceleration
response measurements in dynamic monitoring, and the results show that the method can estimate the
velocity and displacement more accurately even in the case of slowly changing and high observation
noise [92,130]. The Kalman filter maintains real-time estimation of many parameters of the system, such
as displacement and velocity, which may vary constantly, especially in dynamic monitoring scenarios.
By utilizing the knowledge of deterministic and statistical characteristics of system parameters and
measurements, Kalman filtering can obtain the best estimation with given available information. The
random process and observation of discrete Kalman filter can be described as follows [131]:

xk+1 = Φkxk + wk (23)

zk = Hkxk + vk (24)

where xk is the state vector; Φk is the transition matrix from tk to tk+1; zk is the measurement vector;
Hk is the observation matrix; wk is Gaussian zero-mean white noise with covariance Qk; vk is the
observation noise, and the corresponding covariance matric is Rk. The main steps of Kalman filtering
are as follows:

The priori state estimate is calculated as follow

x̂−k = Φk−1x̂+k−1 (25)
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The priori state covariance is updated as

P−k = Φk−1P+
k−1ΦT

k−1 + Qk−1 (26)

The Kalman gain can be obtained by

Kk = P−k HT
k

(
HkP−k HT

k + Rk
)−1

(27)

The posteriori state estimate and state covariance for error evaluation are calculated, respectively, as:

x̂+k = x̂−k + Kk
(
zk −Hkx̂−k

)
(28)

P+
k = (I −KkHk)P−k (29)

The Kalman filter loop is given as Figure 9. For details of derivation, please refer to Brown et al. [132].
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Thistechnologyhasbeenwidelyappliedtomulti-sensorintegrationfordynamicmonitoring [89–91,133–135].
According to the Nyquist theorem, the sensor’s sampling rate must be at least two times of the vibration
frequency of structures to detect the frequency of the vibration [72,136,137]. In Kogan et al. [91], the
Kalman filter was applied to estimate the velocity and displacement of the load response on a large
suspension bridge during the NYC marathon. The experiments were conducted by deploying 5 Hz
GPS receivers and 100 Hz force-balance accelerometers (FBA) on the suspension bridge to extract load
responses from human traffic. The Kalman filter was adopted to the data fusion of information from
both sensors to obtain improved velocity and displacement estimation. Power spectrum analysis shows
that a frequency component up to 2.7 Hz can be identified, which is higher than the Nyquist frequency
of the GPS sampling. The results suggest that the method not only reduces the GPS observation noise
but also expands the GPS detectable frequency range.

In seismology, Kalman filtering is a powerful tool for data fusion between GPS and strong
accelerometer. In Bock et al. [90], this method was introduced to seismology to obtain more precise
displacement. The method provides displacement of the accelerometer sampling rate with the precision
of acceleration data and the accuracy of GPS data. Because of the respective characteristics of the
GPS and accelerometer, the position accuracy provided by the GPS in each epoch is fixed, and the
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displacement provided by the accelerometer is drifting, which are reflected in the Kalman filter process.
Controllable test data and real seismic data were used to verify the accuracy improvement of ground
displacement respectively. The shaking table test showed that the overall accuracy did not improve
after the GPS sampling rate was increased to a certain value. The processing results of the 2010
El Mayor-Cucapah seismic data show that the Kalman filter can provide a significant increase in
displacement accuracy and better characterize the seismic source.

Table 10 summarizes the above applications using Kalman filter for data fusion of GNSS
and accelerometer. The information of experimental scene, aim, state variables and measurement
are presented.

Table 10. Applications for SHM using Kalman filter for data fusion.

Aim Experimental Scene State Variables Measurement Literature

Multi-rate Kalman filtering
for the data fusion Simulation

Displacement and
velocity

Displacement from
GPS measurement

Smyth et al. [92]

Providing a broadband
record of ground

displacements

Shake table
experiments and
earthquake data

Bock et al. [90]

Load response on a large
suspension bridge by GPS

and accelerometers

A highway suspension
bridge excited by
marathon runners

Kogan et al. [91]

Low-cost RTK-GPS sensor
and a force feedback

accelerometer for
infrastructure monitoring

Lab-scale vibration
tests and field

suspension bridge tests
with a passing train

Displacement,
velocity and
acceleration

Displacement
measurements
from RTK-GPS

Koo et al. [89]

The data fusion between GNSS and accelerometers has undergone the following processes: initial
isolation calculation, denoising, constraint assessment, and Kalman filtering for the loose combination.
The overall development trend is from shallow to deep and will continue to move forward. In addition,
the fusion mode between GNSS and other sensors needs further study.

4. Denoising and Detrending

The positioning accuracy of the GNSS is affected by factors such as the multipath effect, atmospheric
error, observation noise, satellite geometry, etc. In addition, there are biases, scale factor error, and
cross-coupling error as well as random noise in all kinds of accelerometers. Therefore, to identify the
real vibration of structures, it is necessary to eliminate the trend and noise from the original observation.
AF, Wavelet and EMD are the most widely used denoising and detrending methods in GNSS-based
structure monitoring.

4.1. Adaptive Finite-Duration Impulse Response Filter (AF)

4.1.1. Theory

The algorithm starts with a set of predetermined initial conditions, representing whatever we
know about the system. As a direct result of applying a recursive algorithm, where the parameters of
the adaptive filter are updated from one adaptation cycle to the next, the parameters become dependent
on the data. In a non-static environment, the algorithm provides tracking characteristics because as
long as the change is slow enough, it tracks the temporal changes in the input data statistics, and
the tracking results are ultimately reflected in the changes in the filtering parameters. Interference
cancellation is one of the applications of AF. The AF is used to eliminate the unknown interference
contained in the primary signal. The primary signal is used as the desired response of the adaptive
filter and the reference signal is employed as the input to the filter. The reference signal is from a
sensor or a set of sensors that provide a primary signal in a weak or substantially undetectable manner,
wherein the information bearing signal component is weak. The adaptive filtering configuration for
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noise cancellation is shown in Figure 10 below. where x is the input applied to the adaptive filter
as the reference measurement, and the sequence form is expressed as x(n); y is the output of the
adaptive filter, and the sequence form is expressed as y(n); d is the desired response as the primary
measurement, and the sequence form is expressed as d(n); e is the estimation error, and the sequence
form is expressed as e(n). The optimal parameter value of the FIR filter is selected by the adaptive
algorithm with data from the estimation error. The FIR filter for estimating the output can be illustrated
as [140]:

y(n) =
p∑

k=0

wn(k)x(n− k) (30)

where wn(k) is the coefficient or parameter of the Filter; the number of coefficients is p + 1.
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Figure 10. Adaptive filtering configuration, see Ge [138,139] for detail.

The error sequence e(n) can be formed by:

e(n) = d(n) − y(n) (31)

x(n) and d(n) are assumed to be nonstationary random processes and the coefficients at time n
are determined by minimizing the mean-square error:

ξ(n) = E(
∣∣∣e(n)∣∣∣2) (32)

where E denotes the mathematical expectation operator. In practice, the coefficients of the Filter are
selected by minimizing the sum of square error in a sample window as below:

Ψ =
M∑

n=0

∣∣∣e(n)∣∣∣2 n = 0, · · · , M (33)

where M + 1 is the size of the sampling window. The gradient descent method is usually adopted to
find the optimal coefficients, please refer to the reference for detail.

An example of AF for noise cancellation is demonstrated in Figure 11.
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Figure 11. An example of AF.

4.1.2. Application

AF is a signal decomposer that uses the cross-correlation between the reference and the primary
time series to extract the information of interest from the contaminated signal. Here, the applications
of AF will be given from the perspective of the role of AF in the application. In Ge et al. [138,139], the
AF method, based on a least-mean-square (LMS) algorithm, is used to mitigate multipath effects, and
to derive fault movement signals from continuous GPS data. The method is applied to pseudo-range
observation and carrier phase observation respectively for multipath mitigation. Forward filtering
(previous day data as the reference time series) and backward filtering (previous day data as the
primary time series) are tested separately. And the previous few days’ data is tested respectively as
primary signals. The results suggest that forward filtering using two consecutive days of data is the
best filtering strategy. Application of AF in data fusion has been mentioned in Section 3.3.3.

In Chan et al. [93], the stationary GPS observation of the previous day is adopted as the reference
to mitigating multipath and data from the accelerometer is taken as the reference to get low-frequency
dynamic displacement.

In summary, the key to noise cancellation and component extraction using AF in GNSS-based
SHM is how to select reference measurements. Since the structural dynamic monitoring scene is fixed,
the multipath of GNSS has time repeatability, so the measured value of the previous stellar day can be
adopted as a reference sequence to achieve the purpose of filtering out multipath [31–33,93,138,139].
Similarly, to obtain a low dynamic displacement response by the AF filter, the GPS measurement
is adopted as the primary sequence, and the high-frequency dynamic displacement response of the
accelerometer is adopted as the reference sequence [93].
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4.2. Wavelet

4.2.1. Theory

Wavelet transform analysis has been developed for decades. Methods based on wavelet analysis
have been widely used in signal denoising, outlier detection and bias separation and so on. The definition
of continuous wavelet transform (CWT) is as follows [141]:

CWT(a, b) =
1
√

a

∫
∞

−∞

x(t)ψ
(

t− b
a

)
dt (34)

where a is the scaling parameter; b is the time-shift parameter; x(t) is the digital signal; ψ is a mother
wavelet. Daughter wavelets can be obtained by scaling and shifting the mother wavelet. The time-shift
parameter determines the location of the wavelet in the time domain while the scaling parameter
determines the location of it in the frequency domain as well as the scale or extent of the time-frequency.

The scaling and shift parameter in CWT are real numbers that change continuously which are
inconvenient for computation. The scaling and shift parameter are discretized, and the wavelet
transformation can be described by two integers. The discrete wavelet transformation (DWT) is defined
as [141]:

DWT(m, n) =
1√
am

0

∑
k

x[k]ψ
[
a−m

0 n− k
]

(35)

where x[k] is the signal; ψ[∼] is the mother wavelet; the integer m is the scaling parameter; the integer
n is the time-shift parameter; a0 is the scaling step.

Traditional spectrum analysis methods based on the Fourier transformation (FT) can only tell us
what frequency components are contained in the signal. When these frequency components occur in
the signal cannot be determined. However, the wavelet transform can obtain both time domain and
frequency domain information. In particular, the wavelet transform is important for the analysis of
dynamic monitoring, such as non-stationary GPS measurements. Wavelet analysis is an extension of
the Fourier analysis and is more suitable for the analysis of dynamic changes [141,142]. The typical
flow of wavelet analysis is shown in Figure 12 below.
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As demonstrated in Figure 12, denoising using wavelet thresholding mainly includes the following
steps [143,144]:

(1) Wavelet transformation:

Compute the wavelet transformation coefficients of the raw data: Cl, l is the index of coefficient,
and the number of coefficients are determined by the mother wavelet.

(2) Denoising by thresholding

This step is done by comparing the magnitude of coefficient Cl with a threshold λ. The whole
process is called thresholding. There are two commonly used thresholding: hard thresholding and
soft thresholding.

Hard thresholding:

C(ht)
l =

{
Cl, i f |Cl| > λ
0, otherwise

(36)

Soft thresholding:

C(st)
l =

{
sign(Cl)(|Cl| − λ), i f |Cl| > λ
0, otherwise

(37)

(3) Inverse wavelet transforms

Perform the inverse wavelet transform by the denoised coefficients.
An example of wavelet denoising by thresholding is shown in Figure 13:Remote Sens. 2019, 11, x FOR PEER REVIEW 35 of 49 
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Figure 13. An example of wavelet denoising.

4.2.2. Application

Some applications of wavelets have been mentioned in Sections 2.1.3 and 2.3.2. More applications
of wavelet will be given from the perspective of the role of wavelets in SHM.

Wavelet transformation is an effective technique for outlier(change) detection. On one hand,
a signal can be decomposed into high- and low-frequency components by wavelet transformation for
further processing. On the other hand, the power spectrum obtained by wavelet transformation can be
used for intuitively identifying outliers. In Ogaja et al. [25], a wavelet analysis procedure is proposed
to extract both the high and low frequencies of the structural dynamics from RTK-GPS results. First,
the RTK-GPS results are decomposed into high-frequency components and low-frequency components
by wavelet transformation. Then, the cumulative sum (CUSUM) algorithm [145,146] is applied to
detect the change that has occurred in these components. The frequency change tests of high-to-high,
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low-to-low, low-high are performed to validate this wavelet analysis procedure. In addition, the
power spectrum with time and frequency information obtained by wavelet transformation can be
directly used for change detection. In Kaloop et al. [46,147], DWT is tuned to detect abrupt changes
in the response by decomposing the RTK-GPS result into approximate (low-frequency) and detailed
(high-frequency) components, and the time–frequency map of the RTK-GPS results is generated by the
CWT to analyze changes in structures’ natural frequencies.

Also based on wavelet decomposition, the wavelet transform can also be used for bias separation.
In Satirapod et al. [142], a new method of GPS data processing based on the wavelet decomposition is
proposed. GPS double-differential residuals are decomposed into a low-frequency bias term and a
high-frequency noise term based on wavelets, the extracted bias component is then applied directly to
the GPS measurements for further processing. The final result of the method shows that the accuracy
of the estimated baseline component is improved. Multipath error is generally considered to be a
low-frequency component of GNSS positioning error, so a similar method was proposed for multipath
mitigation [148].

In addition, wavelet transformation has been widely applied to denoising in GNSS positioning [144,
149–154]. In Wang et al. [150], an EMD and wavelet combined model is applied to extract the systematic
errors from GPS double differential residual series. Selected high-frequency intrinsic mode functions
(IMFs) are debossed by wavelet. The wavelet shrinkage noise reduction model based on soft-threshold
was adopted to denoise the selected IMFS. Thereafter, the double differential carrier phase observations
are modified by the extracted systematic errors epoch by epoch. The double differential observation
equation is reconstructed and the float solution is calculated after that. The results show that the
reliability and accuracy of the baseline solution are improved.

To sum up, the role of wavelets in GNSS-based SHM applications is divided into the following four
categories: outlier (change) detection [25,46,143,147], bias separation [142], multipath mitigation [148],
and denoising [144,149–154].

4.3. Empirical Mode Decomposition (EMD)

4.3.1. Theory

EMD is a signal processing method that can be used for nonlinear time series processing. This
method is suitable for unmodeled system error handling [149,155–157]. Taking the multipath effect as
an example, it is still a challenge to develop a general multipath correction model for different GNSS
stations [158]. EMD decomposes the time series into a series of intrinsic mode functions (IMFs) and
a residual. The whole process is an adaptive process, fully data-driven, without the need to define
functions in advance. The main steps of EMD are as follows [159–165]:

(1) Find out the local maximum and minimum of the signal x(t), and the upper spline envelope eup(t)
and the lower spline envelope elow(t) can be generated by using these extreme points, where t
denotes time.

(2) Computing the means of upper and lower envelopes:

mk(t) =
eup(t) + elow(t)

2
(38)

where k denotes the loop index for calculating an IMF component.
(3) The difference between x(t) and mk(t) is calculated as:

dk(t) = x(t) −mk(t) (39)

(4) dk(t) is verified to satisfy the conditions of IMF: (a) the number of extrema and the number of
zero crossings are equal or at most differ by one in the entire signal; (b) mk(t) is zero for the entire
signal. If these conditions are not met, dk(t) is adopted as the new ‘x(t)’ and the steps (1)–(4) are
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repeated to calculate the nth IMF component. If these conditions are satisfied, dk(t) is adopted as
the IMF component: cn(t), where n is the nth IMF component of original signal.

(5) The nth residual is calculated as:

rn(t) = x(t) −
n∑

i=1

ci(t) (40)

(6) If the rn(t) is not monotonic, the rn(t) is adopted as the new ‘x(t)′, and steps (1)–(6) are repeated
to calculated the next IMF component. If the rn(t) is monotonic, the entire decomposition process
is terminated, the original signal can be expressed as:

x(t) =
n∑

i=1

ci(t) + rn(t) (41)

The EMD decomposition process is shown in Figure 14:Remote Sens. 2019, 11, x FOR PEER REVIEW 37 of 49 
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An example of EMD decomposition is shown in Figure 15:
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Figure 15. An example of EMD.

4.3.2. Application

Some of the GNSS-based SHM applications of EMD combined with other methods (AF, wavelet)
are given in the Sections 3.3.3 and 4.3.2. Applications of GNSS-based SHM will be presented below,
focusing on the role of EMD in data processing.

The existing body of research on EMD suggests that it is a powerful decomposition tool in
time series analysis. Therefore, EMD is usually combined with other methods for data processing.
In Chan et al. [93], an integrated GPS/accelerometer data processing technique based on empirical
mode decomposition (EMD) and AF is proposed for SHM. The EMD is used to decompose the GPS
measurement sequence and acceleration measurement sequence into a series of IMF components and
final residuals, respectively. The high frequency IMF components (greater than a specified cutoff

frequency) of the acceleration measurement sequence is adopted as the high-frequency dynamic
displacement response. The residue component and the filtered IMF components (excluding the high
frequency IMF components of acceleration measurement sequence by AF) of the GPS measurement
sequence is adopted as the low-frequency dynamic displacement response. Motion simulation table
tests were carried out to verify the processing technique. The results show that the overall displacement
accuracy is significantly improved. In addition, many scholars also have studied the combination of
EMD and wavelet transformation for data processing [149–151,157]. In Chao et al. [149], a combined
model of EMD and wavelet is applied to extract the systematic errors from the residual series of double
difference observation. EMD is used in data decomposition and reconstruction, while wavelet is
employed for high-frequency signal denoising as mentioned in the previous section. The EMD-wavelet
noise reduction model is shown in Figure 16. The extracted systematic errors are applied to the double
difference observation as corrections. The recalculated results show that the method can effectively
eliminate the unmodeled errors and improve the accuracy of the baseline solution.
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There are also some other processing strategies based on EMD decomposition for different
purposes [166–169]. In Chen et al. [166], the multipath effect is defined as the sum of residual and last
a few IMF components. First, the GPS data of consecutive days is decomposed separately by EMD.
Then, the correlation coefficient of the last a few IMFs in the consecutive days are calculated and the
signal with maximum correlation coefficient value is the multipath effect. The proposed algorithm
is validated using GPS measurements from controlled tests. The results show that the method can
reliably mitigate the multipath effects in GPS data. In addition, EMD is used to extract white noise
statistics in GPS coordinate time series. In Montillet et al. [169], an EMD-based algorithm is proposed
to extract the white noise statistics in GPS coordinate time series. The first step in this algorithm is to
decompose the GPS coordinate time series into sub-time sequences by EMD. After decomposition, the
Hurst parameter of each sub-time sequence is estimated. Finally, the sub-time sequences in which
Hurst parameter is less than 0.5 are selected to extract the white noise statistics. The algorithm is
verified by the simulated coordinate time series and the actual coordinate time series respectively and
the results show that the algorithm can greatly improve the computational efficiency with a slight
increase in uncertainty compared to the maximum likelihood estimation.

Table 11 summarizes the applications using EMD for data decomposition of GNSS observation.
The information of experimental scene, aim, and roles are presented.

Table 11. Applications using EMD for data decomposition.

Aim Experimental Scene Roles Literature

GPS–accelerometer data integration for
deformation monitoring

Motion simulation table
tests

Decomposing the time history of GPS for
final residuals.

Decomposing the accelerator-measured
dynamic displacement time history to
extract high-frequency components.

Chan et al. [93]

Analysis and denoising of GPS Data Simulation data and field
GPS data Denoising the white and colored noise Baykut et al. [170]

Mine surveying of complex field conditions field GPS/PLs data

Extracting the un-modeled systematic
errors

Chao et al. [149]

Deformation monitoring based on the
GPS/Pseudolites technology in open-pit mine

Simulation data and field
GPS/PLs data Jianpeng et al. [157]

Mining subsidence monitoring Field GPS RTK Chao et al. [155]

Reducing GPS carrier phase errors for precise
static positioning Field GPS data Wang et al. [150]

GPS multipath effect Mitigation A calibration test Mitigating multipath effect Chen et al. [166]

Multipath mitigation for GPS dynamic
deformation monitoring

Simulation data and field
GPS data Dai et al. [167]

Assessing methods of RTK-GPS/accelerometer
integration to monitor the displacement of

structures

Field test data with
reference from another

sensor
Filtering of the acceleration data Hwang et al. [168]

Extracting white noise statistics in GPS
coordinate time series

Both simulated GPS
coordinate time series

and real data
Extracting White Noise Statistics Montillet et al.

[169]

Denoising GPS-based Structure monitoring data Simulation data and field
GPS data

Decomposing displacement for further
processing Ke. [151]
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AF can be used for noise cancelation, but a reference measurement is required. Wavelet analysis
can be used in signal denoising, outlier detection, and bias separation (detrending) and so on. EMD is
suitable for unmodeled system error handling.

5. Conclusions

The purpose of this study was to review GNSS-based dynamic monitoring technologies for SHM.
One of the more significant findings to emerge from this study is that GNSS-based dynamic monitoring
technologies for SHM have been continuously developed with the development of GNSS. Presently,
there are many GNSS constellations that can provide more satellites and signals, and high-precision
monitoring results can be achieved even in harsh monitoring environments. The requirement for
GNSS-based dynamic monitoring technology are more and more stringent, such as structure size from
large to small, structure displacement from large to small, and structure modal frequency from low
to high. High-rate receivers can provide a broader range of frequency detection, and studies have
shown the feasibility of high-rate receivers for small buildings with small displacement amplitude
and high vibration frequency. Cost is one of the factors that need to be considered for the wide-area
implementation of SHM. The exploration of single-frequency monitoring technology aims to improve
the detection precision to meet the monitoring requirements and thus reduce the hardware cost of
SHM, while network RTK monitoring technology tries to reduce the cost of SHM in terms of greater
coverage. Multi-sensor fusion for SHM is a trend in which each sensor complements its advantages,
thereby improving overall monitoring reliability and precision. Some direct displacement measurement
methods have been proposed for SHM. These displacement measurement methods have the advantages
of small computational overhead, easy to implement, and no need to consider inter-system bias. Since
GNSS observation is affected by factors, such as the multipath effect, atmospheric error, observation
noise, and satellite geometry, denoising and detrending are indispensable, especially in complex
SHM environments.

These findings have instructive implications for the study of low-cost, high-precision dynamic
monitoring technologies for SHM and provide the following insights for future research:

i. Currently, most receivers on the market support multi-GNSS and multi-frequencies. More
research using controlled trials is needed to be done to evaluate the accuracy and reliability it
can be achieved in its application for SHM.

ii. Network RTK technology is an effective means to reduce the cost of large-scale SHM applications
from the coverage perspective, and further research is needed to study the achievable monitoring
accuracy within network coverage.

iii. At present, the fusion of GNSS and other sensors for SHM is a loose combination, and the
tight fusion between them needs further research. In addition, further research should be
undertaken to investigate the cost and precision of multi-sensor fusion for SHM.

iv. Currently, PPP-based dynamic monitoring for SHM is based on IGS precise ephemeris and
clock products. The PPP-based dynamic monitoring for SHM based on real-time data stream
service remains to be studied.
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