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Abstract: The 5 September 2018 (UTC time) Mw6.6 earthquake of Tomakomai, Japan has triggered
about 10,000 landslides with high density, causing widespread concern. We attempted to establish a
detailed inventory of this slope failure and use proper methods to assess landslide susceptibility in
the entire affected area. To this end we applied the logistic regression (LR) and the support vector
machine (SVM) for this study. Based on high-resolution (3 m) optical satellite images (planet image)
before and after the earthquake, we delineated 9295 individual landslides triggered by the earthquake,
occupying an area of 30.96 km2. Ten controlling factors were selected for susceptibility analysis,
including elevation, slope angle, aspect, curvature, distances to faults, distances to the epicenter,
Peak ground acceleration (PGA), distance to rivers, distances to roads and lithology. Using the LR
and SVM, two landslide susceptibility maps were produced for the study area. The results show that
in the LR model, the success rate is 84.7% between the landslide susceptibility map and the training
dataset, and the prediction rate is 83.9% shown by comparing the test dataset and the landslide
susceptibility map. In the SVM model, a success rate of 90.9% exists between the susceptibility map
and the test samples, and a prediction rate of 87.1% from comparison of the test dataset and the
landslides susceptibility map. In comparison, the performance of the SVM is slightly better than the
LR model.

Keywords: Tomakomai earthquake; co-seismic landslides; landslide susceptibility mapping (LSM);
LR model; SVM model

1. Introduction

The 5 September 2018 Mw6.6 earthquake of Tomakomai, Japan has triggered about
10,000 landslides with high density, causing serious economic losses and casualties. In some local
areas, the damage caused by this event even exceeded that by greater earthquakes such as the 2008
Wenchuan, China Mw7.9 [1] and 2015 Nepal Mw7.8 [2]. According to reports, this earthquake killed at
least 41 persons, including 36 dead by landslides [3]. Hundreds of landslides have broken the ridges
and changed the landform there. However, so far no comprehensive landslide inventory and landslide
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susceptibility assessment related to this event have been reported. To fill this gap, this work attempted
to establish a detailed landslide inventory of the Tomakomai earthquake and use effective methods to
assess landslide susceptibility in the entire affected area.

Currently, the methods for landslide susceptibility mapping can be classified into two types:
Qualitative and quantitative approaches. In the qualitative approach, expert opinions are very vital to
estimate landslide potential from intrinsic factors, assigning weights of variables and rating susceptibility
assessment are subjective [4]. Thus, the resulting susceptibility assessment is not ideal. In contrast, the
quantitative approach can be considered as more objective due to their data-dependent characteristics.

The quantitative approaches include statistical and advanced machine learning approaches.
The statistical approaches use a landslide inventory to establish a relationship between landslides
and their controlling factors for a sampled area, which is then extended to the total research area
to attain the susceptibility assessment [5]. Many scholars have employed these methods to carry
out landslide susceptibility assessment with the weight of evidence [6], discriminant analysis [7],
binary statistical analysis [8–10], and the multivariate statistical model [11,12]. Among them, the
LR method has been proved to be more applicable and have achieved good assessment results
in several earthquakes cases [13–17]. Meanwhile, with the development of machine learning, the
landslide susceptibility assessment based on machine learning is gradually favored by scholars [18],
such as neural network [13,19] and SVM [20–22]. Among them, the SVM is more powerful to handle
high-dimensional and nonlinear problems, and its prediction accuracy is superior to the statistical
models in most cases [23–25].

At present, most statistical models and advanced machine learning models have been used in
non-seismic landslide areas with a small number of landslide samples. While there are few applications
in the specific earthquake events with a large number of seismic landslides. And these studies mostly
rely on incomplete landslide database to conduct the landslides susceptibility assessment in local
quake-affected area, which cannot fully reflect the overall distribution of landslides triggered by a
single earthquake [25–27].

The aim of this study is to establish a detailed landslide inventory for the 2018 Mw6.6 Tomakomai,
Japan earthquake based on high-resolution Planet images (3 m) before and after the earthquake and test
the applicability of the LR and SVM to landslide susceptibility mapping in the affected area. Then the
application effects of the two models were compared. This study provides successful experience and
scientific reference for the selection of remote sensing images, landslide interpretation, selection of
landslide influencing factors, and selection of evaluation model in similar studies.

2. Study Area

The Japanese archipelago lies at the interaction between the Pacific, North American, Eurasia,
and Philippine plates, where there exists the deepest trench on the Earth’s surface. The North
American and Eurasia plates here can be further subdivided into the Okhotsk Sea and the Amur plates.
On 5 September 2018 (UTC Time), an Mw 6.6 earthquake occurred in the Oshima Belt region, east of
Tomakomai on the island of Hokkaido, Japan (Figure 1). The strata of the whole tectonic area include
from Holocene to Jurassic. The detailed description of lithology of different ages can be seen in Table S1.
The study area extends on a surface of about 600 km2, spanning from 42.6◦N to 42.9◦N of latitude and
from 141.8◦ to 142.2◦. The elevation of the area ranges between 0 and 624 m, with an average value of
166 m. The study area is made up of Miocene sedimentary rocks as its basement, and covered mostly
up with air-fall lapilli-sized pumice layers. Surface soil layers covering low to middle mountain ranges
are inter-bedded with the pumice and ash. Total thickness of the surface layer is about 4–5 m [3].
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Figure 1. Map showing topography and tectonic setting of 2018 Tomakomai earthquake (Active 
faults are modified from Active Fault Research Group [28] and Nakata [29]; The topographic 
background comes from National Geophysical Data Center, NOAA [30]. 

At the location of this earthquake, the Pacific plate moves northwestward at a velocity of about 
87 mm/yr relative to the North America plate and collides with the North American Eurasia and 
Philippine plates along the West Pacific subduction zone, causing frequent earthquakes. The focal 
mechanism solutions of the Tomakomai earthquake (Table 1) indicate that faulting occurred on 
either a moderately dipping reverse fault striking Northwest, or on a shallow-to-moderately dipping 
fault striking southeast. In view of these focal mechanism solutions and focal depth (35 km), the 
earthquake likely represents rupture of a fault within the upper North America plate or Okhotsk 
microplate, instead of the subduction zone plate boundary interface between the Pacific and North 
America plates (which is 100 km deep at the location of this epicenter) (https://earthquake.usgs.gov). 

Table 1. Parameters of the 2018 Mw6.6 Tomakomai, Japan earthquake. 
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Figures 2 and 3 are photos and satellite images of the landslides triggered by the 2018 
Tomakomai earthquake. As shown in Figure 2, the density of landslides triggered by this earthquake 
is high, most of them are shallow landslides, and distributed continuously. Substantial landslides 
have destroyed the ridges and caused the landform changes (Figure 2a,c). Figure 3a,b show the 
landslides damaged many houses and farmland, and blocked roads and valleys. Figure 3c shows 
that the debris area of the landslide was a mixture of the uprooted trees and the pumice and ash 
precipitate, and spreads over croplands and villages. 

Figure 1. Map showing topography and tectonic setting of 2018 Tomakomai earthquake (Active faults
are modified from Active Fault Research Group [28] and Nakata [29]; The topographic background
comes from National Geophysical Data Center, NOAA [30].

At the location of this earthquake, the Pacific plate moves northwestward at a velocity of about
87 mm/yr relative to the North America plate and collides with the North American Eurasia and
Philippine plates along the West Pacific subduction zone, causing frequent earthquakes. The focal
mechanism solutions of the Tomakomai earthquake (Table 1) indicate that faulting occurred on either a
moderately dipping reverse fault striking Northwest, or on a shallow-to-moderately dipping fault
striking southeast. In view of these focal mechanism solutions and focal depth (35 km), the earthquake
likely represents rupture of a fault within the upper North America plate or Okhotsk microplate,
instead of the subduction zone plate boundary interface between the Pacific and North America plates
(which is 100 km deep at the location of this epicenter) (https://earthquake.usgs.gov).

Table 1. Parameters of the 2018 Mw6.6 Tomakomai, Japan earthquake.

Latitude (◦) Longitude (◦) Dip (◦) Depth (km) Rake (◦) Mo (Nm) Var. Red. Strike (◦)

42.6908 142.0067 30; 65 35 59; 107 1e + 19 89.47 134; 349

Figures 2 and 3 are photos and satellite images of the landslides triggered by the 2018 Tomakomai
earthquake. As shown in Figure 2, the density of landslides triggered by this earthquake is high, most
of them are shallow landslides, and distributed continuously. Substantial landslides have destroyed
the ridges and caused the landform changes (Figure 2a,c). Figure 3a,b show the landslides damaged
many houses and farmland, and blocked roads and valleys. Figure 3c shows that the debris area of the
landslide was a mixture of the uprooted trees and the pumice and ash precipitate, and spreads over
croplands and villages.

https://earthquake.usgs.gov
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Figure 2. Aerial photograph of the study area (taken by Asia Air Survey and Aero Asahi 
Corporation) [3]. (a–c) are overview of regional landslide distribution from different angles 

 

Figure 3. Aerial photos of co-seismic landslides; (a) landslides blocked the roads and buried houses; 
(b) landslides are shallow, several meters deep-seated; and (c) landslides destroyed farmland and 
buried houses (photos from Kiyota Laboratory in the University of Tokyo). 

3. Data and Method 

To map the landslide susceptibility, the following preparations were made: (1) Constructing 
database: The landslide inventory of 2018 Tomakomai earthquake and influencing factors of 
landslide susceptibility; (2) model construction: Samples for training and testing LR and SVM 
modeling; and (3) model validation: Preparing landslide susceptibility maps of LR and SVM, and 
compare the assessment results. Figure 4 shows the flow chart of these efforts. 
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Figure 3. Aerial photos of co-seismic landslides; (a) landslides blocked the roads and buried houses; (b)
landslides are shallow, several meters deep-seated; and (c) landslides destroyed farmland and buried
houses (photos from Kiyota Laboratory in the University of Tokyo).

3. Data and Method

To map the landslide susceptibility, the following preparations were made: (1) Constructing
database: The landslide inventory of 2018 Tomakomai earthquake and influencing factors of landslide
susceptibility; (2) model construction: Samples for training and testing LR and SVM modeling; and
(3) model validation: Preparing landslide susceptibility maps of LR and SVM, and compare the
assessment results. Figure 4 shows the flow chart of these efforts.
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3.1. Data Source  

3.1.1. Landslide Inventory 

A detailed and accurate earthquake-triggered landslide inventory is an important basis for 
landslide susceptibility assessment [31,32]. With the advance of sensor and space technology, remote 
sensing is able to acquire detailed temporal and spatial information on landslides on the Earth’s 
surface. This study used the satellite images of post-earthquake with high-resolution (3 m) (Planet 
satellite), which were acquired within 5 days after the earthquake [33]. These images cover the entire 
earthquake affected area, and have low cloud coverage (Figure 5b). The series of pre-earthquake 
ortho-images also come from the high-resolution (3 m) optical satellite images (Planet satellite) to 
ensure that the landslides existing before the earthquake are not recognized as co-seismic landslides 
(Figure 5a). The processed images are overlaid on the Google Earth Platform. Thus, the images can 
provide a stereo-like perspective view, and are very convenient to compare them before and after 
the seismic event [34].  

 

Figure 5. High-resolution remote sensing images. (a) Before the 2018 Tomakomai earthquake (3 
August 2018). (b) After the 2018 Tomakomai earthquake. 
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3.1. Data Source

3.1.1. Landslide Inventory

A detailed and accurate earthquake-triggered landslide inventory is an important basis for
landslide susceptibility assessment [31,32]. With the advance of sensor and space technology, remote
sensing is able to acquire detailed temporal and spatial information on landslides on the Earth’s
surface. This study used the satellite images of post-earthquake with high-resolution (3 m) (Planet
satellite), which were acquired within 5 days after the earthquake [33]. These images cover the entire
earthquake affected area, and have low cloud coverage (Figure 5b). The series of pre-earthquake
ortho-images also come from the high-resolution (3 m) optical satellite images (Planet satellite) to
ensure that the landslides existing before the earthquake are not recognized as co-seismic landslides
(Figure 5a). The processed images are overlaid on the Google Earth Platform. Thus, the images can
provide a stereo-like perspective view, and are very convenient to compare them before and after the
seismic event [34].
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We followed the principles of image interpretation: (1) About the landslide scale, we interpret it
as long as it is a landslide that can be distinguished from the image. (2) About the landslides before
the earthquake, we think that they were caused by this earthquake if their shapes are not consistent
before and after the earthquake. (3) In general, the areas with flow-textures, light tones, and non-
or destroyed-vegetable coverage are identified as co-seismic landslides. Due to the thick vegetation
coverage in the quake-affected area, the tone of non-seismic landslides is often dimmer than co-seismic
landslides. Therefore, we mostly judge the co-seismic landslides based on whether the sliding surface
is fresh or not. (Figure 6). (4) In addition, some of the detailed features can also be used, including
the direction of the landslide, damaged plants on a landslide, the destroyed house and roads. These
features allow us to build a co-seismic landslide inventory based on the satellite images. Figure 6b
shows the distribution of co-seismic landslides near the epicenter (acquired on 11 September 2018) and
images before the earthquake on 3 August 2018 (Figure 6a) in the same area. From the comparison of
pre- and post-earthquake images, we can observe that a large number of co-seismic landslides were
triggered by the 2018 Tomakomai earthquake (Figure 6b).
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Figure 6. Interpretations of remote sensing images showing landslides near the epicenter (a): before the
2018 Tomakomai earthquake (3 August 2018); (b): after the 2018 Tomakomai earthquake (11 September
2018). Yellow polygons are boundaries of individual landslides triggered by the earthquake.

In order to keep the objectivity of the landslide number, congregate and patched landslides were
divided into individual landslides expressed as multi-polygons, rather than an individual landslide
as a single polygon. Finally, we established a landslide inventory of the Tomakomai earthquake,
which contains at least 9295 landslides, of which 6682 pieces are larger than 1000 m2 (Figure 7).
These landslides are mostly distributed in mountainous areas in Atsuma, Abira-chō, and Mukawa
of Hokkaido. These landslides are mostly contiguous and shallow, several meters deep-seated [3].
The study area was defined as an irregular elliptical area according to the distribution of these landslides
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(Figure 7), which covers 588.06 km2. The total area of 9295 landslides is 30.96 km2, the proportion of
landslide area in the whole study area is 5.26%, and the density of landslide points is 15.80/km2.
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3.1.2. Influencing Factors of Landslide Susceptibility

In landslide susceptibility assessment, there is no widely accepted standard for selecting landslide
controlling factors [35]. Based on our experiences and literature [17], combining the topographical,
geological and seismic aspects, here we selected elevation, slope angle, aspect, curvature, distances
to fault, distances to epicenter, PGA, distance to rivers, distances to roads, and lithology to mapping
landslide susceptibility in the study area.

In areas of similar elevation, seismic landslides are usually equally distributed. Therefore,
the elevation was selected as an influencing factor of landslide susceptibility. From a 30 m resolution
DEM of the study area, the elevation was divided into seven classes: <100 m, 100~200 m, 200~300 m,
300~400 m, 400~500 m, 500~600 m, and >600 m (Figure 8a).

Another factor affecting earthquake-induced landslides is the slope features, including its angle,
aspect (or facing direction), and curvature. These data were derived from DEM. Based on previous
studies [36] and local terrain, the slope angle was divided into five categories: <10◦, 10◦~20◦, 20◦~30◦,
30◦~40◦, and >40◦ (Figure 8b), the aspect was divided into nine categories: Flat, East, South east, North,
Northeast, West, Northwest, South, and Southeast (Figure 8c), and the curvature was divided into six
categories of <−2, −2~−1, −1~0, 0~1, 1~2, and >2 (Figure 8d).
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an index to represent ground shaking. The PGA data used in this work was from the USGS 
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river; (i) distance to road; and (j) lithology.

Because of under-cutting action of rivers or roads may affect the stability of natural slopes, distance
to rivers and roads were also selected as influence factors. Distances to rivers and roads were classified
by 100m buffer interval. Then, the maps were converted into raster format, respectively (Figure 8h,i).

Lithology is a major influence factor on landslide occurrences. The lithology data was from
a 1:200,000 geological map of the study area [37], which was divided into 10 categories according
to the stratigraphic age groups, including Late Pleistocene lower terrace (Q3tl), Middle Pleistocene
higher terrace (Q2th), Middle Pleistocene marine and non-marine sediments (Q2sr), Late Eocene to
Early Oligocene marine and non-marine sediments (PG3sr), Middle Eocene marine and non-marine
sediments (PG2sr), Late Miocene to Pliocene marine and non-marine sediments (N3sn), Middle to Late
Miocene marine and non-marine sediments (N2sn), Early Miocene to Middle Miocene marine and
non-marine sediments (N1sr), Late Cretaceous marine sedimentary rocks (K2sm), and Late Pleistocene
to Holocene marine and non-marine sediments (Hsr).

Strong ground motion is an immediate trigger of seismic landslides. Because the seismic
intensity interval is larger compared to PGA, or the same intensity, the upper and lower limits of
PGA can be several times different due to the different magnitudes. Therefore, we selected PGA
as an index to represent ground shaking. The PGA data used in this work was from the USGS
(https://earthquake.usgs.gov) The range of PGA for the study area is from 0.16 to 0.82g with a 0.1g
interval (Figure 8g). The area ranging from 0.5g to 0.7g accounted for 63.8% of the total area. Most

https://earthquake.usgs.gov
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landslides are concentrated in this area with PGA from 0.5g to 0.7g. Besides, the epicenter was made
up of buffers with an interval of 1 km, the outer belts were truncated where they intersect with the
boundary of the study area and the study area was divided into 28 categories (Figure 8f).

The seismogenic fault is strongly correlated with seismic landslides. Many studies have proved
that seismogenic faults strongly controlled distributions of seismic landslides in many earthquake
events [38,39] and the landslides were mostly distributed along seismogenic faults [39]. Therefore, we
selected the distances to fault as an influencing factor. As the exact ground projection of the seismogenic
fault is unknown yet, we referred the focal mechanism solution of this earthquake, in which the
causative fault of the earthquake trends in 349◦ (http://www.fnet.bosai.go.jp/). Using a parallel line
with a dip angle of 349◦ at 1 km intervals to represent the distance to the seismogenic structure, the
study area was divided into 19 categories with respect to the seismogenic fault (Figure 8e).

All of the ten maps were converted into raster format with a grid cell size of 30 × 30 m. These
controlling factor maps and their classes are shown in Figure 8.

3.1.3. Sampling Method for Landslide Data

For model construction, both training and testing samples are needed. Training samples are used
for calculating the coefficients of landslide influence factors, and testing samples are applied to test the
predictive capability of the model.

Considering the accuracy of data, we only considered the landslides with an area greater than
1000 m2, thus 6682 landslides (area > 1000 m2) were selected, with a total area of 29.48 km2. The median
value of each landslide elevation was used to roughly distinguish the landslide source area and debris
deposits. The area larger than the median elevation is the landslide source area; otherwise it is the
landslide debris deposits (Figure 9). Finally, the source area of these landslides is 15.79 km2.
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Figure 9. Landslide inventory map showing extracted landslide source areas (red).

In order to equally train the model toward positive and negative observations, we balanced
the samples by randomly selecting a number of non-sliding points that are equal to the number of
the real landslide observations (6682), resulting in 50% landslide points and 50% non-sliding points.
Non-landslide points chosen from the outside the buffer zone of the landslide source area (buffer
radius = 100 m). 6682 random points were employed as the landslide sample points which were
randomly selected from the entire source area. Finally, we got 13,364 samples including 6682 sliding
points and 6682 non-sliding points. Then we randomly selected 9364 samples for training modeling

http://www.fnet.bosai.go.jp/
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(including 4682 landslide points and 4682 non-sliding points), and the remaining 4000 samples were
used for tests (including 2000 landslide points and 2000 non-landslide points).

3.2. Methodology

In this work, we selected LR and SVM to assess landslide susceptibility in the entire affected area
of the 2018 Tomakomai earthquake. Below we will introduce these two methods. In addition, how to
use the above data in these methods to construct models will be explained, representatively.

3.2.1. Logistic Regression (LR)

The Logistic Regression model (LR) is a regression analysis method, in which the dependent
variable is a binary categorical one, belonging to the nonlinear multivariate statistical model [15,40].
A LR model describes the relationship between a dichotomous dependent variable P, coded to take the
values 1 (presence of landslide) or 0 (absence of landslide), and j independent variables x1, x2, . . . . . .
. . . , x j. It predicts a dependent variable on the basis of continuous or categorical explanatory variables.
The selection of the logistic regression model in this study mainly is for the following three reasons:
(1) The independent variables do not necessarily have normal distributions. (2) The LR model carries
out a comprehensive evaluation between various control factors and landslide samples, and can better
solve the problem of interdependence between factors. (3) It accepts both binary and scalar values as
the independent variables, which allows for the use of independent variables that are not continuous
or qualitatively derived.

The algorithm of logistic regression applies maximum likelihood estimation after transforming the
dependent variable into a logit variable. It means that the LR coefficients that make the observed results
most “likely” are selected. The relationship between the explanatory variables and the dependent
variable P is nonlinear in the LR model. The relationship between the probability of landslide occurrence
and the independent variables can be written as follows:

Z = a +
∑

j

b jx j j = 1, 2, . . .m (1)

P =
1

1 + e−(z)
(2)

where P is the probability of a landslide occurrence, varying from 0 to 1 on a S-shaped curve; Z is the
linear combination, varying from −∞ to +∞; a is the intercept of the model; j represents the number of
independent variables; b j ( j = 1, 2, 3, . . . ,m) is the slope coefficient of the model; and x j ( j = 1, 2, 3, . . . ,
m) represents the independent variable.

3.2.2. Support Vector Machine (SVM)

The support vector machine is a new generation of machine learning algorithms based on the
nonlinear theory of covariate transformation to higher dimensional feature space and the principle of
structural risk minimization, which was presented firstly by Cortes and Vapnik in 1995 [41]. It can
solve nonlinear and high-dimensional pattern recognition problems with fewer samples. Generally,
the characteristics of the SVM can be briefly stated as: (1) Significantly precise and robust; (2) able to
model complex nonlinear decision boundaries [20]; (3) less prone to over fitting in comparison with
other models such as artificial neural network (ANN) [25]; and (4) potential of implementation in
pattern recognition, regression, and classification [20].

In recent years, SVM modeling approaches have been implemented extensively in landslide
automatic identification and landslide susceptibility assessment [25,42]. The key to the application of the
support vector machine is (1) to find an optimal classification hyperplane that is out of the data model;
and (2) to use a reasonable kernel function to map linearly inseparable data into high-dimensional
feature space, making it linearly separable [20].
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A set of linear separable training vectors xi (i = 1, 2, . . . , n) was considered. The training vectors
consist of two classes, which are defined as yi = ± 1. The purpose of support vector machine is to search
an n-dimensional hyperplane differentiating the two classes by their maximum gap. Mathematically,
it can be expressed as:

1
2
‖ w ‖2 (3)

The constraint is:
yi(w•xi + b) ≥ 1 (4)

where w represent the norm of the normal of the hyperplane, b is a scalar base, and • is the scalar
product operation, xi is ith sample value of the input vector, and yi is the corresponding output.

With the Lagrangian multiplier, the cost function is:

L =
1
2

w2
−

n∑
i=1

λi(yi((w·xi) + b) − 1) (5)

where λi is the Lagrangian multiplier, w and b can be achieved by the dual minimizing Equation (5).
For a non-separable case, one can modify the constraints Equations (6) and (7):

yi(w·xi + b) ≥ 1− ξi (6)

L =
1
2

w2
−

1
vn

n∑
i=1

ξi (7)

where ξi is slack variables, and v (0, 1] represents the misclassification. In the present study, +1 and −1
indicate the failed and stable cases, respectively.

There are four commonly used kernel function types including Linear, polynomial, radial basis,
and sigmoid. Research shows that the radial basis function (RBF) is one of the most powerful kernel
functions [43], which has been applied successfully to remote sensing classification and landslide
susceptibility mapping. Therefore, this work chose the RBF in the assessment of earthquake landslide
susceptibility. The mathematical expression of the RBF KRBF

(
xi − x j

)
is

KRBF
(
xi − x j

)
= exp(−γ‖ xi − x j ‖

2) (8)

where γ is the parameter of the kernel functions.
Before constructing LR and SVM models, we need to prepare the training and testing sample

datasets which include both the presence and absence of landslide occurrences and associated
controlling factors. These values were derived and rasterized by GIS. We extracted cell values at
locations specified in a point feature class (training and testing samples we selected in Section 3.1.3)
from 30 × 30 raster derived from the influence factor maps, and recorded the values to the attribute
table of the point feature class.

4. Results and Analyses

In this section, we will show how to use the sample dataset to perform regional susceptibility
evaluation using LR and SVM, and conduct the quantitative analysis of the assessment results.

4.1. LSM of LR

For the LR model, the sample dataset includes both the presence and absence of landslide
occurrences and associated controlling factors. Then the sample dataset was inserted into the SPSS
software to model the relationship of the probability of landslide occurrences with the associated
controlling factors [44]. In this case, the last category was used as the reference category for each
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categorical variable [10]. Using the LR model, the spatial relationship between landslide occurrence
and controlling factors of landslides was assessed. Table 2 and Figure 10 show the extracted coefficients
of all categorical variables by LR and the classified area of each categorical variable. In this paper, the
last class was used as the reference class for each class variable (i.e., the coefficient of the last class
is 0) [10].

Table 2. Classifications and LR coefficients of ten controlling factors of landslides.

Classification Regression
Coefficients Classification Regression

Coefficient Classification Regression
Coefficients

<DEM> 11 4.321 7: >0.7g 0

1: <100 m 5.51 12 3.238 <Distances to roads>

2:100–200 m 6.524 13 2.892 1:<100 m −1.005
3:200–300 m 6.364 14 2.68 2:100–200 m −0.644
4:300–400 m 4.532 15 2.027 3:200–300 m −0.496
5:400–500 m −11.78 16 1.607 4:300–400 m −0.361
6:500–600 m 0 17 1.429 5:400–500 m −0.444

7:>600 m 0 18 0.755 6:500–600 m −0.366

<Slope angle> 19 0 7:600–700 m −0.231

1:<10◦ −25.717 <Distances to epicenter> 8:700–800 m −0.56

2:10–20◦ −24.894 1 −27.93 9:800–900 m −0.587
3:20–30◦ −24.426 2 −8.91 10:900–1000 m −0.173
4:30–40◦ −25.102 3 −6.511 11: >1000 m 0

5:>40◦ 0 4 −5.07 <Distance to rivers>

<Aspect> 5 −5.185 1: <100 m −0.028

1: Flat −18.45 6 −4.388 2:100–200 m −0.287
2: North 0.416 7 −4.125 3:200–300 m 0.116

3: Northeast 0.92 8 −2.974 4:300–400 m −0.552
4: East 1.454 9 −2.353 5:400–500 m −0.511

5: Southeast 1.423 10 −2.379 6:500–600 m −0.614
6: South 1.021 11 −2.185 7:600–700 m −0.386

7: Southwest 0.652 12 −2.474 8:700–800 m −0.222
8: West 0.187 13 −2.956 9:800–900 m −0.209

9: Northwest 0 14 −3.254 10:900–1000 m −0.6

<Curvature> 15 −3.59 11:>1000 m 0

1: <−2 0.14 16 −3.692 <Lithology>

2: −2~−1 0.732 17 −3.897 1: Hsr −2.517
3: −1~0 0.926 18 −4.128 2: K2sm 1.048

4:0~1 1.061 19 −5.292 3: N1sr −3.386
5:1~2 0.834 20 −6.396 4: N2sn 0.486
6: >2 0 21 −7.523 5: N3sn −2.831

<Distances to fault> 22 −9.391 6: PG2sr −0.852

1 −17.689 23 −26.766 7: PG3sr −15.327
2 0.766 24 −23.596 8: Q2sr −0.889
3 2.891 25 0 9: Q2th −5.309

4 4.263 <PGA> 10: Q3tl 0

5 4.229 1: <0.2g 1.369 Constant 17.594
6 3.889 2:0.2–0.3g 1.604
7 5.634 3:0.3–0.4g 1.22
8 5.249 4:0.4–0.5g 0.8
9 6.142 5:0.5–0.6g 0.798
10 5.794 6:0.6–0.7g 2.089
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Figure 10. LR Coefficients for the ten controlling factors and the area of each classification variable. 
(a) Elevation; (b) slope angle; (c) aspect; (d) curvature; (e) distances to fault; (f) distances to epicenter; 
(g) PGA; (h) distance to rivers; (i) distances to roads; and (j) lithology. 

The corresponding weight values were given to each controlling factor according to the LR 
coefficients (Table 2). Based on Formula (1), the Z values and the weighted linear combination of the 
independent variables were calculated based on GIS platform and the superposition operations of 
each controlling factor layer (Figure 11a). By virtue of Formula (2) and Z and P values, the 

Figure 10. LR Coefficients for the ten controlling factors and the area of each classification variable.
(a) Elevation; (b) slope angle; (c) aspect; (d) curvature; (e) distances to fault; (f) distances to epicenter;
(g) PGA; (h) distance to rivers; (i) distances to roads; and (j) lithology.

Generally, the greater the regression coefficient is, the higher the significance of landslide occurrence
is. Based on the regression coefficients, we can explain the statistical relationship between each control
factor and the occurrence of landslides. Figure 10a shows that the highest LR coefficients are in the
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range of elevations 100~200 m and 200~300 m (Figure 10a). Figure 10b shows that the LR coefficients
of slope angel change little within 0~40◦, then reach the highest value in >40◦ interval. Figure 10c
shows that the east and southeast aspects are easier to produce landslides. The coefficient curve of the
parallel seismogenic fault shows that the LR coefficients decrease with the increase of fault distances
as a whole (Figure 10e). Figure 10g shows that the areas with 0.6~0.7g are more prone to landslides.
The lithology of Late Cretaceous marine sedimentary rocks (K2sm), Middle to Late Miocene marine
and non-marine sediments (N2sn) have the highest LR coefficients (Figure 10j).

The corresponding weight values were given to each controlling factor according to the LR
coefficients (Table 2). Based on Formula (1), the Z values and the weighted linear combination of the
independent variables were calculated based on GIS platform and the superposition operations of
each controlling factor layer (Figure 11a). By virtue of Formula (2) and Z and P values, the probability
of landslide occurrence, was calculated subsequently. Based on the commonly used five-class interval
method, the landslide susceptibility index was ranked into five classes: (1) Very low (0 to 0.2), (2) Low
(0.2 to 0.4), (3) Moderate (0.4 to 0.6), (4) High (0.6 to 0.8), and (5) Very high (0.8 to 1). Figure 11b shows
the susceptibility class map.
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for 64.78% of the total landslides, and the LAD and LND are 10.37% and 43.9/km2, respectively. 51% 

Figure 11. Landslide susceptibility index (LSI) map and susceptibility class map of LR (a) Landslide
susceptibility map; (b) LSI class map.

Figure 12 and Table 3 are the statistical results of the susceptibility zoning area, the number
of landslides, landslide area density (LAD) and the landslide number density (LND) in different
susceptibility classes of two models.

Table 3. Statistics in different landslide susceptibility classes (LR).

Area/km2 Area of
Classification/(%)

Number of
Landslides LND/km2 LAD/(%)

Very low 303.96 51.68 209 0.68 0.18
Low 66.06 11.23 283 4.28 1.19

Moderate 55.52 9.44 554 9.97 2.33
High 63.91 10.86 1307 20.44 4.43

Very high 98.60 16.76 4329 43.90 10.37

Note: LND is landslide number density; LAD is landslide area density.
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As shown in Figure 12 for the LR, the area of very high susceptibility class is 98.60 km2, which
accounts for 16% of the entire study area; the number of landslides in this class is 4329, accounting for
64.78% of the total landslides, and the LAD and LND are 10.37% and 43.9/km2, respectively. 51% of
the study area is designated as the very low susceptibility classes, where the number of landslides
is 209, accounting for 3.12% of the total number of landslides, and the LAD and LND are 0.18% and
0.68/km2, respectively. On the whole, most landslides are concentrated in the very low and very high
susceptibility classes.

4.2. LSM of SVM

Software LibSVM3.22, which is a widely used SVM software library, was employed in this
study [45]. Currently, there is a lack of information in most related studies concerning the SVM
learning parameter estimation of C and Gaussian kernel width γ [46]. In this study, the optimization
of parameters was conducted by the cross validation algorithm of software LibSVM3.22 using
matlab2012b [45].

The maps of ten influence factors with a grid cell size of 30 × 30 m were adopted to produce the
landslide susceptibility maps. The training dataset included 9364 grid cells and each grid consisted
of ten layers representing the landslide-influencing factors. As the prediction accuracy of the SVM
depends on sample size, a model test was carried out by varying the sample size. Using the RBF
kernel parameters, the best C and γ were determined as 2 and 0.5, respectively. The SVM model
was constructed. Then the landslide susceptibility map (Figure 13a) for the study area was created,
the closer the value is to 0, the smaller the possibility of landslide occurrence is; and the closer the value
is to 1, the greater the possibility of landslide occurrence is. The landslide susceptibility index was
ranked into five classes: (1) Very low (0 to 0.2), (2) Low (0.2 to 0.4), (3) Moderate (0.4 to 0.6), (4) High
(0.6 to 0.8), and (5) Very high (0.8 to 1) (Figure 13b).

Figure 14 and Table 4 are the statistical results of SVM, the number of landslides, landslide
area density (LAD) and the landslide number density (LND). In the SVM model, the area of middle
susceptibility class is 133.98 km2, which accounts for 22.78% of the entire study area. The actual number
of landslides is 587, accounting for 8.78% of the entire landslides, and the LAD and LND are 0.12% and
0.30 km2, respectively. The area of low susceptibility class is 332.96 km2, which accounts for 56.61% of
the entire study area. The number of landslides is 103, accounting for 1.54% of the entire number of
landslides, and the LAD and LND are 1.19% and 4.28/km2, respectively.
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Table 4. Statistics of different landslide susceptibility classes (SVM).

Area/km2 Area of
Classification/(%)

Number of
Landslides LND/km2 LAD/(%)

Very low 5.92 1.00 3 0.50 0.19
Low 332.96 56.61 103 0.30 0.12

Moderate 133.98 22.78 587 4.38 1.83
High 108.31 18.41 5484 50.62 10.72

Very high 6.88 1.17 505 73.29 17.41

Note: LND is landslide number density; LAD is landslide area density.

4.3. Model Validation and Quantitative Analysis

In this study, validations of the mapping results were performed by the area under the curves of
the two models. The landslide susceptibility index values were sorted in descending order and divided
into 30 classes of accumulated area ratio percentages. The success rate curve and the predictive rate
curve were created with the landslide training dataset and the testing dataset, respectively.

To compare the result quantitatively, the AUC (Area Under Curve) were re-calculated, in which
the total area is 100 means perfect success rate and prediction rate. The results of the training dataset
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and the validation dataset were calculated, and the success rate curve and the predictive rate are shown
in Figure 15. The results show that the two models have good prediction accuracy. For training set,
the AUCs of LR and SVM are 0.847 and 0.909, respectively. For validating set, the AUC is 0.839 for LR,
0.871 for SVM. Overall, the prediction accuracy of the SVM is higher than LR. 18 of 23 
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5. Discussion

This work attempted to establish a detailed landslide inventory and used the LR and SVM to
carry out the susceptibility mapping for the 2018 Tomakomai, Japan Mw6.6 earthquake. Using the
LR and SVM, two landslide susceptibility maps were produced for the study area. The results show
that the SVM slightly outperformed LR method. There are two reasons. First, the SVM method



Remote Sens. 2019, 11, 978 19 of 23

is not oriented to linear features or even features that interact linearly. It can solve nonlinear and
high-dimensional pattern recognition problems better than LR [47]. Secondly, SVM is less prone to over
fitting in comparison with LR. While LR is a regression analysis method, which is based on logarithmic
transformation of a generalized linear model. Thus, LR does not perform well when there is more
complicated relationship between the landslides and the influencing factors [47].

In the application of the LR model to landslide susceptibility mapping (LSM), many scientists have
tried to exploit the data using continuous variables [14,48] or dummy binary variables. When using
dummy binary variables, the complexity of the data structure will increase. It means that many
parameters are included, the regression equation will be very long, and it may even introduce
numerical problems [48]. Thus, some studies extended the application of logistic regression by using
the continuous data as they can attain good assessment results [40,48]. Although this can decreases
the complexity of the data structure and increase flexibility of the LR model, for some independent
variables such as elevation, distances to epicenter and distances to faults, they may not have the direct
positive or negative correlation with the prediction values (susceptibility index). If the independent
variables are not converted into categorized variables, it may influence the prediction accuracy. Thus,
based on previous studies [17], we used dummy binary variables for LR [17]. By classifying the
independent variables we calculated the LR coefficients for each class.

Based on the resulting susceptibility index map of LR (Figure 11a) and SVM (Figure 13a),
the distribution of susceptibility index are basically the same, and the high-susceptibility areas are
mainly distributed along the river valleys, which is basically consistent with the actual landslide
distribution. Meanwhile, the susceptibility index was divided into 32 equal intervals, and then the
classification area and its LAP within each susceptibility level were counted. From the statistical
results (Figure 16), the LAP curves of two models are basically consistent. The LAP increases rapidly
with the increase of the susceptibility level. However, the classified area distribution of two models
is dissimilar. For LR, the peak values of classified area were mainly concentrated in <0.1 and >0.9
intervals (Figure 16a). So the distribution area concentrates on the interval of very high (0.8–1) and very
low (0–0.2) (Figure 11b). For SVM, by contrast, the peak values of classified area were distributed in
the interval of 0.3–0.45 and 0.65–0.8 (Figure 16b). Thus, the classification area of the high (0.6–0.8) and
low (0.2–0.4) is larger (Figure 13b). In this paper, the assessment results of the two models are classified
by the commonly used five-class interval method [27]. As the absolute values of the susceptibility
index are different, causing different class results, which can also be seen in previous studies [11,49,50].
Therefore, this reminds us that when we conduct the landslide susceptibility assessment, different
classification criteria will result in different susceptibility mapping results. Thus, how to establish
reasonable and objective classification standards is very important in this aspect.

In terms of optical images, the planet images have three advantages. (1) Planet Satellite can
provide high frequency, medium-high-resolution (3–4 m) remote sensing images, which ensure to
acquire detailed temporal and spatial information of landslides. Especially for the landslides with
high density, we can follow the principles of image interpretation to prepare the landslide inventory
based on Planet images. (2) High data coverage efficiency: The Planet small satellite constellation
has more than 170 satellites, which can achieve global daily coverage. In the past, it was impossible
to obtain images covering the entire earthquake zone in one month or even few months after the
earthquake (such as the Wenchuan, Nepal, and Lushan earthquakes), which brought great difficulties
to the construction of the seismic-landslide database [31,32,51]. The Planet satellite changed this status,
and the images can be acquired within a few days after the earthquake, which greatly increases the
acquisition speed of landslides. (3) Planet images are merit for the high precision and slight noise.
This ensures the accuracy and completeness of landslides interpretation.

Otherwise, this study further proves the feasibility and reliability of the two types of machine
learning methods for large-scale, high-density seismic landslide susceptibility mapping. Previous
studies [11,52] have shown that machine-learning methods are more accurate than Newmark and
human empirical models. However, the machine-learning method has high dependence on the
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comprehensive and objective landslide dataset, which makes the method have low efficient, and the
assessment results are mostly years after the earthquake, which led to the fact that scientific research
results could not be applied to practice [27]. But, the planet images can be acquired within a few days
after the earthquake, a comprehensive and objective earthquake landslide database can be obtained
quickly, then the machine learning method was used to conduct accurate landslide susceptibility
mapping, which can be applied to landslide disaster prevention and mitigation in earthquake-stricken
areas in the short-term after the earthquake. In this study, we completed the landslide inventory
within 1 month after the earthquake, so that the assessment results can be applied to the medium-term
resettlement and reconstruction, and are helpful to earthquake landslide prevention and mitigation.

6. Conclusions

A detailed and complete landslide inventory is the basis for landslide susceptibility assessment,
and landslide susceptibility mapping is of great significance for disaster prevention and mitigation
of earthquake-triggered landslide hazard. This work attempted to establish a detailed landslide
inventory of the 2018 Tomakomai, Japan Mw6.6 earthquake and used the LR and SVM to carry out
the susceptibility mapping for the affected area. Based on the planet images acquired within a few
days after the earthquake, a comprehensive and objective earthquake landslide database was obtained
within 1 month, so that the results can be applied to the medium-term resettlement and reconstruction.

To compare the result quantitatively, the modeling results of landslide susceptibility were evaluated
by comparing the maps with known landslide locations. For LR, more than 68.44% of landslides
concentrate in areas of very low and very high susceptibility classes. For SVM, more than 89.6% of
landslides concentrate in areas of high and very high susceptibility classes. The AUCs show that the
SVM works slightly better than the LR method, the success rates of the LR and SVM are 84.7% and
90.9%, respectively. The prediction rates of the LR and SVM are 83.9% and 87.1%, respectively. Overall,
the LND and LAD of the two models increase rapidly with the increase of the susceptibility level.
This study explores the applicability of the logistic regression (LR) model and support vector-based
model (SVM) in the study area, and the results provide a useful reference for earthquake disaster
prevention and mitigation in the quake-affected area. Otherwise, the results can provide a scientific
reference for the quick establishment of co-seismic landslide inventories and landslide susceptibility
mapping based on landslide databases.
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