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Abstract: Atmospheric water vapor content or total precipitable water (TPW) is a highly variable
atmospheric constituent, yet it remains one of the meteorological parameters that is most difficult
to characterize accurately. We develop a framework for estimating atmospheric TPW from Visible
Infrared Imaging Radiometer Suite (VIIRS) data in this study. First, TPW is retrieved from
VIIRS top-of-atmosphere (TOA) radiance of channels 15 and 16 using the refined split-window
covariance-variance ratio (SWCVR) method. Then, the VIIRS TPW is blended with the microwave
integrated retrieval system (MIRS) derived TPW via Bayesian model averaging (BMA) to improve the
accuracy of VIIRS TPW. Three years (2014–2017) of ground measurements collected from SuomiNet
sites over North America are used to validate the VIIRS TPW and blended TPW. The mean bias
error (MBE) and root mean square error (RMSE) of the VIIRS TPW are 0.21 g/cm2 and 0.73 g/cm2,
respectively, and the accuracy of the VIIRS TPW in daytime is much better than at night time. The MBE
and RMSE of BMA integrated TPW are 0.06 g/cm2 and 0.35 g/cm2, and the accuracy difference between
daytime and nighttime is also removed. The global radiosonde measurements are also collected
to validate the BMA integrated VIIRS TPW. The MBE and RMSE of the BMA integrated TPW are
0.09 g/cm2 and 0.44 g/cm2 compared to the radiosonde measurements. This accuracy is also superior
to the VIIRS TPW. Therefore, it is concluded that the developed framework can be used to derive
accurate clear-sky TPW for VIIRS. This is the first time that we can obtain high accuracy TPW from
VIIRS. This study will certainly benefit the study of atmospheric processes and climate change.
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1. Introduction

Total atmospheric water content is the mass of water vapor contained in a vertical atmospheric
column from the surface to the top of the atmosphere, also known as total precipitable water (TPW).
Atmospheric water vapor is one of the most important atmospheric absorbers of greenhouse gases,
accounting for approximately 70% of the total atmospheric absorption and 60% of the total natural
greenhouse effects under clear-sky conditions [1], and it plays an important role in the energy exchange
between the atmosphere and ground surface, the Earth’s hydrological cycle [2], and climate change [2–4].
Water vapor is a highly variable atmospheric constituent, yet it remains one of the meteorological
parameters that is most difficult to characterize accurately. It is important to improve our knowledge
of atmospheric water vapor for a variety of atmospheric research and applications.

There are three types of methods for obtaining TPW: ground-based observations, radiosonde
techniques, and satellite remote sensing. It is widely acknowledged that the radiosonde technique
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is one of the most accurate ways to monitor the TPW, as it can even obtain water vapor at various
atmosphere pressure levels [5]. Ground-based microwave radiometers [6], Lidar systems [7], and
ground-based global positioning systems (GPS) [8] can also be used for measuring the TPW with high
precision. Ground-based observations usually have high accuracy and good continuity at time scales
for the study of long-term trends. However, ground-based observations cannot be used at large scales
and cannot reveal the spatial distribution of TPW. Satellite remote sensing provides an effective way
for large-scale observation of TPW.

The methods used for obtaining remote sensing estimates of TPW can be divided into four
categories. (1) Near-infrared [9–11]: the near-infrared method obtains the equivalent TPW by the ratio
of the reflected solar radiation in the water vapor absorption channel (e.g., 0.94 µm) to the reflected solar
radiation in nearby water vapor window channels (e.g., 0.86 µm, 1.05 µm, or 1.24 µm). The accuracy
of the moderate resolution imaging spectroradiometer (MODIS) near IR water vapor is 0.17 g/cm2

compared to the ground-based microwave radiometer in the Southern Great Plains [9]. (2) Passive
microwave [12–14]: microwaves can penetrate clouds, which provides an effective way to retrieve
TPW under cloudy conditions as a complement. Based on observations around the strong water
vapor absorption line at 183 GHz, space-borne passive microwave sounders have proven effective in
monitoring water vapor profiles for operational numerical weather prediction [14,15]. Because of the
uncertainty of land surface emissivity, the passive microwave method is usually used in ocean water
vapor inversion and the root mean square (RMS) is less than 0.3 g/cm2 compared against radiosonde
data [16]. (3) Thermal infrared (TIR) [17–20]: the multi-band based TIR statistical regression method [20]
and split-window method [18] are two representative algorithms. The split-window method is used to
obtain TPW from the difference of the top-of-atmosphere (TOA) brightness temperature of split-window
channels (11 µm and 12 µm), provided that the atmospheric water vapor is spatially invariant within
a certain area [18,19]. Jedlovec proposed a method to derive the TPW using the spatial variance of
the image brightness temperature, and the method was applied to a single multispectral atmospheric
mapping sensor (MAMS) image and the standard error (SE) was 0.485 g/cm2 [21]. Sobrino et al. [22]
refined Jedlovec’s method [21] by the use of the split-window covariance–variance ratio (SWCVR).
Li et al. improved the SWCVR method and developed an operational algorithm to obtain atmospheric
TPW. The method was then applied to several along track scanning radiometer 2 (ATSR2) datasets,
and the standard deviation was 0.22 g/cm2 compared to the radiosonde [23]. (4) Hyperspectral
methods [24,25]: the basic idea of the hyperspectral method is to use residual line intensity that
corresponds to the water vapor absorption band centered at 940 nm to retrieve the TPW [24].

All of these methods have their own limitations. For example, although the near-infrared method
can obtain high accuracy TPW measurements, it cannot be used to acquire TPW under cloudy conditions
and at night. The accuracy of the SWCVR method may degrade when the surface emissivity varies
greatly and surface temperatures tend to be uniform [22]. The surface microwave emissivity value is
high and varies significantly, which severely affects the signal of atmosphere received by space-based
microwave radiometers and makes the TPW inversion difficult over land [26]. According to the
validation results of the aforementioned methods, the thermal infrared method can obtain reliable
TPW [20,23,27,28]. The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key instruments
onboard the Suomi National Polar-Orbiting Partnership (S-NPP) spacecraft. VIIRS does not deploy an
absorption channel in the near-infrared and thermal-infrared but has thermal infrared split-window
channels in 11 µm and 12 µm. To our knowledge, VIIRS does not provide an operational TPW product.
We are producing long term high quality land surface longwave radiation products from an advanced
very high resolution radiometer (AVHRR), MODIS, and VIIRS [29–34]. It is almost impossible to
accurately retrieve surface downward longwave radiation from VIIRS without TPW. The purpose of
this study is to develop a framework to estimate TPW for VIIRS, to facilitate various studies relevant to
atmospheric processes and climate change. The structure of this article is arranged as follows. The data
including satellite data, in situ measurements, and atmospheric profiles are described in Section 2.
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The description of the method and the validation results are respectively provided in Sections 3 and 4.
A brief discussion and conclusion are provided in Sections 5 and 6.

2. Data

2.1. SuomiNet

“SuomiNet” is a network of GPS receivers, which provides real-time measurements of TPW for
atmospheric research and education [8,35]. The network, named after Verner Suomi, a weather satellite
pioneer, uses the ground-based GPS receiver to conduct thousands of accurate measurements of the
upper and lower atmosphere each day. The GPS sends the radio signal to the global terrestrial GPS
receiver. These signals are delayed by the ionosphere and troposphere. The ionospheric effect can
be eliminated by using a linear combination of two GPS frequencies. The total tropospheric delay
along the zenith is called the zenith tropospheric delay (ZTD), which can be divided into two parts:
the zenith hydrostatic delay (ZHD) and the zenith wet delay (ZWD). ZHD is mainly a function of the
surface pressure of the GPS receiver, and ZWD strongly depends on TPW [36,37]. ZWD delay can be
converted into TPW along each GPS ray path. SuomiNet can obtain continuous, accurate, all-weather,
real-time TPW data, which will help promote mesoscale modeling and data assimilation, bad weather,
precipitation, and cloud dynamics, regional climate, and hydrology research.

SuomiNet provides continuous TPW estimates from 828 sites distributed across the United States
with accuracy better than 2 mm (~0.2 g/cm2) [8,38]. In this article, three years (2014–2017) of SuomiNet
data are downloaded for the validation of the retrieved TPW. The geolocations of SuomiNet GPS
stations are displayed in Figure 1.
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2.2. The Joint Polar Satellite System (JPSS) Microwave Integrated Retrieval System (MIRS) Precipitation Product

The microwave integrated retrieval system (MIRS) was developed by the NOAA/National
Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Application
and Research (STAR) and has been put into use in the NOAA/NESDIS Satellite and Product Operations
Office (OSPO), which aims to upgrade the current operational microwave surface and precipitation
products system (MSPPS) [39,40]. The operational MIRS can produce advanced near-real-time surface
and precipitation products in all weather and over all surface conditions using brightness temperatures
from the microwave instruments, such as the advanced technology microwave sounder (ATMS) onboard
the S-NPP satellite. ATMS is a cross-track scanner with 22 channels in spectral bands from 23 GHz
through 183 GHz [41]. The operational products of MIRS include vertical profiles of temperature and
TPW, rainfall rate, cloud liquid water, snow cover, snow water equivalent, sea ice concentration, ice
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water path, and land surface temperature. The spatial resolution of the MIRS TPW product derived
from ATMS is 15 km at Nadir. Suomi NPP orbits the Earth 14.1875 times each day in a Sun-synchronous,
polar orbit that allows ATMS to observe nearly the entire global atmosphere twice daily.

2.3. Visible Infrared Imaging Radiometer Suite (VIIRS)

The Visible Infrared Imaging Radiometer Suite (VIIRS), aboard the joint NASA/NOAA Suomi
National Polar-Orbiting Partnership (S-NPP) satellite, was developed based on the heritage of legacy
instruments, including the advanced very high resolution radiometer (AVHRR) and MODIS. VIIRS has
22 spectral channels with wavelengths covering from 0.41 µm to 12.5 µm, which can be used for
environmental monitoring and numerical weather forecasting. The results from the on-orbit verification
in the postlaunch check-out, intensive calibration, and validation have shown that VIIRS is performing
very well [42]. More than 20 environmental data records have been produced operationally from VIIRS
data, including clouds, land surface temperature, sea surface temperature, aerosol optical thickness,
ocean color, polar wind, vegetation fraction, aerosol, fire, snow and ice, vegetation index, etc. However,
to our knowledge, VIIRS does not provide TPW product.

The VIIRS data utilized in this study include VIIRS sensor data records (SDR) and VIIRS cloud
mask intermediate product (VCM). The VIIRS SDR contains the day–night channel, imagery channel,
moderate resolution channel, and geolocation data. Two thermal-infrared channels of VIIRS, M15
(10.75 µm) and M16 (12.01 µm), are selected. The VIIRS VCM product is used to identify whether a
pixel is clear or cloudy [43]. The pixels with a confident clear flag are identified as clear-sky pixels.
In addition, geolocation and sensor view zenith angle data are also utilized.

2.4. Seebor Atmosphere Profile

This Seebor global profiles database (named SeeBor V5.0) consists of 15,704 profiles distributed
all over the world [44]. The temperature profile of Seebor has 101 levels, and the corresponding
atmospheric pressure varies from 1100 hPa to 0.005 hPa. The atmosphere profiles are collected from
NOAA-88, a European Centre for Medium-Range Weather Forecasts(ECMWF) 60 L training set,
TIGR-3, ozonesondes from 8 NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) sites,
and radiosondes from 2004 in the Sahara Desert. All the profiles are checked with the following
saturation criteria to eliminate the cloudy atmosphere profile, i.e., the relative humidity value for each
profile at each level below the 250 hPa pressure level must be less than 90%.

3. Methods

3.1. Split-Window Covariance-Variance Ratio Method

Assuming that the atmosphere state is invariant within a certain area, and the variation of surface
emissivity is minimal, the split-window covariance-variance ratio method (SWCVR) [22,23] retrieves
the TPW using the channel transmission ratio of two split-window channels (approximately 11 µm
and 12 µm). The transmittance ratio can be obtained from the TOA brightness temperature of the two
split-window channels. The SWCVR is expressed as:

TPW = f
(
τ j/τi

)
(1)

ratio =
τ j

τi
=
εi
ε j

R ji (2)

R ji =

N∑
k=1

(Ti,k − Ti)(T j,k − T j)

N∑
k=1

(Ti,k − Ti)
2

(3)
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r2 =

(
N∑

k=1
(Ti,k − Ti)(T j,k − T j))

2

N∑
k=1

(Ti,k − Ti)
2 N∑

k=1
(T j,k − T j)

2
= Ri, jR j,i (4)

where TPW represents total precipitable water, k represents pixel k, the subscripts i and j represent the
channels 15 and 16 of the VIIRS,τi and εi represent transmittance and emissivity of VIIRS channel i
respectively, Ti,k represents TOA brightness temperature of VIIRS channel i for pixel k, Ti represents
mean TOA brightness temperature of VIIRS channel i over N neighboring pixels, and r2 denotes the
correlation coefficient of Ti and T j over the N neighboring pixels, and is used to determine whether the
previous assumption is valid in the derivation process of the transmittance ratio.

The transmission ratio can be retrieved using Equation (2) in the case that the emissivity ratio
of two split-window channels is known. R ji is calculated from the atmospheric top brightness
temperature of the two split-window channels using Equation (3). The Advanced Spaceborne
Thermal Emission and Reflection Radiometer(ASTER) emissivity library [45] and moderate resolution
imaging spectroradiometer (MODIS) University of California, Santa Barbara(UCSB) emissivity library
(https://icess.eri.ucsb.edu/modis/EMIS/html/em.html) is used to calculate the channel emissivity of
VIIRS split-window channels. Figure 2 shows the variation of εi/ε j for different natural surface types
including rocks, vegetation, soils, water, and snow. The emissivity ratios of channels 11 µm and 12 µm
for most vegetation, water, snow, and soil are between 0.98 and 1.02. Considering that most pixels at a
scale of 0.75 km are usually covered by soils, water, vegetation, snow, or their mixtures, the emissivity
ratio can be approximated as unity in practice. Thus, the channel transmission ratio can be calculated as:

ratio =
τ j

τi
� R ji (5)
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Figure 2. Emissivity ratios of VIIRS channels 15 and 16 calculated from ASTER emissivity library and
the MODIS UCSB emissivity library (sample serial number versus emissivity ratio).

The number of neighboring pixels is a key parameter for the SWCVR method. The window
size N (N × N neighboring pixels) should not be too large or too small, in case the atmospheric
conditions may not be constant or cannot guarantee a high correlation between two channels’ TOA
brightness temperatures [28]. A simple simulation experiment is conducted to investigate the effect of
window size on the accuracy of the SWCVR method using the MODIS emissivity product MOD11B1.
The emissivities of MODIS channels 31 and 32 are used as proxies of VIIRS channels M15 and M16,
and the standard deviations of emissivities, approximately 0.01, are collected for different window
sizes. The land surface temperature (LST) varies around the bottom layer temperature of different

https://icess.eri.ucsb.edu/modis/EMIS/html/em.html
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Seebor atmosphere profiles with a standard deviation of 2.5 K. The TOA brightness temperatures of
VIIRS channels 15 and 16 are simulated using the moderate resolution atmospheric radiative transfer
code (MODTRAN 5.0) for different window sizes. The TPW is retrieved using the SWCVR method
from simulated VIIRS TOA brightness temperatures for different window sizes, and the root mean
square error (RMSE) which are displayed in Figure 3. Obviously, the RMSE decreases as the window
size increases, and the retrieval accuracy does not improve significantly with the increasing number of
the neighboring pixels when the window is larger than 18. Therefore, the window size is set as 18 in
this study.
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(SWCVR) using simulation data.

The SWCVR algorithm is implemented in five steps:

(1) Calculate the mean values of TOA brightness temperature Ti and T j. Herein, the median values
Ti and T j are used instead of the mean values, as the median is a more robust estimator than the
mean value.

(2) Remove the cloudy pixels. The VIIRS cloud mask product is used to identify the cloudy pixels,
and only confidently clear pixels are used to calculate R ji.

(3) Eliminate the invalid pixels. Since τ j(at 12 µm) is smaller than τi(at 11 µm) and the ratio
of emissivities is very close to unity for most conditions, τ j/τi should be smaller than unity.
The absolute value of (T15 − T15) must be larger than the absolute value of (T16 − T16) and the
values of (T15 − T15) and (T16 − T16) should have the same sign. Eliminating the invalid pixel
can effectively avoid invalid inversion of transmittance ratios (i.e., a transmittance ratio lager
than 1). For more details, please refer to Li et al. [23].

(4) Estimate r2 and reject R ji if r2 is less than 0.95.
(5) Calculate the TPW for different view zenith angles. The relationship between TPW and the

transmission ratio is established at several specific angles. When the view zenith angle is not
equal to the specific angles, TPW is linearly interpolated from TPWs predicted by the model with
an adjacent view zenith angle. View zenith angles exceeding 75◦ are not considered.

Figure 4 shows scatterplots of TPW versus the transmission ratio for VIIRS under different view
angles (0◦, 15◦, 30◦, 45◦, 60◦, 75◦). The TPW and transmission ratio are simulated by MODTRAN 5
using Seebor atmosphere profiles and VIIRS filter response functions. The cubic polynomial is used to
fit the relationship between matchup of the TPW of each Seebor atmosphere profile and corresponding
VIIRS transmission ratio. The fitting results are provided in Table 1. The fitting accuracy decreases
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with the increasing view angle. The determination coefficient ranges from 0.976 to 0.983, and RMSE
ranges from 0.191 to 0.223 g/cm2.
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Table 1. The fitted relationship between TPW and VIIRS transmittance ratios for different view angles.

View Angle Expression for TPW R2 RMSE (g/cm2)

0◦ w = −43.383x3 + 96.438x2
− 85.266x + 32.297 0.983 0.191

15◦ w = −42.366x3 + 93.886x2
− 82.8x + 31.365 0.983 0.192

30◦ w = −39.201x3 + 85.956x2
− 75.185x + 28.512 0.982 0.195

45◦ w = −33.231x3 + 71.142x2
− 61.309x + 23.475 0.981 0.201

60◦ w = −23.846x3 + 48.527x2
− 40.888x + 16.288 0.979 0.209

75◦ w = −12.322x3 + 22.69x2
− 18.262x + 7.9912 0.976 0.223

3.2. Bayesian Model Averaging

Bayesian model averaging (BMA) is a standard method for blending predictive distributions
from different data sources when there are multiple models that may be statistically reasonable but it
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is unsure which one is the best [46–48]. BMA does not depend on a single “best” model, but fuses
multiple models to obtain optimal results by considering the errors of different models, so the results
of BMA are more stable than those of a single model. The BMA predictive probability density function
(PDF) is a weighted average of PDFs centered on each of the models considered, where the weights
of each model are equal to posterior probabilities of these models. The weights can reflect relative
contributions of each model to the final output of the BMA model over the training period.

BMA can be used to obtain a more accurate and stable estimate of TPW by blending the
TPW retrieved from the thermal infrared data and that retrieved from passive microwave data.
For convenience, we denote the TPW value to be forecast from two data sources as y and the ground
measurement at a certain time to be tpw. f1, f2, f3 . . . . fN are forecast results from each model. According
to the total probability formula, the forecast PDF is given by

p(y| f1,...... fk) =
N∑

k=1

p(y
∣∣∣ fk)p( fk

∣∣∣tpw) (6)

where the p(y
∣∣∣ fk) is the forecast PDF based on fk alone and p( fk

∣∣∣tpw) is the posterior probability
of fk being correct given the training data. The posterior model probabilities add up to one,∑N

k=1 p( fk
∣∣∣tpw) = 1, such that they can be viewed as weights. The BMA predictive model is then

p(y| f1,...... fk) =
N∑

k=1

wkp(y
∣∣∣ fk) (7)

where wk is the posterior probability of forecast k. It is assumed the conditional PDF of y is normally
distributed with mean ak + bk fk and standard deviation σ, which can be written as:

y| fk ∼ N(ak + bk fk, σ2) (8)

In this case, the BMA predictive mean is the conditional expectation of y given the forecasts, namely

E[y| f1,...... fK] =
N∑

k=1

wk(ak + bk fk) (9)

ak and bk can be estimated by simple linear regression using training data, which can be viewed as a
bias correction process. wk and σ can be estimated by maximum likelihood from the training data [49].
The expectation-maximization algorithm is used to maximize the likelihood function in this study [50].

4. Results

4.1. Validating VIIRS TPW and MIRS-Derived TPW

Two indicators are selected to depict the accuracy of the derived TPW, the mean bias error (MBE)
and root mean square error (RMSE). These indicators are defined as follows:

MBE =

N∑
i=1

(Ei,derived − Ei,true)

N
(10)

RMSE =

√√√√√ N∑
i=1

(Ei,true − Ei,derived)
2

N
(11)

where N is the number of samples; Ei,true is the true value of TPW, derived from atmosphere profile or
measured by the ground-based GPS network; Ei,derived is the derived TPW.
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In this study, three years (2014–2017) of VIIRS data are used to derive the TPW using the refined
SWCVR. The MIRS-derived TPW product synchronized in time and space with VIIRS is also extracted.
The TPW measured by SuomiNet GPS receivers is used to validate the above two TPWs, Figures 5
and 6 display the validation results. The MBE and RMSE of VIIRS TPW are 0.21 g/cm2 and 0.73 g/cm2,
whereas MBE and RMSE of MIRS-derived TPW are 0.11 g/cm2 and 0.38 g/cm2. Clearly, the accuracy of
MIRS-derived TPW is better than that of VIIRS TPW. Regarding the validation results for daytime
and nighttime, no significant difference is found for MIRS-derived TPW. The MBE and RMSE are
0.12 g/cm2 and 0.39 g/cm2 for daytime, and 0.10 g/cm2 and 0.36 g/cm2 for nighttime. However, the
accuracy of VIIRS TPW in daytime is better than that at nighttime. The MBE and RMSE are 0.05 g/cm2

and 0.61 g/cm2 for daytime, and 0.35 g/cm2 and 0.83 g/cm2 for nighttime. There may be two reasons
for this result. First, the SWCVR may achieve good results when the surface emissivity varies little
and the surface temperature varies greatly. However, the LST is more homogeneous in the nighttime
than that in the daytime [51]. Second, cloud detection at night is worse than that in the daytime
because there is no shortwave observation at night [52]. The VIIRS cloud mask cannot filter all cloudy
pixels, and cannot entirely identify whether the pixels around the surface GPS station are confidently
clear. This can partly explain the underestimation of VIIRS TPW under the high TPW condition in the
nighttime. In addition, an obvious overestimation of VIIRS TPW can be found when TPW is low for
both daytime and nighttime. The detailed reasons are discussed in a later section.
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4.2. Blending TPWs Using BMA

In this section, VIIRS TPW and clear-sky MIRS-derived TPW are integrated by BMA. The pixel
spatial resolution difference between VIIRS TPW and MIRS-derived TPW is ignored during the process
of integration. Two-thirds of the VIIRS TPW data and MIRS TPW data in the daytime are used for
BMA model training, the remaining data (including one-third of the data in the daytime and all data in
the nighttime) are used for validation. The blending results are displayed in Figure 7. The MBE and
RMSE for BMA-derived TPW are 0.06 g/cm2 and 0.35 g/cm2, respectively, which is lower than that of
MIRS-derived TPW (Figure 6a). Obviously, the accuracy of blended TPW is better than that of VIIRS
TPW and MIRS-derived TPW on the whole, which demonstrates the good performance of BMA in
integrating multi-source TPW data.

To further compare the three TPW data sets, we divided the validation results into four sub-regions
according to the range of water vapor. The statistical results are provided in Tables 2 and 3. The accuracy
of MIRS-derived TPW and BMA-derived TPW are both better than the accuracy of VIIRS TPW. When
the TPW is less than 3 g/cm2, the accuracy of BMA-derived TPW is better than that of MIRS-derived
TPW. When the TPW is greater than 3 g/cm2, the accuracy of BMA-derived TPW is slightly worse
than that of MIRS-derived TPW in the daytime and nighttime. This accuracy reducing may be caused
by the undetected cloud pixels used in the SWCVR algorithm. With the upgrade of the VIIRS cloud
detection algorithm, this problem may be alleviated to some extent. As a whole, blending VIIRS and
MIRS-derived TPW using BMA improves the accuracy of TPW retrieval.
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Figure 7. Validation results of blended TPW using Bayesian model averaging (BMA). (a) All; (b) daytime;
(c) nighttime.

Table 2. Validation results of three TPW data sets for the daytime.

TPW Range Data MBE (g/cm2) RMSE (g/cm2)

Total
BMA 0.023 0.332
VIIRS 0.049 0.605
MIRS 0.117 0.391

<1.5 g/cm2
BMA 0.099 0.301
VIIRS 0.320 0.588
MIRS 0.212 0.371

[1.5 g/cm2, 3 g/cm2]
BMA –0.062 0.328
VIIRS –0.177 0.445
MIRS 0.024 0.372

>3 g/cm2
BMA –0.142 0.457
VIIRS –0.702 0.921
MIRS –0.114 0.511

Table 3. Validation results of three TPW data sets for the night time.

TPW Range Data MBE (g/cm2) RMSE (g/cm2)

Total
BMA 0.074 0.356
VIIRS 0.354 0.826
MIRS 0.098 0.363

<1.5 g/cm2
BMA 0.131 0.309
VIIRS 0.250 0.808
MIRS 0.144 0.327

[1.5 g/cm2, 3 g/cm2]
BMA 0.013 0.356
VIIRS 0.142 0.628
MIRS 0.016 0.365

>3 g/cm2
BMA –0.355 0.568
VIIRS –0.710 1.320
MIRS –0.351 0.530
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4.3. Production of VIIRS TPW

To examine the possibility of producing VIIRS TPW using the developed framework, we select
a VIIRS granule image with relatively less cloud cover and the corresponding MIRS-derived TPW
product beyond the acquisition time of validation data. The overpass time of the selected VIIRS granule
image is at 20:18 (UTC), 25 September, 2018, and the MIRS-derived TPW product is acquired from 20:10
to 20:20 (UTC) on the same day. The VIIRS TPW is retrieved by the SWCVR method. The MIRS-derived
TPW is interpolated to the VIIRS pixels using the nearest neighbor method. The resampled MIRS TPW
is blended with VIIRS TPW using BMA. Figure 8 shows the produced BMA TPW, as well as VIIRS
TPW and MIRS-derived TPW. The spatial pattern of VIIRS TPW is similar to that of MIRS-derived
TPW, but the VIIRS TPW exhibits more details than the interpolated MIRS-derived TPW. The difference
between TPW values in the VIIRS TPW and MIRS-derived TPW can be easily observed. The weight of
MIRS-derived TPW is larger than that of VIIRS TPW because MIRS-derived TPW is more accurate than
that of VIIRS TPW. Thus, the spatial pattern of BMA TPW is more similar to that of MIRS-derived TPW.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 20 
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We also extract the SuomiNet TPW in the coverage of the VIIRS granule and validate three TPWs.
The validation results are shown in Figure 9. The MBE and RMSE of BMA TPW are −0.024 and
0.314 g/cm2 respectively, which is superior to VIIRS TPW and comparable to MIRS-derived TPW whose
MBE and RMSE are −0.238 and 0.535 g/cm2, and −0.029 and 0.337 g/cm2, respectively. This validation
agrees with that presented in Section 4.2.
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4.4. Validating BMA Integrated TPW Using Radiosonde Measurements

To verify the applicability of the BMA method in other areas, two years (2014–2015) of global
climate observing system (GCOS) reference upper-air network (GRUAN) radiosonde data are collected.
The GRUAN measurements provide appropriate data for studying atmospheric processes. Details
about the GRUAN radiosonde measurements can be found at https://www.gruan.org. The TPW of
radiosonde measurement is estimated by vertically integrating the specific humidity:

Wv =
1
g

ps∫
0

qdp (12)

where q is specific humidity, g is acceleration of gravity, and p is the atmospheric pressure.
The VIIRS granule image is considered when the difference between the VIIRS overpass time

and the balloon launch time is less than ten minutes. The VIIRS TPW is calculated using the SWCVR
method, and then is blended with MIRS-derived TPW using the BMA method. According to Figure 10,
the MBE and RMSE of BMA TPW are 0.09 g/cm2 and 0.44 g/cm2 when compared to the radiosonde
measurements. The result is more accurate than both VIIRS TPW and MIRS-derived TPW, whose MBE
and RMSE are −0.27 g/cm2 and 0.82 g/cm2, and 0.28 g/cm2 and 0.52 g/cm2, respectively. The results
show that the BMA developed in North America can also be applied at a global scale.

https://www.gruan.org
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5. Discussion

5.1. SWCVR

In Section 3, we explained that most of the emissivity ratios of two split-window channels for
vegetation, water, snow, and soil are between 0.98 and 1.02, then that the transmission ratio of the
split-window channel can be calculated using Equation (3). Since the transmittance in the channel at
12µm is smaller than that in the channel at 11µm, τ j/τi is smaller than unity. To avoid bad calculations of
τ j/τi, the pixel filtering criteria proposed by Li et al. [23] is adopted, i.e., the absolute value of (T15 −T15)

must be larger than the absolute value of (T16 − T16), moreover, values of (T15 − T15) and (T16 − T16)

should have the same sign. This criterion can ensure the rationality of the calculated transmission
ratio and improve the accuracy of water vapor retrievals, which has been demonstrated in Li et al. [23].
However, it may cause underestimation of the transmission ratio under certain circumstances.

To exploit the effect of pixel filtering criteria in refined SWCVR, we conduct a simulation using
MOD11B1 and Seebor atmosphere profiles. One year (2014) of MOD11B1 data covering North
America is downloaded. An 18 × 18 window is used to extract the emissivities of channels 31 and 32.
The spectral response functions of VIIRS channels 15 and 16 are similar to that of MODIS channel 31 and
32. The emissivities of VIIRS channels 15 and 16 are represented by MODIS channels 31 and 32 directly.
The emissivity standard deviation for each window is also calculated. The surface temperature of these
pixels is set as a Gaussian distribution, with the mean value equal to the bottom layer temperature of
each Seebor atmosphere profile. The standard deviations are 2.5 K and 1 K for different conditions.
The atmosphere transmission and TOA bright temperature of VIIRS are simulated using MODTRAN
5, and the atmosphere transmission ratio is calculated using Equation (2) with the simulated VIIRS
TOA bright temperature. Detailed settings are provided in Table 4. Six sets of simulated data
are separately used to calculate transmission ratios respectively. Then the calculated transmission
ratio is compared to the true transmission ratio of each atmosphere profile. The comparison results
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are displayed in Figure 11. As shown in Figure 11, it is apparent that pixel filtering criteria can
actually avoid unreasonable transmission ratios when using SWCVR. However, the criteria may cause
underestimation of transmission ratios when the transmission ratio is greater than 0.85. Additionally,
with the increase in the standard deviation of surface emissivity and the decrease in the standard
deviation of surface temperature, the underestimation of transmission ratios becomes more significant
under low TPW conditions (i.e., a transmission ratio lager than 0.85). Since the transmittance ratio is
inversely proportional to the TPW, this can account for the overestimation of VIIRS TPW when the
TPW is less than 1.5 g/cm2.
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According to the above analysis, incorporating surface emissivity or normalized difference
vegetation index (NDVI) data to select the relatively uniform part in the window size for TPW
calculation in the SWCVR algorithm may improve the accuracy of the SWCVR method. This will be
attempted in a future study.

5.2. The Limitations of this Study

A scale mismatch exists during the BMA integration of VIIRS TPW and MIRS-derived TPW.
If both VIIRS and ATMS TPW are clear-sky pixels, it is reasonable to ignore the scale mismatch because
the atmosphere is uniform. However, we cannot integrate VIIRS and ATMS TPW directly if the ATMS
TPW pixel is partially cloudy, due to the fact that the 15 km ATMS pixel represents the overall water
vapor state while VIIRS only represents the 750 m clear-sky condition. In order to deal with this
condition, ATMS pixels need to be decomposed into clear sky and cloudy sky portions. Then the
ATMS clear-sky TPW can be used to fuse with VIIRS TPW, and the cloudy sky TPW can be used to fill
the gap of VIIRS TPW considering the scale effect. We will work on this in the future.

6. Conclusions

Atmospheric water content plays a pivotal role in atmospheric processes and the Earth’s climate.
To our knowledge, VIIRS does not provide an operational TPW product. We developed a framework
for estimating atmospheric TPW from Visible Infrared Imaging Radiometer Suite (VIIRS) data in this
study. First, the refined SWCVR method was used to retrieve TPW from the VIIRS TOA brightness
temperature of channels M15 and M16. Then a more accurate and stable TPW product was derived by
blending the VIIRS TPW and MIRS-derived TPW using BMA.

The empirical relationships between TPW and channel transmission ratio were established at 0◦,
15◦, 30◦, 45◦, 60◦, and 75◦ viewing angles using a huge amount of representative samples produced
by extensive radiate transfer modeling. The established formulae accounted for more than 97.6% of
the variation in the simulation database, the MBE was 0, and the RMSEs ranged from 0.19 g/cm2 to
0.22 g/cm2. Three years (2014–2017) of VIIRS data were used to retrieve TPW using the refined SWCVR.
The retrieval results were validated using the ground measurements collected from SuomiNet sites
over North America. The MBE and RMSE of VIIRS TPW were 0.21 g/cm2 and 0.73 g/cm2, respectively.
The accuracy of VIIRS TPW in daytime was much better than at night time. The VIIRS TPW was
blended with the MIRS-derived TPW product via BMA. The accuracy of MIRS-derived TPW was better
than that of VIIRS TPW, with MBE and RMSE values of 0.11 g/cm2 and 0.38 g/cm2 when validated by
the same data used for VIIRS TPW. The MBE and RMSE of BMA integrated TPW were 0.06 g/cm2 and
0.35 g/cm2, respectively, for which the accuracy difference in daytime and night time was removed.
The global radiosonde measurements were also collected at the global scale to validate the BMA
integrated VIIRS TPW. The MBE and RMSE of the BMA integrated TPW were 0.09 g/cm2 and 0.44 g/cm2

respectively compared to the radiosonde measurements, which was also more accurate than the VIIRS
TPW. It was concluded that the developed framework can be used to derive accurate clear-sky TPW for
VIIRS. This is the first time that we can obtain high accuracy TPW from VIIRS. This study will certainly
benefit the study of atmospheric processes and climate change.
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