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Abstract: The landforms of the Earth’s surface ranging from large-scale features to local 
topography are factors that influence human behavior in terms of habitation practices. The ability 
to extract geomorphological settings using geoinformatic techniques is an important aspect of any 
environmental analysis and archaeological landscape approach. Morphological data derived from 
DEMs with high accuracies (e.g., LiDAR data), can provide valuable information related to 
landscape modelling and landform classification processes. This study applies the first landform 
classification and flood hazard vulnerability of 730 Eneolithic (ca. 5000–3500 BCE) settlement 
locations within the plateau-plain transition zone of NE Romania. The classification was done 
using the SD (standard deviation) of TPI (Topographic Position Index) for the mean elevation 
(DEV) around each archaeological site, and HEC-RAS flood hazard pattern generated for 0.1% 
(1000 year) discharge insurance. The results indicate that prehistoric communities preferred to 
place their settlements for defensive purposes on hilltops, or in the close proximity of a steep slope. 
Based on flood hazard pattern, 8.2% out of the total sites had been placed in highly vulnerable 
areas. The results indicate an eco-cultural niche connected with habitation practices and flood 
hazard perception during the Eneolithic period in the plateau-plain transition zone of NE Romania 
and contribute to archaeological predictive modelling. 

Keywords: LiDAR data; TPI and DEV; GIS landform classification; HEC-RAS flood pattern; 
Eneolithic; precucuteni and cucuteni cultural complex; plateau-plain transition zone; NE Romania 

 

1. Introduction 

The ability to describe the geomorphological setting based on GIS-landform classification is an 
important aspect of any environmental analysis or landscape modelling effort [1,2]. Landforms are 
defined as specific geomorphic features on the Earth’s surface, ranging from large-scale features 
(e.g., plains, mountain ranges) to small-scale features (e.g., individual hills, valleys), as well as their 
component landforms, such as hilltops, valley bottoms, exposed ridges, flat plains, and upper or 
lower slopes [1–3]. In recent decades, the development of GIS software and free access to datasets 
has attracted the interest of researchers in implementing new computer algorithms to approach the 
morphometric attributes and topography of the Earth’s surface [2,4]. Also, there has been an upward 
trend in the use of GIS-based analysis to classify landforms over various scientific fields such as 
geo-pedology [5–8], geomorphology and seafloor mapping [9–15], hydrology [16–18], climatology 
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[19], landscape mapping and ecology [20,21], and archaeology [4,22–24]. The morphological features 
provide useful information for archaeological studies because the data can be interlinked with 
settlement distribution [25], and evolution for reconstructing the paleo-landscapes [26,27]. In this 
context, one of the first approaches to find application in archaeological studies was the analysis of 
convexity, concavity, and flatness of the topographic surface [28–31]. Despite this, at present only a 
few studies with applications in the field of archaeology based on GIS-landform classifications have 
been developed [4,24,28,29]. In recent years, there have been intensive applications of LiDAR data in 
the analysis of floods in a GIS environment [32,33], yet no applications towards prehistoric flood 
hazards. 

The territory of NE Romania is characterized by a high density of Eneolithic archaeological sites 
(chronological framework: ca. 5000–3500 BCE), which corresponds to the Precucuteni period (ca. 
5000–4600 BCE) and Cucuteni-Trypillian culture (Cucuteni in Romania, ca. 4600–3500 BCE), known 
as the last great Eneolithic civilization of Old Europe [34–38]. In the Moldavian Plain (NE Romania), 
the Cucuteni culture is divided in Cucuteni A (ca. 4600–4100 BCE), Cucuteni A–B (ca. 4100–3850 
BCE) and Cucuteni B (ca. 3850–3500 BCE) [35,39–41]. Besides the literature on the morphological 
features in the study area [42–46], only a few works deal with the local or the relative topographic 
position of archaeological settlements in the landscape [47,48]; most of them refer to the evaluation 
of cultural heritage sites to natural hazards (landslides, gully erosion) and anthropogenic impact 
[49–54]. 

Understanding the connections between the small-scale features, large-scale landforms, flood 
hazard perception, and the types of archaeological settlement is an important method applied in the 
study of the prehistoric peoples because the landscape can reveal insights into settlement 
distribution and dynamics over time [4,27]. This paper provides the first landform classification of 
730 Eneolithic sites, using the TPI (Topographic Position Index) [3,5,28,55], and the SD (standard 
deviation) of the mean elevation, abbreviated as DEV by [29], around archaeological sites [3,4,29], 
which can classify the landscape in terms of slope position and landform categories and 
morphological classes based on the geomorphology [1,4,56,57]. The results can provide insights into 
factors favoring human habitation during the Eneolithic period in the plateau-plain transition zone 
of NE Romania and contribute to archaeological predictive modelling at regional-scale based on 
small-scale morphological features and flood hazard patterns [45,49,58–61]. 

Regional Setting 

The study area (8789 km2) is located in the north-eastern part Romania, between the Siret 
floodplain in the west and the Prut floodplain in the north and east, where the Prut River is a natural 
border between Romania and the Republic of Moldova to the east and northeast, and Romania and 
Ukraine to the north [45,46] (Figure 1a). The southern limit is a structural one, represented by the 
contact area between the Moldavian Plain and the Central Moldavian Plateau [42]. The Moldavian 
Plain, known as the Jijia Plain, represents 88.65% (7880 km2) of the study area, and the Suceava Hills 
(Suceava Plateau) on the western flank, represent the remaining 11.35% (909 km2) (Figure 1b). The 
elevation range between 20 m a.s.l. and 591 m a.s.l., with an average of 163.5 m a.s.l. (Figure 1c). The 
relief energy does not exceed 150–200 m/km2, with an average of 63.4 m/km2, where the highest 
values indicate the contact area between plateau-plain transition zone and the smallest values 
indicate the floodplain of the Siret, Jijia and Prut rivers (Figure 1d). The slope average ranges 
between 0° and 38.88°, with an average value of 4.74° (Figure 1e). The highest declivity corresponds 
to the fronts of the cuestas, generally with an eastern or north-eastern slope aspect, and the gentle 
slope with the backs of the cuestas with southern or south-western aspects (Figure 1f,g). 

The general morpho-structural setting consists of a monocline, dominated by cuesta landforms 
and deeply incised valleys, where the strata are gently dipping from northwest to southeast 
(Miocene-Pleistocene deposits) [42]. In the Suceava Hills (western flank) and the Moldavian Plain, 
the lithology is characterized by successions of clays with sands (200–300 m thick), and thin layers 
(2–30 m thick) of limestone and sandstone (Lower and Medium Sarmatian deposits) [42]. Over these, 
a loess layer lies over the entire study area, with thicknesses frequently less than 2 m [62], but which 
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can reach a thickness of 15–30 m on the cuesta slopes and on fluvial terraces [48]. The gravel deposits 
occur in the alluvial plains of Siret and Prut rivers [45,46]. The landscape dominated by the cuesta 
landforms produces two different types of slope: (i) cuesta dip slopes characterized by a low 
roughness; (ii) cuesta scarp slopes, generally affected by deep stream incision at the base, diffuse and 
well-defined gully erosion along the slopes, and landslides [43,44,48]. Generally, this typical 
morpho-structure along with the headwaters and local ridges in the valley of the Baseu, Jijia, and 
Bahlui rivers, are the main small-scale landforms used by prehistoric populations for the placement 
of settlements in this region [35–38,47,49]. 

 
Figure 1. (a) Geographic location of the study area in NE Romania; (b) the geoarchaeological context 
within Moldavian Plain; the distribution of (c) altitude, (d) relief energy, (e) slope angle, (f) and (g) 
slope aspect for study area, buffer area (r = 1 km) around each Eneolithic site, and for the settlement 
areas (intra-site). 
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Regarding flood hazards in NE Romania, the temperate continental climate with heavy rains 
creates favorable conditions for extreme floods on the main watercourses, especially along the Siret 
and Prut rivers. This phenomenon also occurs in the secondary rivers, but with a lower frequency 
due to recently created ponds. In recent decades, there have been many historical flood events both 
at a regional and local level which exceeded the 0.1% (1000 year) discharge insurance [45,46]. For the 
chronological framework of this study, three weather intervals based on flood events reconstruction 
have been identified by [63]: ca. 5300 BCE, ca. 4000 BCE, and ca. 3500–3000 BCE. This evidence 
indicates a hydrological activity more or less similar to the nowadays with 600–640 mm annual 
rainfall, but between these wet intervals, the climate was probably drier than in the present [48]. 
However, the flood hazard has always been present near to the main watercourses in the study area. 

2. Data and Methods 

2.1. Inventory of Archaeological Sites 

To identify the relationship between settlements placement and morphological features, a 
geo-referenced database was created using Esri ArcGIS 10.3, based on field surveys (Figure 2), along 
with relevant archaeological documentation and registries. It should be noted that the analysis was 
based only on certain settlements, where archaeological documentation was well-grounded in 
reports, radiocarbon-based chronology, scientific articles, and geo-archaeological maps [34–41] 
(Figure 3). The archaeological data have been compiled by various research projects available on the 
Web portal of Ministry of Culture (National Archaeological Record of Romania), which is 
continuously updated by the National Heritage Institute. 730 archaeological sites belonging to the 
Eneolithic period, each with one to four overlapping cultural layers, were identified in the study 
area. Classification of settlements after the cultural period indicates that: 60 sites are from 
Precucuteni (ca. 5000–4600 BC) (Figure 3a), 265 sites from Cucuteni A (ca. 4600–4100 BC) (Figure 3b), 
91 sites from Cucuteni A–B (ca. 4100–3850 BC) (Figure 3c), 244 sites from Cucuteni B (ca. 3850–3500 
BC) (Figure 3d), and 205 sites are Cucuteni settlements (ca. 4600–3500 BC), but the cultural phase 
they belong to (Cucuteni A, A–B, or B) is unknown (Figure 3e,f) [34–41,47]. 

 
Figure 2. Images of Eneolithic archaeological sites in the study area: (a) Dealul Mare / Dealul Boghiu 
settlement (Cucuteni A) on the top of the cuesta landform; (b) field surveys along the Ripiceni–La 
Holm settlement (Cucuteni A–B) located on the right bank of Prut floodplain; (c) GPS surveys in the 
plateau-plain transition zone (Siret river basin); (d) Costeşti settlement (Cier/La Şcoală, Cucuteni A) 
located on a small hill within Bahluieț Valley. 
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Figure 3. Eneolithic sites distribution in the study area: (a) Precucuteni; (b) Cucuteni A; (c) Cucuteni 
A–B; (d) Cucuteni B; (e) Cucuteni settlements with unknown cultural phase; (f) total archaeological 
sites. 

2.2. Elevation Data 

The elevation model based on high-density airborne LiDAR (Light Detection and Ranging) data 
used to analyses the area within the buffer zones (1000 m radius) around each archaeological site was 
achieved by spatially processing in the ArcGIS software of 730 .tiff files. The rasters were generated in 
grid formats through Inverse Distance Weighting (IDW) interpolation, with cell sizes of 1 m used for 
large-scale analysis, and 25 m used for small-scale representations of the study area [64–66] (Figure 3). 
The resulting small-scale DEMs were filtered using flow direction, sink and fill tools, to reduce the errors 
generated by merging the .tiff files [64,67]. In the large-scale maps, the 25 m DEM resolution was used, 
where vegetation, buildings, and other artificial structures were filtered before processing the 
archaeological data. The slope pattern was generated using Spatial Analyst Tools (ArcGIS), and 
delineation of landform units based on TPI and DEV was performed using Relief Analysis Toolbox for 
ArcGIS [3,5,55] (Figure 4). 

2.3. Flood Hazard Data 

To generate the flood hazard pattern in the area of interest, the HEC-RAS v 5.0.1 software 
(Hydrologic Engineering Centers—River Analysis System), which is an auxiliary module for ArcGIS 
10.2, was used [45,68]. The hydrological risk assessment process comprised three steps: (i) the 
pre-processing step, involving the generation of the thematic layers (thalweg, banks, flow paths, and 
cross-section vector) based on DEM with a resolution of 0.5m/pixel; (ii) the processing step, 
involving the export of the thematic layers to the HEC-RAS software and introducing the parameters 
required to run the flood simulation (Manning roughness coefficient; Flows with an insurances of 0.1%); 
and (iii) the post-processing step, involving the export of the HEC-RAS result into the ArcGIS 
software and the generation of the flood extent in order to obtain flood bands with an insurance of 
0.1 % (1000 years). The large-scale flood hazard assessment was chosen instead of frequent floods 
with lower insurance (e.g., 1% or 100 year) because the topographic surface has been 
anthropogenically modified over time, and this fact disturbs the flood pattern at small-scale. 
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2.4. Delineation of Landform Units 

2.4.1. TPI and DEV 

TPI is based on the algorithm developed by Weiss A.D. [3] and implemented as an extension for 
ESRI ArcView 3.x. by Jenness J. [55]. This tool calculates the difference between elevations at the 
central point 𝑧𝑧0 (Equation 1) and the average elevation 𝑧𝑧 (Equation 2) around it within a known 
radius R [3,28,29,55,69]. Positive or negative values of TPI indicate that the central point is located 
higher (𝑧𝑧0 > 𝑧𝑧) or lower (𝑧𝑧0 < 𝑧𝑧), respectively, than its average surroundings. In this equation, the 
range of TPI depends not only on distinguishes between 𝑧𝑧0 and 𝑧𝑧, but also with respect to R, 
because a large R-value generally reveals large-scale landform units (major valleys, mountains, 
hills), while smaller values highlight small-scale features (stream valleys, headwaters, local ridges) 
[4,5,29] (Figure 4a). 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑧𝑧0 − 𝑧𝑧 (1) 

𝑧𝑧 =
1
𝑛𝑛𝑅𝑅

� 𝑧𝑧𝑖𝑖∙
𝑖𝑖∈𝑅𝑅

 (2) 

In addition to the basic algorithm, DEV measures the 𝑧𝑧0 using TPI and the standard deviation 
SD of the elevation (Equation (3)) [29,55]. DEV improves the results because it measures the 
topographic position as a fraction of local relief normalized to local surface roughness (Equation (4)) 
[28,29]. As with TPI results, positive values of DEV (𝑧𝑧0 > 𝑧𝑧) indicate that the central point is situated 
higher than its neighbourhood, and negative values (𝑧𝑧0 < 𝑧𝑧) indicate that it is situated lower [3,69] 
(Figure 4b). 

𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑧𝑧0 − 𝑧𝑧
𝑆𝑆𝑆𝑆

 (3) 

𝐷𝐷𝐷𝐷𝐷𝐷 = �
1

𝑛𝑛𝑅𝑅 − 1
� (𝑧𝑧𝑖𝑖 − 𝑧𝑧)2

𝑖𝑖=1
 (4) 

TPI and DEV are two complementary methods frequently used in archaeological landscape 
research [70]. However, we consider it most appropriate to use DEV instead of TPI due to the higher 
potential accuracy of landform classification and the ability to identify the topographic preferences 
of archaeological settlements in a heterogeneous landscape [29] (Figure 4c). 

2.4.2. Landform Classification 

There are many algorithms which divide the landscape into geomorphological classes [3,5,71–
75]. In this study, the Weiss A.D. [3] method was applied. Method (1): classification of the 
topographic surface into discrete slope position classes using the DEV [29] (Figure 4d). Method (2): 
classification of the topographic surface into a complex landscape feature by combining the 
parameters from two neighbourhood size [4,28] (Figure 4e). The values of five candidate radii for 
slope position classes (100 m, 300 m, 600 m, 1000 m, and 2000 m), and four different combinations of 
neighbourhood sizes for classified the landform features (100 m and 600 m; 300 m and 1000 m; 300 m 
and 2000; 600 m and 2000 m) were used in this paper [3]. 

3. GIS-Based Landform Classification Results 

3.1. Validation of Landform Classification Accuracy for Various Neighbourhood Sizes 

The summaries of archaeological site placement classified into six slope position classes using 
Criterion (1) for five candidate radii are shown in Table 1 and Figure 5. The summaries of 
archaeological site placement classified into 10 landform classes for the four combined versions of 
small-TPI and large-TPI neighbourhood sizes according to Criterion (2) are shown in Table 2 and 
Figure 6.  
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Figure 4. Workflow chart for the landform classification process—the input data (DEM and Slope) 
were extracted using a 1000 m buffer zone around an Eneolithic site selected randomly from the 
study area: (a) calculation of TPI rasters for 100 m, 300 m, 600m, 1000 m, and 2000 m thresholds using 
the algorithm developed by [3] and [55]; (b) calculation of standardized TPI for each threshold 
rasters based on SD and Mean after the ArcGIS algorithm described by [75]; (c) generate the DEV 
models for each threshold rasters based on standardized TPI after [29]; (d) classification of landscape 
features into six slope position classes using the DEV and slope for each threshold rasters (Method 1) 
after [3]; (e) classification of landscape features into 10 landform classes by combining the slope with 
parameters from two neighbourhood sizes (DEV 100 m and 600 m; DEV 300 m and 1000 m; DEV 300 
m and 2000 m; DEV 600 m and 2000 m) (Method 2) after [4]. 
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Figure 5. Slope position classification based on DEV of the case study sites in NE Romania; for the 
Eneolithic period (chronological framework: ca. 5000–3500 BCE), with six morphological classes for 
the neighbourhood sizes (a) 100 m, (b) 300 m, (c) 600 m, (d) 1000 m, and (e) 2000 m. The statistics 
apply to both the buffer zone and site location in each map. 
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Figure 6. Landform classification based on DEV of the case study sites in NE Romania, for Eneolithic 
period (chronological framework: ca. 5000–3500 BCE), with ten landform types for the combined 
neighbourhood sizes (a) 100 m and 600 m, (b) 300 m and 1000 m, (c) 300 m and 2000 m, (d) 600 m and 
2000 m; the statistics apply to both the buffer zone and site location in each map. 
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The accuracy of the results has been verified using the visual interpretation of aerial imagery 
and by comparing the landform classification generated by TPI with the specific morphological 
features of over 100 settlement locations provided by previous geomorphological and archaeological 
surveys in the study area [39,47–54]. Also, according to [28,29], which applied the same 
methodology of landscape classification within a heterogenous landscape in Belgium, in this case, 
the same DEV thresholds and various neighbourhood sizes were used; the results obtained by 
[28,29] are applicable for our study area, being a plateau-plain transition zone. 

Table 1. Number of Eneolithic settlements occurring over six slope position classes in NE Romania; 
Method (1) (see Figure 4e). 

Slope Position Classes, 
After [3] DEV Threshold 

1 R 
100 m 

1 R 
300 m 

1 R 
600 m 

1 R 
1000 m 

1 R 
2000 m 

Ridge (summit, top) TPI > 1 SD 329 470 464 418 360 

Upper slope 0.5 SD < TPI ≤ 1 SD 109 37 11 5 4 

Middle slope (slope > 5°) −0.5 SD < TPI ≤ 0.5 SD 144 58 14 20 8 

Flat area (slope ≤ 5°)  −0.5 SD < TPI ≤ 0.5 SD 51 28 13 6 1 

Lower slope (foot slope, toe slope) −1 SD < TPI ≤−0.5 SD 74 32 17 13 7 

Valley TPI ≤−1 SD 158 240 346 403 485 
1 R: radius value around z0. 

Table 2. Number of Eneolithic settlements occurring over ten specific landform types in NE 
Romania; Method (2) (see Figure 4d). 

Landform Classes, 
After [3] 

Small-TPI 
Neighbourhood 

Size 

Large-TPI 
Neighbourhood 

Size 

Combined 1 Small-R and 2 

Large-R 

100 m 
and 

600 m 

300 m 
and 
1000 

300 m 
and 

2000 m 

600 m 
and 

2000 m 

Hill tops, high ridges Z0 > SD Z0 > SD 239 348 278 315 

Middle slope ridges, small 
hills in plains 

Z0 > SD 0 ≤ Z0 ≤ SD 16 24 11 14 

Local ridges/hills in valley Z0 > SD Z0 < -SD 76 96 181 135 

Upper slopes −SD ≤ Z0 ≤ SD Z0 > SD 196 47 45 13 

Open slopes (>5°) −SD ≤ Z0 ≤ SD 0 ≤ Z0 ≤ SD 18 7 4 1 

Plains, flat areas (<5°) −SD ≤ Z0 ≤ SD −SD ≤ Z0 < 0 15 7 3 2 

U-shaped valleys −SD ≤ Z0 ≤ SD Z0 < −SD 147 94 103 39 

Upland drainage, 
headwaters 

Z0 < -SD Z0 > SD 29 25 37 32 

Middle slope drainage, 
shallow valley 

Z0 < −SD 0 ≤ Z0 ≤ SD 6 6 2 3 

Deeply incised streams Z0 < −SD −SD ≤ Z0 < 0 123 211 201 311 
1 R: small radius value around z0 (100 m, 300 m and 600 m); 2 R: large radius value around z0 (600 m, 
1000 m and 2000 m). 

For the first method (1), test results indicate that R = 300 m is the most appropriate for the rest of 
our analyses, because it discriminates the various features with less fragmentation and without a 
high density of patches (see: R = 100 m), and also without a high degree of generalization (see: R = 
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600 m, R = 1000 m, and R = 2000 m) (Figure 5). For the second classification method (2), because the 
topography of the study area is quite rugged, the results of 300 m and 1000 m combined 
neighbourhood sizes highlight the predominant landform types occupied by Eneolithic settlements. 
Other results emphasize the flat areas (see: 100 m and 600 m combined neighbourhood sizes), or 
reduce the classification of landform feature from 10 landform classes in just two main relief 
features: hilltops and valleys (see: 300 m and 2000 m, and 600 m and 2000 m combined 
neighbourhood sizes) (Figure 6). The statistical analysis and geoarchaeological interpretation of 
archaeological site placement per landform classes were achieved based on these two results. 

3.2. Classification of Archaeological Site Placement Based on Slope Position 

According to the slope position classification generated using SD of TPI (DEV) and R = 300 m, 
over 65% of settlements were placed on the convex landforms: 470 sites on ridge, summit, or hilltops; 
37 sites on upper slopes; 58 sites on middle slopes (>5°); and 28 sites (≤5°) on flat areas. Thirty percent 
of the settlements were placed on concave features: lower slope, foot slope, 32 sites on toe slopes; 
and 240 sites in valleys (Figure 7). In the Precucuteni period (ca. 5000–4600 BCE), 48.3% of 
settlements were located on the top of the hills, 13.3% on upper and middle slopes and the 
remaining 38.4% of sites preferred flat areas or lower landforms like foot slopes and valleys (Figure 
7a). During the Cucuteni period (ca. 4600–3500 BCE), regardless of the cultural phases (Cucuteni A, 
A–B, or B), the location of settlements seems to follow the same slope position pattern: an average of 
54.4% on ridges, summits, and tops 4.2% on upper slopes; 6.7% on middle slopes (>5°); 3.4% on flat 
areas (≤5°); 3.7% on lower slopes (foot slope, toe slope); and 27.5% in valleys (Figure 7b–e). Overall, 
the preference of the Eneolithic communities for placing their settlements on the top of cuesta near 
the steep slope is determined by the necessity to provide defence for at least one or two sides of the 
settlement. This is the first criterion used by prehistoric communities in the selection of habitation 
locations based on local topography (Figure 7). 

3.3. Classification of Archaeological Site Placement Based on Landform Units 

Based on TPI-landform classification using 300 m and 1000 m combined neighbourhood sizes, 
59.5% of sites are located on convex landforms: 348 sites on hilltops, high ridges; 24 sites on middle 
slope ridges, small hills in the plains; 96 sites on local ridges/hills in the valley; and 47 sites on upper 
slopes. 1.7% of the sites are located in the flat areas or on the gentle slope surfaces: plains, flat areas 
(<5°)—7 sites; open slopes (>5°)—7 sites (Figure 8). The remaining of 38.8% of sites overlie concave 
landforms: 211 sites on deeply incised streams; 6 sites on middle slope drainages, small hills in the 
plains; 25 sites on upland drainages, headwaters; and 94 sites in U-shaped valleys. The high ridges 
and hills remained the main landform classes used by prehistoric communities for the location of 
settlements (average 39%), regardless of the cultural period (Figure 8a–e). The least represented 
classes are the flat or gentle slope areas (average 0.7%), most likely due to the wetlands, which 
occupied the flood plain of main rivers and are not suitable for habitation but important for hunting 
and fishing. Of the concave landform classes, the deeply incised streams (average 24.22%) and 
U-shaped valleys (average 12.12%) are the most represented, confirming that the second method of 
defending settlements was to be located in the vicinity of natural channels like stream meanders or 
steep banks. For the same reason, in 10.9% of cases, the sites are located on the local ridges or small 
hills in the valley (Figure 8). 

4. Discussion 

4.1. Habitation Practices During the Eneolithic Period 

This work has quantified the landform variations of Precucuteni (PC) and Cucuteni (CA, CA–B, 
CB, and CU) settlement locations in the landscape between Siret and Prut rivers (Moldavian Plain, 
NE Romania). A general trend is observed throughout the entire Eneolithic period, when the 
prehistoric communities preferred to place the settlements on the hilltops or in the culmination area. 
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Figure 7. Slope position classification based on DEV of the case study sites in NE Romania, for (a) PC, 
(b) CA, (c) CA–B, (d) CB, and (e) CU cultural periods, with six morphological classes for the 300 m 
neighbourhood sizes; the statistics apply to both the buffer zone and site location in each map. 
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Figure 8. Landform classification based on DEV of the case study sites in NE Romania, for (a) PC, (b) 
CA, (c) CA–B, (d) CB, and (e) CU cultural periods, with ten landform types for the 300 m and 1,000 m 
combined neighbourhood sizes; the statistics apply to both the buffer zone and site location in each 
map. 
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In this way, the front of cuestas provides a good defence of the settlement, offers a wider 
perspective on the landscape, and a very good (inter)visibility [47–54]. The sites located in the 
valleys have a lower relative frequency, and it is possible to correlate their placement with seasonal 
mobility for the practice of agriculture [35–37,75]. 

The increasing number of sites located on the top of the hills since the end of the Precucuteni 
period is connected with demographic growth and with a slight climate change which occurred at 
the beginning of the Cucuteni A period. Compared to the previous Eneolithic phase, the dry period 
during the Cucuteni caused a decline of subsistence agriculture, forcing human communities to 
migrate towards the northern part of the Moldavian Plain in search of new fertile lands, pastures 
and resources (see Cucuteni A–B settlement distribution) [35,75]. Even though in Cucuteni B some of 
the communities return to the old territories, the slope position pattern remains the same. Due to the 
heterogeneous landscape which characterizes the area between Siret and Prut rivers, the habitat 
preferences and the cultural practice, especially those related to subsistence agriculture, did not 
change significantly during the Eneolithic. From this point of view, the results of this approach 
highlight the eco-cultural niche occupied by settlement in the Precucuteni and Cucuteni periods in 
the study area. 

Regarding the accuracy of landform classification into discrete slope position classes using the 
DEV, and by combining the parameters from two neighbourhood sizes using large-TPI and 
small-TPI, the results indicate a high agreement with the archaeological surveys and landscape 
description achieved within the study area [34–38]. Even this approach could not replace the classic 
geomorphological expert opinion, it does bring new insights in remote sensing applied in cultural 
heritage assessment, preventive archaeology and archaeological predictive modelling. 

4.2. Flood Hazard Perception During the Eneolithic Period 

The placement of flooding areas likely indicates that the territories occupied by wetlands were 
used by prehistoric communities for hunting and fishing, but they are also emphasized as being a 
very inappropriate habitation place due to floods. According to HEC-RAS flood hazard pattern 
provided using 1,000-year discharge insurance [45,46,49], only 8.2% of the total sites were placed in 
vulnerable areas (Figure 9). During the Precucuteni and Cucuteni A phases, the settlements 
potentially affected by high flood events do not exceed 6.5% (Figure 9a,b), in Cucuteni A–B, this 
value increases to 9.9% (Figure 9c), and during Cucuteni B, the number of vulnerable settlements 
reaches 12.3% (Figure 9d,e). According to slope position classification generated using SD of TPI 
(DEV), the most potentially affected settlements are those that were located on the low areas like: 
valleys (37 sites), lower/middle slopes (12 sites), and flat areas with ≤ 5º slope (13 sites) (Table 3). 
According to the TPI-landform classification by combining two neighbourhood sizes, the most 
potentially affected settlements by floods were built on the concave landforms: deeply incised 
streams (37 sites), U-shaped valleys (25), and plains with ≤ 5° slope (3 sites) (Table 4). These sites may 
correspond to temporary settlements used for a particular activity (e.g., fishing, hunting, clay 
exploitation, flint processing), and could indicate the seasonal mobility of prehistoric communities 
generated by the annual hydrological regimes [34–38,41,75]. 

Overall, the habitation practices deduced from settlement landform patterns attest that 
prehistoric communities had a high awareness of flood hazard, especially during the Precucuteni 
and Cucuteni A periods (ca. 5000–4100 BCE). The relative increase of the number of sites placed in 
the vulnerable areas in the second half of the analysed period (ca. 4100–3500 BCE) can be explained 
by the migration of inhabited territory to the north and north-east (Cucuteni A–B phase; ca. 4100–
3850 BCE) near to the Prut floodplain, the river with the highest hydrological activity in the lowland 
region. Also, the Cucuteni B phase (ca. 3850–3500 BCE) corresponded with the increase of the 
prehistoric population, and implicitly, with the territorial expansion of habitation places during the 
drier periods [48,63]. However, the low-presence of Eneolithic sites in floodplain of the main rivers 
indicate a relative cyclicality of hydrological events associated with overflow (e.g., seasonal 
flooding, flash floods), and also highlights the areas affected by excess of humidity (e.g., wetlands or 
riparian zone), which are unfit for permanent habitation. 
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Figure 9. Flood hazard vulnerability generated with 1,000 year discharge insurance for the case 
study sites in NE Romania: (a) PC, (b) CA, (c) CA–B, (d) CB, and (e) CU cultural periods; (f) 
zoomed-in on a sample site area from Prut floodplain; the statistics apply to both the buffer zone and 
site location in each map. 
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Table 3. Number of Eneolithic settlements occurring over six slope position classes (300 DEV and 
slope) vs. number of sites which are in the flood hazard area (1000 year flood band insurances) in the 
NE Romania. 

Slope position 
classes, after [3] 

1 PC 1 CA 1 CA–B 1 CB 1 CU 1 Es Total 

2 DEV 300 3 FH 2 DEV 300 3 FH 2 DEV 300 3 FH 2 DEV 300 3 FH 2 DEV 300 3 FH 2 DEV 300 3 FH 

Ridge (summit, top) 29 0 150 1 48 0 132 4 111 0 470 5 

Upper slope 2 0 15 1 3 0 7 2 10 1 37 4 

Middle slope (slope > 
5°) 6 1 13 1 7 0 18 3 14 1 58 6 

Flat area (slope ≤ 5°)  2 0 9 4 4 3 6 4 7 2 28 13 

Lower slope (foot 
slope, toe slope) 4 0 7 1 5 1 11 4 5 0 32 6 

Valley 17 3 71 7 24 5 70 13 58 9 240 37 

1 Chronological framework—PC: Precucuteni period (ca. 5000–4600 BCE); CA: Cucuteni A (ca. 4600–
4100 BCE); CA–B: Cucuteni A–B (ca. 4100–3850 BCE); CB: Cucuteni B (ca. 3850–3500 BCE); CU: 
Cucuteni settlements with unknown cultural phase (ca. 4600–3500 BC); Es Total: Total Eneolithic 
sites (ca. 5000–3500 BCE). 2 DEV 300: Slope position classes based on TPI 300 and SD of Mean 
elevation; 3 FH: Flood hazard area. 

Table 4. Number of Eneolithic settlements occurring over ten specific landform types (combining 300 
DEV and 1000 DEV) vs. number of sites which are in the flood hazard area (1000yr flood band 
insurances) in the NE Romania. 

Landform Classes, After [3] 

1 PC 1 CA 1 CA–B 1 CB 1 CU 1 Es Total 

2 DEV 300–
1000 

3 FH 
2 DEV 300–

1000 
3 FH 

2 DEV 300–
1000 

3 FH 
2 DEV 300–

1000 
3 FH 

2 DEV 300–
1000 

3 FH 
2 DEV 300–

1000 
3 FH 

Hill tops, high ridges 21 0 115 1 34 0 97 1 81 0 348 2 

Middle slope ridges, small hills in 
plains 

1 0 6 0 4 0 6 0 7 0 24 0 

Local ridges/hills in valley 7 0 29 0 10 0 29 3 23 0 98 3 

Upper slopes 4 0 14 0 4 0 13 1 12 0 47 1 

Open slopes (>5°) 0 0 2 0 2 0 1 0 2 0 7 0 

Plains, flat areas (<5°) 0 0 2 1 0 0 1 1 4 1 7 3 

U-shaped valleys 10 1 26 6 13 4 27 11 18 3 94 25 

Upland drainage, headwaters 2 0 5 0 2 0 6 0 8 0 23 0 

Middle slope drainage, shallow 
valley 

1 0 3 0 0 0 2 0 0 0 6 0 

Deeply incised streams 14 3 63 7 22 5 62 13 50 9 211 37 

1 Chronological framework—PC: Precucuteni period (ca. 5000–4600 BCE); CA: Cucuteni A (ca. 4600–
4100 BCE); CA–B: Cucuteni A–B (ca. 4100–3850 BCE); CB: Cucuteni B (ca. 3850–3500 BCE); CU: 
Cucuteni settlements with unknown cultural phase (ca. 4600–3500 BC); Es Total: Total Eneolithic 
sites (ca. 5000–3500 BCE). 2 DEV 300–1000: Landform classes based on DEV by combined two 
neighbourhood sizes (300 m and 1,000 m); 3 FH: Flood hazard area. 

5. Conclusions 

The geoarchaeological investigation of the heterogeneous landscapes of the Moldavian Plain 
(NE Romania) using GIS landform classification and flood hazard assessment has produced 
valuable information regarding the distribution of 730 Precucuteni and Cucuteni settlements during 
the Eneolithic period. The habitation practices and flood hazard perception results based on DEV 
(SD of TPI) and HEC-RAS modelling technique applied in this approach are: 
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• According to slope position classification based on DEV 300 m, over 65% of settlements were 
placed on the convex landforms (e.g., ridge, summit, hill top), <5% of total settlements on flat 
areas with a slope ≤ 5°, and 30% of settlements were placed on concave features (e.g., valleys). 

• According to the TPI-landform classification by combining two neighbourhood sizes, in this 
study DEV 300 and DEV 1000, 59.5% of sites are located on positive landforms (e.g., hill tops, 
high ridges, small hills in plains, local ridges/hills in valley), 1.7 % sites are on the flat areas or 
on the gentle slope surfaces (< 5°), and 38.8% sites overlap on the negative landforms (e.g., 
U-shaped valleys, headwaters, shallow valley, deeply incised streams). 

• According to flood hazard pattern generated for an extent with 0.1% insurance (1000 years), 
8.2% of sites are located in vulnerable areas which indicate a high flood hazard perception 
during the Eneolithic period. 

• The high-density settlements built on specific landforms (e.g., ridge, top of cuestas) indicate a 
habitation practice during the Eneolithic based on local topography and highlight a specific 
eco-cultural niche for the prehistoric communities in the plateau-plain transition zone of NE 
Romania. 

Regarding the methodology applied in this approach, the GIS landform classification based on 
TPI and DEV combined with other morphological variables (e.g., slope) can be integrated very easily 
into future paleo-environmental, archaeological predictive modelling, and cultural heritage 
management studies. Furthermore, the difference between conventional archaeological surveys and 
the GIS techniques used in this work is made by rapid, low-cost and the ability to perform the 
analysis both at small and large scale. 
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R   Radius 
𝑧𝑧   Average elevation pixels for various candidate radii 
z0   Central pixel elevation for various candidate radii 
PC   Precucuteni cultural phase 
CA   Cucuteni A cultural phase 
CA–B  Cucuteni A–B cultural phase 
CB   Cucuteni B cultural phase 
CU    Cucuteni (unknown cultural phase) 
BCE   Before Common Era 
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