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Abstract: Rubber trees in southern China are often impacted by natural disturbances, and accurate 

rubber tree crown segmentation and property retrieval are of great significance for forest cultivation 

treatments and silvicultural risk management. Here, three plots of different rubber tree clones, 

PR107, CATAS 7-20-59, and CATAS 8-7-9, that were recently impacted by hurricanes and chilling 

injury, were taken as the study targets. Through data collection using ground-based mobile light 

detection and ranging (LiDAR) technology, a weighted Rayleigh entropy method based on the 

scanned branch data obtained from the region growing algorithm was proposed to calculate the 

trunk inclination angle and crown centre of each tree. A watershed algorithm based on the extracted 

crown centres was then adopted for tree crown segmentation, and a variety of tree properties were 

successfully extracted to evaluate the susceptibility of different rubber tree clones facing natural 

disturbances. The results show that the angles between the first-order branches and trunk ranged 

from 35.1–67.7° for rubber tree clone PR107, which is larger than the angles for clone CATAS 7-20-

59, which ranged from 20.2–43.2°. Clone PR107 had the maximum number of scanned leaf points, 

lowest tree height, and a crown volume that was larger than that of CATAS 7-20-59, which generates 

more frontal leaf area to oppose wind flow and reduces the gaps among tree crowns, inducing 

strong wind loading on the tree body. These factors result in more severe hurricane damage, 

resulting in trunk inclination angles that are larger for PR107 than CATAS 7-20-59. In addition, the 

rubber tree clone CATAS 8-7-9 had the minimum number of scanned leaf points and the smallest 

tree crown volume, reflecting its vulnerability to both hurricanes and chilling injury. The results are 

verified by field measurements. The work quantitatively assesses the susceptibility of different 

rubber tree clones under the impacts of natural disturbances using ground-based mobile LiDAR. 

Keywords: tree crown segmentation; ground-based mobile LiDAR; rubber tree properties retrieval; 

natural disturbance 
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Rubber trees (Hevea brasiliensis) are a widely planted hardwood genus in tropical areas and are 

important suppliers of natural rubber and wood. Hainan Island, which is the largest rubber 

cultivation base in China, grew approximately 5.4 × 105 ha of rubber trees in 2015, occupying 16.4% 

of the total land area of the island and forming the largest artificial ecosystem on the island. However, 

the hurricanes that occur in the northwestern Pacific Ocean are a major source of disturbance to the 

Hainan Island rubber tree plantations. The dynamic mechanical loading on rubber trees induced by 

hurricanes causes windthrow, partial or total defoliation, branch and trunk breakage, or inclined 

trunks with tilting tree bodies. Hence, the accurate acquisition of these rubber tree parameter is an 

indispensable component of forest cultivation practices and quantitative assessments of the impact 

of hurricane disturbances on the different rubber tree clones. 

Forest parameters, such as tree location, tree height, crown width, diameter at breast height 

(DBH), and branch angle, are essential for forest management and evaluating different responses to 

wind loading. Rubber tree structure parameters have been traditionally acquired through field 

measurements; however, this process is very time consuming, labour intensive and destructive [1] 

and is useful at only the plot level [2]. Manual measurements are difficult to perform in the harsh 

conditions of tropical forests, where insect bites and high temperatures are common. Fortunately, the 

efficiency of manual measurements can be increased by the light detection and ranging (LiDAR) 

method, which has become one of the most efficient remote sensing technologies for acquiring forest 

point cloud data with high precision [3,4]. LiDAR is an active remote sensing technology that emits 

laser pulses to the surface of vegetative elements and analyses the return signal [5]. The point cloud 

data obtained from LiDAR are valuable and convenient for estimating a variety of tree attributes, 

e.g., leaf area [6], phenotypic characteristics of leaf elements [7], tree structural attributes [8], and 

volume of timber [9]. In recent years, the efficiency of measurements has been greatly improved by 

mobile LiDAR, such as LiDAR loaded on ground vehicles [10], humans (hand-held [11] and backpack 

[12] modes) and manned aircraft. LiDAR sensors loaded on ground vehicles and humans provide a 

bottom-up perspective of the high-density representation of tree trunk branches and vegetative 

elements at the low and middle parts of the forest canopy. Airborne LiDAR [13] provides a top-down 

measurement setup for the quantitative acquisition of features in the upper tree canopy, such as tree 

top locations and tree crown attributes; however, the tree properties at low heights are almost 

completely missed because the laser beam is intercepted by the foliage in the upper forest canopy. 

Hence, different scanning patterns have unique advantages in terms of providing useful tree 

characteristics from different scanning angles, which is suitable for different scale areas and forests 

composed of various tree species. 

Accurate crown segmentation from mobile LiDAR point clouds is an essential prerequisite for 

forest measurements and applications. Tree crown segmentation algorithms have rapidly developed 

in recent decades, but most of these algorithms are based on airborne LiDAR data. Conventionally, 

trees are detected from point cloud features and the canopy height model (CHM). A series of point 

features, such as point density [14], geometrical properties [15], and the spatial distribution of 

scanned points [16], have been employed to recognize individual tree crown models from a vast 

amount of scanned data. Continuing efforts using pattern recognition algorithms, such as the mean-

shift algorithm [17], K-means clustering [18], region growing [19], and watershed algorithm [20], have 

also been adopted to accomplish tree crown segmentation based on the detected tree top locations. 

In addition, other concepts derived from computer science, such as voxelization [21], graph cut 

algorithms [22], adaptive size window filtering [23], the multilevel morphological active contour 

method [24], wavelet transform regarding time-frequency decomposition [25], and the topological 

relationship analysis method [26], have also been extended to delineate tree crowns from airborne 

LiDAR data. Nevertheless, the segmentation results for these algorithms are always impacted by the 

accuracy of the tree top detection, the degree of convexity of the top tree crown and the intersected 

tree crown resulting from tree crown competition. 

Accurate individual tree crown segmentation using ground-based mobile LiDAR is still 

challenging, especially for ecological forests in which tree crowns can be extremely irregular and are 

often heavily intersected. Although a few pioneering studies on the detection of tree trunk locations 



Remote Sens. 2019, 11, 903 3 of 15 

  

for tree segmentation from ground-based mobile LiDAR data have been reported, two separate issues 

have arisen concerning (1) the deformation of the wood component of the studied trees induced by 

exposure to perennial hurricane disasters and (2) the deficiency of local scanned data due to self-

occluded vegetative elements in lush forests. Aerodynamic drag is known to counter wind-induced 

tree displacement and causes leaning tree bodies and unevenly distributed defoliation phenomena 

among rubber forests. The deficiency of local scanned data makes the distribution of scanned points 

discontinuous, i.e., difficulties in adopting a region growing method based on the scanned trunk 

points to determine the architecture of the whole tree branch. These disturbances result in difficulties 

in detecting the tree crown centre and unclear representation of the tree crown shape, which also 

complicates the delineation of rubber tree crowns from ground-based mobile LiDAR data. 

In the face of the above issues, this paper proposed a new approach for delineating individual 

rubber tree crowns and effectively retrieving the tree parameters from mobile ground-based scanned 

data. This method was used to quantitatively assess the severity of the impacts of wind disturbances 

on different rubber tree clones, including PR107, CATAS 7-20-59, and CATAS 8-7-9. Due to the 

biological characteristics of rubber trees, including a strong capacity for water absorption that results 

in a vegetation-free sub-canopy, the scanned points of the lower part of the rubber tree trunk are 

easily acquired without occlusion interference and taken as the seed points. Combined with other 

branch points obtained from the region growing method based on the seed points, a weighted 

Rayleigh entropy method is proposed to estimate the inclination angle of each rubber tree and locate 

the centre of each tree crown. Based on the located tree crown centre, a watershed algorithm was 

adopted to successfully segment the tree crown. Then, the segmented scanned points of each tree 

were adopted to retrieve a series of tree attributes. Several valuable conclusions are presented based 

on the comparison of these retrieved tree attributes among the three rubber tree clones under natural 

disturbance regimes with various severities. 

2. Materials and Methods 

2.1. Study Area 

The study area was located within a rubber tree plantation in the city of Dan Zhou (northwestern 

Hainan Island, 109°430–109°510E; 19°280–19°380N, shown in Figure 1). As China’s largest rubber 

production base, the cultivation of rubber trees is continuously increasing in Hainan Island. The 

topography of the plantation is typically characterized by a hilly plateau with an elevation of 188 m 

above sea level at the centre. The plateau is surrounded by flat lands with elevations of 20–160 m. 

Because of sunny and tropical weather with monsoons, the climate is favourable for agricultural 

development. The annual precipitation is 1600 mm. The rainy season (May–October) accounts for 

>89% of the total yearly rainfall, and hurricanes of various scales occur during this same period. The 

mean annual temperature, highest monthly average temperature (June–July), and lowest monthly 

average temperature (January) are 22.9, 28.0, and 16.9 °C, respectively. The plantation has reclaimed 

over 5000 ha of cultivated land and tropical rainforest since it was established in 1957. Of these lands, 

nearly 3000 ha was planted with rubber trees, including a variety of rubber tree clones, including 

PR107, CATAS7-33-97, CATAS7-20-59, Wenchang217, Haiken2, and CATAS 8-7-9. Over the past 

sixty years, hurricanes have hit Hainan 101 times. In 2016, tropical storm Dianmu (August 18th), 

severe tropical storm Mirinae (July 26th), and super hurricane Sarika (October 18th) caused extensive 

wind damage in the rubber plantations and led to relatively low temperatures, i.e., nearly three 

months (June–August) with average temperatures of 10°C. Three tree clones, including rubber tree 

PR107, rubber tree CATAS 7-20-59 and CATAS 8-7-9, in the rubber tree plantations were chosen as 

the typical trees for our experiments. Prior knowledge on the cultivation of these rubber trees 

revealed that some rubber tree clones (PR107) are more susceptible and vulnerable to wind damage 

than other rubber tree clones (CATAS7-20-59). The rubber tree clone CATAS 8-7-9 is vulnerable to 

both hurricane damage and chilling injury; the universal phenomenon of defoliation in CATAS 9-7-

9 continues mainly due to chilling injury in the last three months of the year. 
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2.2. Laser Data Acquisition 

The LiDAR data were obtained on November 10th, 2016, using a Velodyne HDL-32E high-

definition LiDAR sensor operable in backpack mode. The sensor has 32 laser/detector pairs that 

measure the rubber tree plots with the following set parameters: +10.67° to −30.67° vertical field of 

view (FOV) with an angular resolution of 1.33°, 360° horizontal FOV with an angular resolution of 

0.16°, 10 HZ frame rate and 70 m measurement range. The Velodyne HDL-32E scanning system was 

carried by an experimenter, and the scanner was set to “continuous shooting mode” to collect data at 

10 revolutions per second. The experimenter loaded the Velodyne laser scanning system and 

travelled within the three rubber tree plots according to the predefined survey route. The survey 

route was programmed to a predefined rectangle parallel plan designed to cover the three study sites. 

Meanwhile, the experimenter traced survey lines (baby blue dashed lines in Figure 1) at a speed of 

0.5 m/s due to the complex terrain of the rubber tree plantation and the heavy scanning instrument. 

The Velodyne LiDAR system integrates laser scanning with simultaneous localization and mapping 

(SLAM) technologies to rapidly finish the registration of each scan and generate high-density point 

clouds for each target rubber tree plot. The mean resolution of the acquired LiDAR data for the three 

rubber tree plots is approximately 0.02 m. 

 

Figure 1. Location of the study area and the three forest plots of rubber trees within the CATAS 

experimental farm, Danzhou, Hainan Island, China. The backgrounds of the left and middle picture 

are the remote sensing image acquired from Google Earth, where the different coloured rectangles 

mark the edges of the different rubber tree plots and the baby blue dashed lines represent the survey 

routes using man-portable light detection and ranging (LiDAR). The photos on the right side show 

our scanning process in the rubber tree plots using man-portable mobile LiDAR. 

2.3. Field Data 

A variety of tree properties, such as tree height, leaf area index (LAI), diameter at breast height 

(DBH), crown width, and the included angle between the trunk and first-order branches, are different 

for the three rubber tree clones (PR107, CATAS7-20-59, and CATAS8-7-9). Three subsets from the 

study site of three rubber tree plots were created for detailed testing. Each subset consisted of an 

approximately 0.6 × 0.6 km area that was representative of the study site. Field measurements within 

the three subsets were conducted on February 11th, 2016. The tree top height was measured using a 

Vertex IV hypsometer (Haglöf, Långsele, Sweden). The crown widths were obtained as the average 

of two values measured along two perpendicular directions from the location of the tree top. The 

included angles between the trunk and first-order branches of all trees located within the subsets 

were manually measured using a protractor. In situ stem diameter measurements of all rubber trees 

within the subsets were collected using a traditional Diameter Tape placed at a height of 1.37 m above 

the soil surface on the uphill side of the stem. The LAI values of the three rubber tree clone plots were 

measured using an LAI-2000 plant canopy analyser combined with an optimized sampling strategy 

for the forest by standardizing the distance and orientation of the LAI-2000 measurements [27]. All 
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these endeavours led to accurate in situ field-based measurement data for the validation of our 

calculated results. 

2.4. Pre-processing of the Scanned Data 

The undulating ground of the study area causes inconsistencies in the ground elevation, which 

results in negative effects on the detection of rubber tree trunks. To eliminate the height 

inconsistencies of the scanned rubber trees, a program was written by us in Matlab@ to create the 

digital terrain model (DTM) from the scanned points. The program employed a moving detection 

window for all scanned data to retrieve the local minimal z value to generate the DTM. Then, the z 

values of the scanned points of the rubber trees in each window subtract the corresponding DTM 

value. These raw scanned points are then continuously filtered to eliminate surface height 

inconsistencies using a customized moving window filter. After the filtering process, the preliminary 

scanned points of two rubber tree plots on the same height surface were then obtained. 

Wood–leaf separation, which aims to classify LiDAR points into wood and leaf components, is 

an essential prerequisite for determining the branch architecture of a tree and deriving specific leaf 

characteristics. A definite description of the wood components likely assists with the determination 

of the canopy centre and degree of plant damage under the impact of a hurricane. Based on the wood–

leaf separation algorithm [28], a variety of features for each scanned point were calculated, including 

the normal vector, the structure tensor and the distribution of the point normal vector. Then, the 

Gaussian classifier was employed to process the scanned points  of the th tree to obtain the 

separation results of the leaf point set  and wood point set of each tree. Figure 2 shows the 

magnified wood–leaf separation results of several typical trees belonging to the three rubber tree 

clones. 

 

Figure 2. Diagram of the wood–leaf classification for the scanned data for several typical trees 

belonging to the (a) PR107, (b) CATAS 7-20-59, and (c) CATAS 8-7-9 clones, where the green areas 

represent the classified leaf points, and the crimson areas represent the classified wood points. 

2.5. Positioning the Centre of the Tree Crown 

Due to the long-term severe wind disturbances on these rubber trees, mechanical loading on the 

plants caused by hurricanes results in the inclination of most parts of the rubber tree trunks. Hence, 

kP k
k

LP
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the location of the tree crown centre for each tree cannot be determined directly from the position of 

the corresponding trunk. Rayleigh entropy was used to calculate the inclination angle of each trunk 

to derive the centre of each tree crown, which is taken as the primary information for tree crown 

delineation. The calculation of the inclination angle of each tree trunk is converted to the 

determination of the directional vector of each trunk. Due to the strong competition by rubber trees, 

which affects the soil fertility and moisture, the understory within the three rubber tree plots was 

almost free from sub-canopy vegetation. Hence, the scanned points  on the branch 

between the ground and one-twentieth of the rubber tree height  can be easily extracted from the 

wood point set . For these points ,  represents the total number of the points, 

and  belongs to the th rubber tree, and these  points are taken as the seed points for the 

following region growing method [29]. Consequently, these seed points in combination with the 

region growing method were adopted to iteratively determine whether other branch points were 

related to the seed points, i.e., searching for connected points based on continuities in distance 

properties and guaranteeing a point-to-point distance smaller than the threshold . An iterative 

process continues in the same manner until there are no changes in the number of searched points 

related to seed points between two successive iterative stages. Combined with other branch points 

 and , which were obtained through the region growing method, a fitting 

strategy based on weighted Rayleigh entropy was adopted to form the  spatial lines for each seed 

point  to assess the direction vector  of each trunk. For these points 

,  represents the total number of scanned branch points derived using the region 

growing method based on the seed points. The concept of our algorithm is illustrated in Figure 3. 

 

Figure 3. Schematic representation of the concept of deriving the location of each tree crown centre. 

(a) The trunk points between the ground and 1/20 of the tree height were chosen as the initial seed 

points and are represented in pink; the other branch points related to the seed points were found 

using the region growing method and are represented in brown. The rest of the branch points in blue 

cannot successfully expand due to occlusion, which causes data discontinuity, which hampers the use 

of the region growing method from the seed points. (b) Based on the points in brown, a weighted 

Rayleigh entropy-based method was adopted to extract the canopy centre in combination with the 

centre of the seed points and the trunk point at the crown base height to evaluate the inclination angle 

of the tree trunk caused by hurricane impacts. 

The specific weighted Rayleigh entropy equation used to retrieve the direction vector of each 

trunk is as follows: 
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The greater the height, the more first-order and second-order branches exist in the tree crown. 

The overall orientations of the scanned branch points in the upper tree crown are always consistent 

with the trunk direction, but the details of each branch direction vary widely, i.e., nearly horizontal, 
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vertical, or diagonal. Hence, a weight  is assigned to each  according to its  value. The larger 

the  value of , the smaller the magnitude of the weight it is assigned to. Hence, the weight 

, where 
 
represents the tree height. Assume that  

and
 

; then, Equation (1) can be converted to the following: 
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where M el B= − . According to the mathematical property of the weighted Rayleigh entropy, the 

value of Equation (4) reaches the minimal value when k

iv  equals the eigenvector corresponding to 

the minimal eigenvalue of matrix M . Using the feature decomposition theorem of matrix theory, we 

obtained the following equation: 
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where   and   represent the eigenvalue and eigenvector of matrix B , respectively. As shown in 

Equation (5), a close relationship exists between the eigenvalues of matrix M  and B . The search for 

the eigenvector corresponding to the minimal eigenvalue of M  can be converted to finding the 

eigenvector corresponding to the maximal eigenvalue of B . Hence, the eigenvector corresponding 

to the maximal eigenvalue of  was taken as the directional vector of each trunk. Then, based on 

the combination of each seed point  and the corresponding retrieved directional vector , 

each fitted line was formed to guarantee the minimal orthogonal distance between the trunk points 

and the spatial line. The base fitting straight line of the th base point can be expressed as follows:  
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k k k

avg avg avg

k k k

x y z

x x y y z z
t

v v v

− − −
= = =  (7) 

Meanwhile, according to empirical knowledge, the intersection point of the fitting line at twice 

the tree crown base height  is close to the canopy centre. Consequently, the coordinates of 

the canopy centre of the th rubber tree were obtained as follows: 

(2 ) (2 )
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The average branch inclination angle of each tree trunk can be calculated by calculating the 

included angle between  and the zenith direction . The equation is as follows: 

2

2 2 2

2

·
=arccos =arccos

k k
k z

k
k k k

x y z

v v v

v v v v v



+ +
 (9) 

2.6. Tree Crown Delineation Based on the Watershed Algorithm 

Based on the calculated centre of each tree crown, all of the scanned data from the three rubber 

tree plots were vertically projected onto a plane. The lack of an obvious convex shape for the upper 

part of the rubber tree crowns precludes the occurrence of adjacent catchment basins for watershed 

processing and prevents the collection of continuous image gradient information to conveniently 

form contours that delineate each tree crown. Hence, a watershed segmentation method based on the 

Euclidean distance metric [30] based on the extracted each tree crown centre was adopted here to 

obtain the boundaries of each tree crown, and the obtained boundaries are shown in Figure 4. Then, 

the projected status was reverse transformed into the original scanned points, and the tree crown 

boundaries obtained from the watershed algorithm assisted with the segmentation of each tree 

crown. Consequently, a variety of individual tree properties were retrieved based on the separated 

scanned points from individual trees. The volume of each tree crown was assessed using the convex 

hull algorithm [31] based on the separated leaf points of each tree. A cylinder model was adopted to 

fit the trunk, and the diameter of the cylinder represents the DBH of each tree. The tree model 

reconstructing method [32] was used to define the stretching direction of the branches capable of 

retrieving the angle 
 
between the first-order branches and trunk. The calculated tree parameters 

were compared with field measurements to verify the effectiveness of our method. 

 

Figure 4. Extracted boundaries of tree crowns using the watershed algorithm based on the tree crown 

centre and Euclidean distance. (a) Rubber tree plot 1 (PR107), (b) Rubber tree plot 2 (CATAS 7-20-59) 

and (c) Rubber tree plot 3 (CATAS 8-7-9). The segmentation strategy is preferred here for rubber tree 

plantations with similar silvicultural treatments and forest structural parameters. 

3. Results 

The wood–leaf separation results for the scanned points of subsets from three rubber tree plots 

are shown in Figure 5. Tree branches are always located in the intermediate of the tree crown, and 

self-occluded vegetation elements in rubber tree plots generally obstruct laser scanning views, which 

2 cbasez h=

k

kv
2(0,0,1)v


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results in the incompleteness of some scanned branch and leaf data. According to the criteria of the 

region growing method, i.e., searching the branch points that were related to seed points and 

satisfying a point-to-point distance smaller than the threshold , complete branch information could 

not be obtained for some of the trees due to occlusion, which caused the deficiency of some of the 

scanned branch data. However, most of the branch points in the lower and middle parts of the rubber 

trees in the three plots were well obtained using the region growing method (Figure 6). Consequently, 

combined with weighted Rayleigh entropy and branch points obtained from seed points, the 

directional vector of the fitted line depicting the degree of inclination of the trunk of each tree was 

assessed. Based on silvicultural knowledge, the intersection points of every fitted line at 

approximately twice the tree crown base height 
 
were taken as the canopy centre of each 

tree, which is marked by a green pentagram in Figure 7. Then, based on the position of the retrieved 

centre of each tree crown, the vertical projection of scanned points for the three rubber tree plots was 

determined in combination with the watershed algorithm [20] to achieve the tree crown segmentation 

results. The tree crown segmentation results are shown in Figure 8. 

 

Figure 5. Program diagrams showing our wood–leaf separation results based on the scanned data, 

where the scanned branch points are indicated in brown, and the scanned leaf points are indicated in 

green. (a), (b), and (c) represent the segment results for the subset from rubber tree plots 1 (PR107), 2 

(CATAS 7-20-59), and 3 (CATAS 8-7-9), respectively. 

 

Figure 6. Program diagrams showing the results of the regional growth from the seed points, where 

the branch points of each tree related to the corresponding seed points were extracted and represented 

in brown. (a), (b), and (c) show the region growing results for the subsets from rubber tree plot 1 

(PR107), rubber tree plot 2 (CATAS 7-20-59), and rubber tree plot 3 (CATAS 8-7-9), respectively. 

 

Figure 7. Based on the calculated branch points of each tree using the region growing method, 

Rayleigh entropy was adopted to derive the directional vector of the fitted line for the trunk structure 



2 cbasez h=
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of each tree. Combined with tree height and empirical knowledge, the intersection points at twice the 

tree crown base height were taken as the crown centre of each tree, which is marked with a green 

pentagram. (a), (b), and (c) show the corresponding results for the subset from rubber tree plot 1 

(PR107), rubber tree plot 2 (CATAS 7-20-59), and rubber tree plot 3 (CATAS 8-7-9), respectively. 

 

Figure 8. Tree crown segmentation results using a watershed algorithm based on the detected tree 

crown centres, where different colours indicate different trees. (a), (b), and (c) show the corresponding 

results for the subset from rubber tree plot 1 (PR107), rubber tree plot 2 (CATAS 7-20-59), and rubber 

tree plot 3 (CATAS 8-7-9), respectively. 

The quantitative evaluation of the comparison of the different tree property retrieval methods 

using our method versus the field measurements is listed in Table 1. Under the same scanning 

resolution and approximately the same planting spacing for each rubber tree plot, the retrieved 

average tree height from the scanned points of rubber tree clone PR107 is lower than that from rubber 

tree clone CATAS 7-20-59, but more scanned leaf points were obtained for PR107 than CATAS 7-20-

59, which means that more leaf elements existed in the tree crown, leading to a higher LAI for rubber 

tree plot 1 than plot 2. Meanwhile, the angle  between the first-order branches and the trunk is 

largest for PR107 and ranges from 35-68° (Figure 2 shows the topological structures of typical tree 

skeletons belonging to different clones), thus accounting for a larger tree crown volume with a spread 

out crown that provides more space for leaf growth. Nevertheless, this branch architecture increases 

the instability of tree structures under wind loads. Meanwhile, high LAI values increase the frontal 

leaf area opposing wind flow, which induces excess loads on the PR107 rubber tree clone by wind 

gusts and increases the vulnerability of the trees to wind damage. The angle  for CATAS 7-20-59 

ranges from 20–43° with an average DBH of 33.10 cm, which forms the vase shape of the tree crown 

and maintains a stable structure. The tree crown volume and leaf area of CATAS 7-20-59 are lower 

than those of PR107, which causes large gaps among the forest canopy and benefits the passing of air 

flow through the forest and strengthens the wind resistance. The rubber tree clones CATAS 8-7-9 are 

susceptible to chilling injury, and severe defoliation phenomena have occurred due to the recent low 

temperatures. Hence, the minimum average tree crown volume and number of scanned leaf points 

occur in rubber tree plot 3. Table 1 quantitatively indicates that our calculated results derived from 

the scanned points adequately fit the field measurements. The radar charts in Figure 9 show the 

spatial distribution of scanned leaf points of each tree in different rubber tree plots. It is clear that the 

number of individual tree leaf points of the rubber tree clone PR107 is larger than that of the rubber 

tree clones CATAS 7-20-59 and 8-7-9, which verifies that the rubber tree clone PR107 has a higher LAI 

than other rubber tree clones. The box plots in Figure 10 depict the distribution of our calculated tree 

properties regarding individual rubber trees in rubber tree plots 1, 2, and 3. As shown in Figure 10b, 

high LAI and large crown volumes result in increased wind loads on trees, which resulted in a larger 

trunk inclination angle for PR107 (4.3–30.1°) than CATAS 7-20-59 (1.1–18.0°). 

 

Table 1. Accuracy of the retrieved parameters for three rubber tree plots using our method in 

comparison with field measurements. 




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Rubber Tree Plot 1  

(PR107) 

Rubber Tree Plot 2 

(CATAS 7-20-59) 

Rubber Tree Plot 3 

(CATAS 8-7-9) 

Number of scanned 

points/Number of trees 
1359879/138  1325866/148  922628/191 

Number of scanned points 

(Leaf/Wood)  
 1039143/320736 958631/367235  660558/262070 

Plant spacing (m) 
6.08 Vertical 

2.52 Horizontal 

 6.13 Vertical 

2.52 Horizontal 

 6.14 Vertical 

2.62 Horizontal 

Retrieved parameters 

(Our method / Field 

measurement), Correlation 

degree 

(Our method/Field 

measurement), Correlation 

degree 

(Our method/Field 

measurement), Correlation 

degree 

Average tree height (m) (13.23/13.17), 96.34% (14.95/15.10), 98.32% (12.92/13.11), 97.15% 

Average breast diameter (cm) (27.12/26.21), 97.21% (33.10/33.29), 98.43% (21.91/21.06), 96.32% 

Average crown volume (m³) (205.45/200.98), 92.82% (182.00/184.48), 91.71% (99.47/103.82), 90.31% 

Crown length (m) 
(3.74/3.95), 93.72% E-W 

(5.59/5.78), 95.13% N-S 

(3.07/3.08), 98.72% E-W 

(5.48/5.70), 96.12% N-S 

(3.92/3.96), 97.81% E-W 

(4.87/4.69), 96.30% N-S 

Average trunk inclined angle 

α (degree) 
(13.08°/12.97°), 97.16% 8.14°/8.49°, 95.92% 8.87°/9.17°, 94.74% 

The angle β between the first-

order branch and trunk 

(degree) 

(35.06°–67.73°/ 

36.62°–66.49°) 

(20.29°–43.20°/ 

21.34°–41.18°) 

(23.14°–54.36°/ 

24.28°–55.38°) 

Note: E-W, east-west direction; N-S north-south direction. 

 

Figure 9. Radar charts showing the spatial distribution of leaf points for individual trees in rubber 

tree plot 1 (a), plot 2 (b), and plot 3 (c). The spokes of the radar maps indicate that the number of 

scanned leaf points in different directions for rubber tree plot 1 is larger than that for rubber tree plots 

2 and 3. 

 

Figure 10. Box plots depicting the parameter distribution retrieved using our algorithm from sixty 

randomly selected trees in each rubber tree plot. (a) Distribution of the group of calculated results 

regarding crown breadth in the East-West and North-South directions for the different rubber tree 

plots. (b) Distribution for the group of calculated results regarding the tilt angle of the trunk and the 

included angle between the trunk and branch for different rubber tree plots. 
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4. Discussion 

4.1. Specific Uses of Our Approach 

There is increasing interest in the accurate estimation of tree properties in planted forests for 

assessing the efficiency of forest cultivation under different natural environmental influences. 

Individual tree segmentation is still an essential premise for tree property retrieval from various types 

of remote sensing data of forests. If the trees that are planted in forests have heavily intersected tree 

crowns, seriously sloped trunks, and unobvious tree crown features, these interference factors 

complicate the tree crown segmentation based on scanned data. Some researchers have adopted 

mobile ground-based LiDAR, such as the man-portable backpack scanning mode, to scan the data of 

tree trunks growing in forests [10] and combined the region growing method based on trunk data to 

perform individual tree segmentation. Nevertheless, in a lush forest with a high LAI, ubiquitous 

occlusion effects result in considerable deficiencies of local scanned data, which seriously hampers 

continuous expansion from the trunk points to the upper tree branch structure based on the region 

growing method. In addition, it is easy to generate fallible expansion directions for heavily 

intersected tree crowns using the region growing method. In our study, the biological properties of 

rubber trees, such as the strong capacity for water absorption and high LAI, result in the mortality of 

underlying vegetation and markedly alleviate the occlusion effect, which allows for the scanned 

points for the lower wood components of each rubber tree to be fully captured. Based on these 

scanned points, a weighted Rayleigh entropy method in combination with other branch points in the 

middle and upper tree crown obtained from the wood–leaf separation algorithm was used to derive 

the direction of the overall architecture of the wood components of each tree. The spatial position of 

each tree crown centre is associated with the overall rubber tree height of different clones, and it is 

convenient to deduce this information. Consequently, tree crown segmentation was achieved, and 

various attributes of individual rubber trees belonging to different clones were retrieved to analyse 

the wind-resistant performances of different clones. 

The proposed method is more suitable for processing pure plantations or contiguous areas that 

contain a number of relatively homogeneous trees or have a common set of growth characteristics, 

such as tree age [33], tree height, and crown width [34,35]. For the study plots with grown trees of 

different tree species or ages, although the spatial growth direction (normal vector) of each tree trunk 

is successfully derived using our algorithm from mobile ground-based LiDAR, the variation in tree 

height results in a non-uniform height distribution of tree crown centre, which invalidates our 

method of calculation of tree crown centre by searching the intersection point of the fitting line at a 

fixed tree height (equation 8). This work is plausible for the three rubber tree plots in our study 

because the trees in these plots have similar properties in their composition, crown breadth, age, and 

spatial arrangement. However, for a forest plot that presents inconsistent tree species and crown 

breadth or trees that exhibit strong spatial competition and supress the neighbour trees, tree crown 

segmentation that depends on the Euclidean distance between each tree crown centre will not be 

reliable. For these cases, other useful information, such as phenotypic features of the tree crown and 

topological structure characteristics, must be synthetically considered.  

4.2. Impact of Hurricane Propagation Through the Rubber Tree Forests 

The rubber tree plots act as a barrier when met with the strong wind flow caused by hurricanes. 

The weak resistance of the forest canopy cannot stop the wind from moving forward and only 

decelerates the wind speed at the cost of defoliation and branch breakage. Hence, we calculated the 

leaf area density (LAD) distribution of the whole forest section according to the scanned point density 

distribution to analyse the damage resulting from hurricane propagation through the rubber tree 

plots. As shown in Figure 11, the red dotted boxes indicate the area where a significant decrease in 

LAD occurred. For rubber tree plots 1 and 2, high LAD values result in small gaps during the initial 

hurricane stage, which induces the wind to seek a breakthrough path and results in early 

enhancement to the damage propagation through the edge trees along the woodland path. Therefore, 

the decreasing LAD phenomena dominate the left side of rubber tree plots 1 and 2, which are close 
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to the woodland path and marked by the left red dotted boxes in Figure 11a and b. With the drastic 

increase in wind intensity, the wind force is strengthened, and wind rushes through a path near the 

middle of the rubber tree plots and passes through the plots, which results in defoliation and wood 

structural fatigue along the path. The red dotted boxes in the middle of Figure 11a and b indicate the 

wind path with foliage destruction in rubber tree plots 1 and 2. For rubber tree plot 3, a ubiquitous 

leaf area decrease occurred throughout the forest canopy that was mainly due to the recent spread of 

chilling injury throughout the plot, which caused increases in the pervasive forest gap sizes, allowing 

wind gusts to pass smoothly through the plot. Hence, no obvious local LAD reduction existed in this 

plot. 

 

Figure 11. After tree crown delineation, the relative leaf area density (LAD) was calculated based on 

the separated scanned leaf points. The dotted red boxes represent the areas with reduced LAD and 

indicate the path of the hurricane winds through the rubber tree plots, which induced defoliation. (a) 

Rubber tree plot 1 (PR107). (b) Rubber tree plot 2 (CATAS 7-20-59). (c) Rubber tree plot 3 (CATAS 8-

7-9) recently suffered from serious chilling injury, and ubiquitous defoliation spread throughout the 

plot with large gaps in the forest canopy, which benefited the passing of wind gusts through the plot, 

leading to no obvious local LAD decreases. 

5. Conclusions 

The quantitative assessment of the susceptibility of different clones of rubber trees to wind 

damage is urgently needed. For crooked rubber trees caused by long-term hurricane disturbances, a 

weighted Rayleigh entropy method based on scanned branch points was designed to locate the 

overall direction of the structure of wood components and accomplish tree crown segmentation. 

Consequently, a variety of rubber tree properties were retrieved from the segmented scanned points 

of each tree. The results show that the average scanned leaf points per tree, average crown volume, 

and the angle between the first-order branch and trunk of PR107 (9854, 205.5 m3 and 13.08º, 

respectively) are larger than those of CATAS 7-20-59 (8959, 182.0 m3 and 8.14º, respectively), which 

results in more frontal leaf area and unstable tree structure for wind loading. The prior practical 

experience of rubber tree silviculture also underlines the conclusion that clone PR107 is more 

susceptible to wind storms than clone CATAS 7-20-59. Meanwhile, marked decreases in leaf area and 

crown volume indicate dual disasters stemming from chilling injury and severe hurricanes for clone 

CATAS 8-7-9. The success of our proposed algorithm provides a solid foundation for the 

segmentation of rubber tree crowns and the retrieval of rubber tree parameters based on ground-

based mobile LiDAR data and provides a quantitative assessment of the forest impacts following a 

natural disturbance. Further research should consider developing a universal and robust tree crown 

segmentation algorithm with a variety of tree phenotypic parameters for different types of forests 

that are impacted by natural disturbances.  
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