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Abstract: The advantage of implementing the Water Cloud Model (WCM) is in being able to express
complex scattering characteristics in a vegetated area with simple bulk vegetation descriptors.
However, there has been a lack of understanding or consensus about the optimal set of vegetation
descriptors. In this paper, the original and improved expressions of WCM are evaluated and the
optimal vegetation descriptors are presented by examining the relationship between WCM vegetation
parameters and the theoretical scattering model predictions. In addition, the condition-specific
regression relationship between bulk vegetation descriptors and theoretical scattering and attenuation
coefficients, expressed by the A and B parameters in the WCM, is analyzed in relation to the shape,
size, and orientation distribution of the scatterer. Furthermore, the influence of radar observation
conditions on the parameterization of the WCM is presented. The results show that the particle
moisture content and the vegetation water content can be the optimal vegetation descriptors, denoted
by the V1 and V2 variables in the WCM, respectively.
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1. Introduction

Due to its all-weather imaging and vegetation penetration capabilities, remote sensing of
vegetated areas with Synthetic Aperture Radar (SAR) has a great potential for retrieving bio- and
geo-physical parameters related to vegetation and the underlying soil surface. The measured SAR
signal backscattered from natural targets is given by the superposition of many elementary scatterers.
Consequently, in order to estimate physical properties of scatterers from SAR data, it is necessary
to investigate different scattering contributions among total backscattered signals by modeling the
interactions of microwaves in the vegetated areas.

Theoretical scattering models, such as the discrete scattering model [1,2] and the radiative transfer
model [3–5], have been used to assess the relative importance of microwave scattering mechanisms.
In the theoretical models, the vegetation canopy is, in general, represented as an ensemble of randomly
distributed dielectric particles, in a layer of specific height, overlying a dielectric ground layer. The total
backscatter can be obtained by an incoherent sum of several scattering contributions, including direct
backscattering from the vegetation layer, direct backscattering from the underlying rough surface,
scattering interaction between the vegetation and the ground surface, and ground–vegetation–ground
multiple bounce. The theoretical scattering models have been used successfully to interpret scattering
characteristics of vegetated areas and to predict radar signals in relation to the biophysical properties
of plants. However, they are usually complex and inconvenient because of a large number of input
parameters which lead to complexity in resolving the inverse problem.
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To ascertain physical properties of vegetation and soil, a semi-empirical model named the Water
Cloud Model (WCM), was proposed [6]. In the WCM, the canopy is assumed to be a uniform cloud of
water like particles. Then, the total backscattered signal is expressed in simplified form, such as an
incoherent sum of the backscattering contributions of the uniform canopy layer and the underlying
rough surface. Since the canopy in the WCM can be represented by one or two bulk vegetation
parameters, it can be practically used for retrieving physical properties. Several studies have used
the WCM for soil moisture estimation over vegetated areas [7–11] and for biophysical parameter
estimation [12].

In the practical application of WCM, however, parameterization of the simplified model has
been the main problem due to the heterogeneity of actual land surface. The WCM tries to express
the canopy scattering and attenuation terms in the model by simple vegetation parameters. Several
bulk parameters, including Vegetation Water Content (VWC) [8–13], Leaf Area Index (LAI) [7,9,11],
biomass [12], and plant water content [12], have been used as the vegetation descriptors in the literature.
Nonetheless, there have been few studies on the selection of the optimal vegetation descriptors in the
WCM. Another problem in the parameterization of the WCM is that two unknown model parameters,
which relate vegetation descriptors to microwave scattering and attenuation in the canopy layer,
have to be determined prior to performing inversion. Studies on retrieving land surface parameters
provided site-specific model parameters by regression analysis using field experimental data [7–12].
Recently, there were some studies particularly interested in determining model parameters in the WCM,
the named calibration of the WCM, for L-band [13] and C-band [14–17] space-borne SAR systems by
using in-situ and optical remote sensing data.

This study is dedicated to discussing the aforementioned problems in the parameterization
of the WCM. In this paper, the original and improved expressions of WCM are examined and the
optimal set of bulk vegetation descriptors is evaluated by using the theoretical model. In addition,
the condition-specific regression relationship between bulk vegetation descriptors and theoretical
scattering and attenuation coefficients will be analyzed in relation to the vegetation structure.
Furthermore, the influence of radar observation conditions on the parameterization of the WCM is
investigated. In Section 2, we review the WCM and discuss how the bulk vegetation descriptors
are related to the WCM parameters. Section 3 presents the effects of shape, size, and orientation of
vegetation elements on the parameterization of the WCM. The sensitivity of WCM parameters to
observation conditions is discussed concludes this paper in Sections 4 and 5.

2. Water Cloud Model

The Water Cloud Model represents a vegetation layer as a collection of identical spherical particles,
uniformly distributed throughout the volume layer. The total backscattering coefficient, σ0, can be
expressed by the incoherent sum of the scattering contribution of the vegetation layer, σ0

v, and the
scattering contribution of the soil layer, σ0

s , attenuated by the attenuation coefficient T2, given as follows:

σ0 = σ0
v + σ0

s T2, (1)

σ0
v =

σv cosθ
2κe

[
1− T2

]
, (2)

T2 = exp(−2κeh/ cosθ), (3)

where σv and κe are the volume backscattering and extinction coefficients of the vegetation layer, h is
the vegetation height, θ is the incidence angle, and σ0

s is the soil backscattering coefficient. Neglecting
multiple scattering effects, σv and κe, can be given by the sum of the backscattering cross section, S,
and the extinction cross section, k, of a single particle, such as

σv = NS and κe = Nk, (4)
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where N is the number of particles per unit volume (m−3). The simplification of the vegetation layer
permits the relation of the scattering characteristics to bulk vegetation parameters. In the case of
uniformly distributed water particles, the extinction coefficient can be assumed to be proportional to
the total water content in the unit volume W (kg/m3), such as [6]

κe = B1W. (5)

In a similar way, the ratio σv/2κe, which determines the vegetation backscattering coefficient, can
be assumed to be independent of water content, such as

σv

2κe
= A1. (6)

However, the simple expressions for the scattering and extinction coefficients in Equations (5)
and (6) are only valid for the cloud of water particles. In order to apply the simple vegetation model to
practical SAR observations, many researches have used more general expression [7–16], such as

σ0 = A2V1 cosθ[1− exp (−2B2V2/ cosθ)] + σ0
s exp (−2B2V2/ cosθ). (7)

The unknown coefficients A2 and B2 in the general WCM can be dependent on the canopy
type. Since there have been no theoretical basis to determine A2 and B2, they need to be empirically
determined. The scattering and extinction coefficients are represented by bulk vegetation parameters
V1 and V2. Due to the heterogeneity of vegetation structure, several different sets of vegetation
parameters have been proposed in the literature, e.g., VWC, LAI, canopy height (h), and particle
moisture content (mg).

In order to examine the best set of vegetation parameters and the corresponding A2 and B2, let us
firstly assume a vegetation layer consisting of cloud of spherical dielectric particles. The backscattering
and extinction cross sections for a spherical Rayleigh scatterer of radius, r, and dielectric constant, εv,
are [18]

S =
128π5r6

3λ4
|
1− εv

εv + 2
|

2
, and (8)

k =
8π2r3

λ
Im(

1− εv

εv + 2
). (9)

Here, the dielectric constant of a particle, εv, can be related to the gravimetric moisture content,
mg, through the Ulaby and El-Rayes model [19], where

mg =
Ww −Wd

Ww
. (10)

Ww and Wd are the wet and dry mass of a particle. By comparing Equations (1)–(3) and (7), the A2V1

and the B2V2 terms can be expressed as follows:

A2V1 =
S
2k

=
8π3r3

3λ3 |
εv − 1
εv + 2

|

2
/Im(

εv − 1
εv + 2

), and (11)

B2V2 = kNh =
8π2r3

λ
Im(

εv − 1
εv + 2

)Nh. (12)

To understand the coefficients A2 and B2 and the vegetation parameters V1 and V2, variations of
A2V1 and B2V2 terms are examined in relation to several vegetation descriptors, such as the particle
moisture content, mg, the areal density, Na (m−2), and the VWC (kg/m2), as shown in Figures 1 and 2.
The areal density and VWC are defined as

Na = Nh, (13)
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VWC = (Ww −Wd)Nh = mgρwvpNa, (14)

where ρw is the particle wet density (∼ 500 kg/m3, [20]) and particle volume vp = (4π/3)r3.
Figures 1 and 2 show calculated A2V1 and B2V2 parameters plotted against different vegetation

descriptors. The dielectric constant, εv, for calculating WCM parameters is derived from the Ulaby
and EL-Rayes model at 5 GHz. It is shown that the A2V1 term is highly related to mg, while it is
independent of particle density. Since it exhibits a quadratic-like dependence on mg, the A2V1 term
can be rewritten in relation to mg, such as

A2V1 ≈ A2mE
g . (15)

Here, the coefficient A2 varies with the particle size. According to the least square method, A2 varies
from 0.021 for r = λ/50 to 2.6 for r = λ/10, while E = 1.9 independently with the particle size. On the
contrary, the B2V2 term exhibits a linear relationship with VWC, as shown in Figure 2. In this case, we
can rewrite the B2V2 term as

B2V2 = B2VWC =
6π10−3

λ
Im(

εv − 1
εv + 2

)
1

mg
VWC. (16)

The coefficient B2 is not a constant but determined by the moisture content of particles. It varies from
0.27 for dry particles (mg= 0.1) to 0.014 for wet particles (mg= 0.9).
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3. WCM Parameters for Non-Spherical Particles

The WCM tries to express complicated canopy backscatters in terms of a small number of
vegetation parameters. However, the WCM with identical spherical particles predicts identical
co-polarization and no cross-polarization backscatters, which are far from the real SAR observables.
In order to figure out more realistic WCM model parameters, backscatter simulations with physical
models considering non-spherical particles are presented in this section.

Based on the solution of the radiative transfer equation [3–5], the pq-polarization backscattering
contribution of the vegetation layer can be written as

σ0
v,pq =

σv,pq cosθ
2κe,pq

[
1− exp(−2κe,pqh/ cosθ)

]
. (17)

In the case of a canopy layer consisting of randomly oriented dielectric non-spherical particles assuming
identical size and shape, the volume scattering coefficient, σv,pq, and the extinction coefficient, κe,pq, can
be obtained by statistical averaging over the scatterer’s orientation distribution p(α, β), such as

σv,pp = N〈|Spq(ŝ, î)|2〉 = N
∫ ∫

P(α, β)|Spq(ŝ, î)|2dαdβ, (18)

κe,pq = 0.5N{〈kq(−î)〉+ N〈kp(î)〉}. (19)

The orientation distribution of the azimuthal angle, α, and the inclination angle, β, are shown in
Figure 3a. All scatterers are assumed to be distributed uniformly in the azimuth, such as p(α) = 1/2π.
For a small non-spherical particle, the scattering amplitude, Spq(ŝ, î), on the incident, î, and scattered,
ŝ, directions and the extinction cross section, kp(î), can be calculated by using the Generalized
Rayleigh-Gans (GRG) approximation [21]. It has been widely used (e.g., [22–25]) for modeling radar
scattering properties from leaves. To evaluate the effects of particle shape, size, and orientation on
the parameterization of WCM, two types of vegetation, composed of needle shaped (Figure 3b) and
circular disk shaped (Figure 3c) particles, are considered in this study.
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Figure 3. (a) Local orientation of vegetation particle and schematic representation of (b) needle shaped
and (c) disk shaped particles, where t and l denote the thickness and length of the particle.

3.1. Effect of Particle Shape

For non-spherical particles, the constants A2 and B2 will vary with polarization. In this study,
polarization dependent model parameters will be examined for co-polarization cases, since the
cross-polarization signal generally contains no scattering contribution from the soil surface, which has
been of great interest in WCM applications. The polarization dependent model constants A2,pq and
B2,pq can be estimated by fitting WCM parameters to the simulation results of the GRG-based physical
model. The WCM components are related to the vegetation attenuation and scattering terms of the
physical model as
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κe,pqh ≈ B2,pqV2, (20)

σv,pq

2κe,pq
≈ A2,pqV1. (21)

The volume scattering and the extinction coefficients in the left-hand side of the equation are calculated
by the GRG approximation. A number of scattering and extinction coefficients of different vegetation,
composed of either needles or disks, are simulated using the parameters given in Table 1. In the
simulation, the thickness (t) of needles and disks are set to be 0.1 cm and 0.01 cm, respectively.
In addition to the uniform azimuth angle distribution, all scatterers are assumed to be distributed
uniformly in the inclination angles, in the calculation of the GRG-based model.

Table 1. Vegetation parameters used in the GRG-based model simulation.

Vegetation Parameter Minimum Maximum Interval Unit

Particle length (l) 3 24 3 cm
Number density (N) 200 4200 400 m−3

Height (h) 1 5 1 m
Particle moisture content (mg) 0.1 0.9 0.1 g/g

Figure 4 illustrates variations of κe,HHh and κe,VVh terms by the GRG-based model with respect
to different vegetation descriptors, such as mg, Na, and VWC. The simulation is performed at 5 GHz
frequency. It shows a strong linear relationship between κe,pqh terms and VWC in both HH- and
VV-polarizations, regardless of the particle shape. Consequently, the VWC is selected as the optimal V2

parameter and the corresponding B2,pq coefficient can be determined by the slope of the least square
line. Results show that the particle shape affects significantly on the B2,pq coefficients of the WCM.
A vegetation canopy composed of disk-shaped particles is described by a higher B2,pq coefficient than
if it is composed of needle shaped particles. In addition, despite the uniform distribution assumption,
the estimated B2,HH is slightly higher than B2,VV in the case of disk-shaped particles. On the other
hand, in the case of needle shaped particles, the estimated B2,VV is slightly higher than B2,HH.

To determine the V1 parameter and to estimate corresponding A2,pq coefficients, variations of the
σv,pq/2κe,pq terms are examined against different vegetation descriptors, as shown in Figure 5. As with
the spherical particle, the σv,pq/2κe,pq is strongly correlated with the mg and exhibits a quadratic-like
relationship. Based on a non-linear expression, such as

σv,pq

2κe,pq
≈ A2,pqmE

g , (22)

the A2,pq and E parameters can be estimated by least square fit. The estimated E is about 1.9
independently with the particle shape, size, and density. The estimated model coefficient A2,pq is
affected by particle shape. The disk shaped particle exhibits higher A2,pq than the needle shaped scatter.
The model coefficients at HH- and VV-polarizations, A2,HH and A2,VV , are not significantly different in
both the disk and needle shaped particles.
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3.2. Effect of Particle Orientation

In the previous experiment, non-spherical particles are assumed to be uniformly distributed
throughout vegetation layer. However, in many agricultural crops and forests, the scatterers in a volume
layer may have a preferred orientation distribution. In order to consider more realistic vegetation
structure in the parameterization of WCM, scattering and attenuation coefficients from particles with
preferred orientation distribution are considered in this part. The distribution of the inclination
angle p(β) is used to denote the orientation of particles. For simplicity, it is assumed to be a uniform
distribution over the interval β1 ≤ β ≤ β2, such as P(β) = 1/(β2 − β1). When β varies in a range
around 0◦, the needle shaped particles are vertically oriented, while the disk-shaped particles are
nearly horizontal.

Figure 6 shows variations of the B2,pq coefficients in the oriented volume. Based on previous
analysis, VWC is selected for the vegetation descriptor V2 and B2,pq is obtained by fitting the linear

function. For the inclination distribution, we consider the three following special cases: 0
◦

≤ β ≤ 90
◦

,
0
◦

≤ β ≤ 60
◦

, and 0
◦

≤ β ≤ 30
◦

. The first case corresponds to the uniform inclination angle distribution,
as with the previous experiment. The third case corresponds to either nearly vertically oriented needle
or nearly horizontally oriented disk particles.
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Figure 6. Effect of particle orientation distribution on the relationship between κe,pqh and B2,pqVWC
(left: B2,HHVWC and right: B2,VVVWC) in the case of (a,b) needle shaped and (c,d) disk shaped
particles. Colored dots represent simulation results and solid lines are corresponding line fits to the
simulated data.
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It is seen from Figure 6 that the linear relationship between κe,pqh terms and VWC is maintained
throughout different orientation distributions. However, for horizontal disks and vertical needles,
oriented volume effects in wave propagation through vegetation layer lead to the differences of the B2,pq

coefficients between HH- and VV-polarizations. Particularly, the B2,HH coefficient, which is associated
to the attenuation of HH-polarized signal, is more affected by the orientation of the scatterer than the
B2,VV coefficient. In comparing needle and disk-shaped particles, the orientation angle effect is more
significant in the needle shaped particle. The B2,HH coefficient decreases significantly as the needle
shaped particle is oriented vertically.

Next, the effect of particle orientation on the A2,pq coefficients is evaluated in Figure 7. As in
the previous analysis, mE

g is used for the vegetation descriptor. As with the B2,pq coefficients,
orientation distribution affects the A2,pq coefficients of the needle shaped particle more, especially at
HH-polarization. The estimated A2,pq coefficients decrease significantly as the needle shaped particles
are oriented vertically. In addition, it is seen that the estimated E parameter is influenced by the particle
orientation distribution and becomes dependent on the radar polarization. It decreases from 1.9 for
uniform distribution to 1.0 in HH-polarization and 1.6 in VV-polarization for the vertically oriented
needle. On the other hand, the orientation distribution hardly affects the E parameter in the case of disk
shaped particles. The estimated A2,pq coefficients slightly decrease as the disk is oriented horizontally.
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4. Discussion

4.1. Effect of Radar Observation Condition

Two experiments in the previous section discussed parameterization of the WCM in relation to the
shape and orientation of scatterers. In addition to the environmental condition of the scatterer, however,
radar observation parameters affect the unknown model constants in the WCM. In particular, radar
scattering mechanisms in vegetated areas can be sensitive to the incidence angle and the frequency of
the transmitted signal. In order to further evaluate the effect of observation conditions, we analyzed
the model parameters of WCM that were estimated under different incidence angles and frequencies
of the radar signal.

Figure 8 shows dependence of the estimated model parameters on the incidence angle and
frequency. As with the estimation procedure discussed in the previous section, the model parameters
were determined by fitting B2,pqVWC and A2,pqmE

g terms in the WCM to the simulation results of the
GRG-based physical model. In this figure, the shape and orientation distribution of scatterers were kept
constant, such as the moderately vertical (0

◦

≤ β ≤ 60
◦

) needle shaped scatterers. In addition, according
to the previous analysis, the E parameter in the WCM may also depend on the radar polarization.
Therefore, the E parameter for the non-linear fitting was replaced by the polarization dependent
parameter Epq.
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Figure 8a–c illustrates the variations of model parameters as a function of the incidence angle.
It is seen that the B2,VV parameter increases as an increase of the incidence angle, while the B2,HH

parameter is not affected by the incidence angle variation. The A2,pq parameters increase as an increase
of the incidence angle. The estimated A2,pq is consistently higher for the HH-polarization case than the
VV-polarization case. In addition, the difference between A2,HH and A2,VV is larger at a high incidence
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angle region. The estimated Epq parameters are not very sensitive to the incidence angle as compared
to other WCM parameters. The EHH parameter is consistently higher than the EVV parameters.

On the other hand, it is observed from Figure 8d–f that the WCM parameters vary significantly
accordingly with the radar frequency. The B2,pq parameters show quadratic like behaviors as a function
of the frequency. The A2,pq increase as an increase of the frequency and there is a significant difference
between A2,HH and A2,VV especially in high frequency. In the case of the Epq parameters, the estimated
EHH and EVV generally decrease as an increase of the frequency. Particularly, the relationship between
the vegetation descriptor mg and the simulated σv,pq/2κe,pq term becomes nearly linear for the high
frequency and HH-polarization case.

4.2. Comparison with Previous Studies

The above results on the evaluation of WCM parameters suggest the optimal set of vegetation
descriptors. However, the model constants, which relate vegetation descriptors to microwave scattering
and attenuation terms in the vegetation layer, can vary significantly for different environmental
and radar observation conditions. To understand possible variability of the WCM parameters,
additional experiments on the estimation of the B2,pq, A2,pq, and Epq parameters were carried out at
different environmental and observation conditions. In this experiment, we set up 27 configurations,
as summarized in Table 2. As with the simulations in Section 3.1, the scattering and attenuation terms
were calculated using vegetation parameters, given in Table 1, under different radar frequency, particle
orientation distribution, and particle thickness. Here, the simulation was performed for needle shaped
particles and the incidence angle was set to be 30◦.

Table 2. Different simulation configurations for the GRG-based physical model simulations and results
of the WCM parameter estimations.

Configuration Frequency Orientation Thickness B2,HH B2,VV A2,HH EHH A2,VV EVV

1

1.5 GHz

Uniform
(0
◦

≤ β ≤ 90
◦

)

0.1 cm 0.111 0.137 0.004 1.8 0.004 1.8
2 0.2 cm 0.096 0.119 0.018 1.8 0.017 1.8
3 0.3 cm 0.085 0.105 0.041 1.8 0.038 1.8

4 Medium
(0
◦

≤ β ≤ 60
◦

)

0.1 cm 0.066 0.126 0.001 1.5 0.003 1.8
5 0.2 cm 0.058 0.109 0.005 1.5 0.013 1.8
6 0.3 cm 0.051 0.096 0.012 1.6 0.029 1.8

7 Vertical
(0
◦

≤ β ≤ 30
◦

)

0.1 cm 0.022 0.115 0.000 1.1 0.001 1.6
8 0.2 cm 0.020 0.100 0.002 1.1 0.003 1.6
9 0.3 cm 0.018 0.088 0.005 1.2 0.007 1.6

10

5 GHz

Uniform
(0
◦

≤ β ≤ 90
◦

)

0.1 cm 0.339 0.420 0.052 1.9 0.049 1.9
11 0.2 cm 0.299 0.369 0.211 1.9 0.197 1.9
12 0.3 cm 0.266 0.329 0.479 1.9 0.445 1.9

13 Medium
(0
◦

≤ β ≤ 60
◦

)

0.1 cm 0.204 0.386 0.005 1.4 0.025 1.9
14 0.2 cm 0.180 0.340 0.022 1.5 0.100 1.9
15 0.3 cm 0.161 0.303 0.053 1.5 0.226 2.0

16 Vertical
(0
◦

≤ β ≤ 30
◦

)

0.1 cm 0.070 0.353 0.001 1.1 0.002 1.6
17 0.2 cm 0.063 0.310 0.005 1.1 0.009 1.7
18 0.3 cm 0.058 0.277 0.012 1.2 0.021 1.7

19

10 GHz

Uniform
(0
◦

≤ β ≤ 90
◦

)

0.1 cm 0.818 1.012 0.131 1.7 0.125 1.7
20 0.2 cm 0.730 0.902 0.529 1.7 0.505 1.7
21 0.3 cm 0.658 0.812 1.198 1.7 1.142 1.7

22 Medium
(0
◦

≤ β ≤ 60
◦

)

0.1 cm 0.493 0.930 0.006 1.1 0.045 1.8
23 0.2 cm 0.442 0.830 0.027 1.1 0.179 1.8
24 0.3 cm 0.400 0.748 0.065 1.2 0.402 1.8

25 Vertical
(0
◦

≤ β ≤ 30
◦

)

0.1 cm 0.172 0.850 0.002 1.0 0.003 1.4
26 0.2 cm 0.158 0.759 0.007 1.0 0.011 1.4
27 0.3 cm 0.146 0.684 0.018 1.1 0.026 1.4
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The estimation results listed in Table 2 are also illustrated in Figures 9 and 10. In these figures,
the red and blue circles are the estimated WCM parameters for HH- and VV-polarizations, respectively.
Figure 9 shows variations of the B2,pq parameter for different simulation configurations. In order
to examine whether these WCM parameters derived from theoretical analysis can explain actual
parameters obtained from field experimental datasets, the B2,pq parameters reported in the literature
are added in these figures. Among various studies presenting B2,pq parameters, three studies [9,11,13],
which used the same vegetation descriptor, i.e., the VWC, were selected for the comparison. In [9],
the B2,HH,[9] and B2,VV,[9] values were determined using L-band (θ = 35

◦

) and C-band (θ = 23
◦

)
SAR data, respectively, acquired over agricultural areas. In [11], the B2,HH,[11] value was obtained

using multi-temporal X-band (θ= [28.3
◦

, 32.5
◦
]
) SAR data acquired over an experimental farm area.

The L-band B2,HH [9] shows good agreement with the estimated B2,HH for the moderately vertical
needle cases in Figure 9. However, the C-band B2,VV [9] and X-band B2,HH [11] are slightly lower than
the estimated B2,pq values of this study. In [13], several B2,HH,[13] values for different land cover types
were presented using L-band (θ = 38.49

◦

) scatterometer data, acquired globally. It is shown from
Figure 9 that the B2,HH,[13] values, which range from 0.01 to 0.03, are in agreement with the estimated
B2,HH of this study for the vertically oriented needle case.

Figure 10 illustrates variations of the A2,pq and Epq parameters estimated for different simulation
configurations. In this case, it was not able to compare those parameters with in situ information-based
parameters since we could not find study cases where the mE

g was used as the V1 vegetation descriptor.
Nonetheless, it is worth noting that both of the A2,pq parameters obtained in this study and those
reported in [13] reveal the relatively larger variability than other WCM parameters. The estimated
A2,pq parameters vary significantly, both with the particle size and the orientation distribution. The Epq

parameters mainly vary with the particle orientation. In particular, if there is a preference for vertically
oriented scatterers in the vegetation layer, the EHH becomes close to one, which indicates a linear
relationship between GRG-based model calculation and the VWC of the vegetation layer.
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4.3. Validity of WCM

Both the WCM and the theoretical model for examining the WCM parameters assume that the
total backscattered signals is composed of the direct vegetation backscattering and direct ground
backscattering. Consequently, the WCM predictions are problematic when the observed signal contains
other scattering contributions. In order to evaluate the validity of the WCM, we consider that the total
backscattered signal can be expressed by the incoherent sum of four scattering mechanisms, as with
the general first-order solution of the radiative transfer equation [3–5], as follows:

σ0
Total = σ0

V + σ0
G + σ0

VG + σ0
GVG. (23)

The first two terms in the right-hand side correspond to the scattering mechanisms of the WCM,
such as the direct backscattering from the vegetation (σ0

V) and the underlying rough surface attenuated
by vegetation (σ0

G). The other two terms are the scattering interaction between the vegetation and the
ground surface, including the vegetation-ground and ground-vegetation double bounces (σ0

VG) and the
ground–vegetation–ground multiple bounce (σ0

GVG). The vegetation scattering and extinction terms in
the vegetation layer were calculated using the first order solution of the radiate transfer equation [3–5].
The Integral Equation Method (IEM) [25] was used for the backscattering from the ground surface.

Figure 11 illustrates an example of the variations of vegetation scattering mechanisms as a function
of the incidence angle at a C-band frequency. In this simulation, the vegetation layer was assumed to
be composed of uniformly distributed needle shaped scatterers (l = 5 cm, t = 0.2 cm; mg = 0.5 gg−1,
N = 3000 m−3, h = 3 m). In addition, the root-mean-square height, the correlation length, and the
volumetric moisture content of the soil surface were 0.5 cm, 5 cm, and 0.3 cm3cm−3, respectively. It is
seen that the relative contribution of elementary scattering mechanisms to the total observed signal
can vary significantly with the radar observation conditions. The ground scattering mechanism is an
important contributor at the low incidence angle, whereas the relative contribution of the volume
scattering component increases as the incidence angle increases. We noticed that there can be a
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significant amount of contribution from the scattering interaction between vegetation and the ground,
particularly at HH-polarization and high incidence angle regions.

In addition to the observation condition, each scattering mechanism in the observed signal can be
affected by the environmental condition of the scatterer, such as vegetation structures and the amount
of water content. To examine the validity of the WCM, we define the relative contributions of the direct
vegetation, direct ground, and the vegetation-ground interaction terms as

PV =
σ0

V

σ0
Total

, PG =
σ0

G

σ0
Total

, and PD =
σ0

VG + σ0
GVG

σ0
Total

. (24)

1 
 

 

 

 

 

 

 

Figure 11. An example of the variations of backscattering coefficients for the four different scattering
mechanisms at (a) HH- and (b) VV-polarizations as a function of the incidence angle.

Figure 12 shows variations of the relative contributions as a function of the VWC under different
particle orientation distributions. These simulations were carried out at a C-band for different vegetation
parameters, as listed in Table 1. The contribution PD indicates the implausibility of the WCM assumption.
It remains low in the case of the uniform volume layer. However, the scattering contribution of
vegetation-ground interaction increases significantly with an increase of the VWC in the case of the
oriented volume. In comparing HH- and VV-polarizations, the HH-polarized signal can contain more
vegetation-ground interaction components, as it can be anticipated from the analysis on the B2,HH

coefficient in Section 3.2.
The relative contribution of the vegetation-ground interaction component can lead to an erroneous

result of the WCM based prediction of the total backscattered signal. To further examine possible
problems in the backscatter prediction of the WCM model, we define the prediction error as the difference
between σ0

Total and σ0
WCM = σ0

V + σ0
G, such as e = σ0

Total − σ
0
WCM. Figure 13 shows the prediction

errors as a function of VWC for different orientation distributions. In the case of HH-polarization,
the prediction error can be up to about 6dB for the oriented volume, whereas it is less than about
1.5 dB for the random volume. The WCM based prediction error in VV-polarization can reach up to
about 3 dB in the case of oriented volume. It is worth noting that, in practice, estimation of the WCM
vegetation parameters and soil moisture contents are carried out based on observed signals, which
contain various scattering mechanisms. Consequently, prediction errors of the WCM model for the
observed signals, particularly in the case of the vegetation with preferred orientation distribution and
a high VWC level, may lead to overestimation of vegetation parameters.
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the WCM estimation at (a) HH- and (b) VV-polarizations, as a function of the incidence angle.

5. Conclusions

In this study, a comprehensive theoretical analysis of the vegetation parameters in the WCM is
presented by examining the relationship between WCM vegetation parameters and the theoretical
scattering model predictions. The advantage of implementing the WCM is in being able to express
complex scattering characteristics a in vegetated area with simple bulk vegetation descriptors. However,
there has been a lack of understanding or consensus about the optimal set of vegetation descriptors
denoted by V1 and V2 variables in the WCM. By comparing the theoretical scattering and attenuation
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coefficients with several vegetation descriptors, the mg and VWC are selected as the optimal vegetation
descriptors for V1 and V2 in the WCM, respectively.

Results show the linear relationship between the VWC and the theoretical model predictions,
regardless of the scatterers’ and radar observation conditions. The regression coefficient denoted by
B2,pq in the WCM varies with observation conditions, as well as vegetation structure. A vegetation
canopy composed of disk shaped particles is described by higher B2,pq than the needle shaped particles.
In the case of oriented volume, like horizontal disks or vertical needles, the difference of the B2,pq

coefficients between HH- and VV-polarization becomes significant.
On the other hand, there is the power law relationship between the mg and the theoretical model

predictions. Two regression parameters defining the power law relationship, denoted by the A2,pq and
Epq, are also investigated in relation to the various environmental conditions. The A2,pq parameter
varies significantly by the particle shape, size, and orientation. Higher A2,pq values can be expected

in the volume composed of randomly distributed large particles. An interesting part of the A2,pqm
Epq
g

term in the WCM is that the form of the power law relationship is also affected by the environmental
conditions. It can be a nearly quadratic form in the case of random volume, while the exponent tends
to decrease in the oriented volume.

These results provide an insight in the microwave scattering and attenuation process in the
vegetation and will be helpful to predict and to interpret the SAR signal in the vegetated areas.
Nonetheless, due to the significant variabilities of model parameters, it is still difficult to use the WCM
for inversion schemes without in situ experimental data. The relationship between the model constants
A2,pq, Epq, and B2,pq of the WCM and the vegetation structures suggest the possibility of narrowing
down variabilities with the use of prior knowledge of the land-cover where the vegetation layer may
have a preferred shape, size, and orientation distribution. Consequently, further evaluation of the
inversion of the WCM model will be carried out in future research with the aid of other independent
data, such as the optical and multi-frequency SAR data.
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