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Abstract: Measurement campaigns in wind energy research are becoming increasingly complex,
which has exacerbated the difficulty of taking optimal measurements using light detection and
ranging (LiDAR) systems. Compromises between spatial and temporal resolutions are always
necessary in the study of heterogeneous flows, like wind turbine wakes. Below, we develop a method
for space-time conversion that acts as a temporal fluid-dynamic interpolation without incurring the
immense computing costs of a 4D flow solver. We tested this space-time conversion with synthetic
LiDAR data extracted from a large-eddy-simulation (LES) of a neutrally stable single-turbine wake
field. The data was synthesised with a numerical LiDAR simulator. Then, we performed a parametric
study of 11 different scanning velocities. We found that temporal error dominates the mapping
error at low scanning speeds and that spatial error becomes dominant at fast scanning speeds.
Our space-time conversion method increases the temporal resolution of the LiDAR data by a factor
2.4 to 40 to correct the scan-containing temporal shift and to synchronise the scan with the time
code of the LES data. The mean-value error of the test case is reduced to a minimum relative error
of 0.13% and the standard-deviation error is reduced to a minimum of 0.6% when the optimal
scanning velocity is used. When working with the original unprocessed LiDAR measurements,
the space-time-conversion yielded a maximal error reduction of 69% in the mean value and 58% in
the standard deviation with the parameters identified with our analysis.
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1. Introduction

The arrangement of wind turbines into dense and efficient clusters is a central challenge in the
design of wind farms. The detrimental effect of wake shading decreases energy yield and increases
dynamic loads [1,2]. These additional loads lead to increased fatigue on the turbine components,
increasing the likelihood of failure and early maintenance [3,4]. This additional and unexpected
maintenance will deteriorate the economic and energy efficiency of the wind farm [5].

Wake models were developed early in the history of wind-turbine design to account for the loss of
yield, wake-induced loads, and to aid in the design of wind turbines. Since single-point measurements
are limited to cup anemometers mounted on the turbines themselves or on meteorological masts,
reference and validation data can usually only be applied in the form of time averages [6–8].

Since wakes have highly dynamic behaviour, dynamic wake models have been developed
for the sake of simulating how the wake meanders over time, to generate more realistic inflow
conditions for load calculations in the design phase or for wind farm control. The dynamic wake
meandering model (DWM) of Larsen et al. [9], which is unique in its method for simulating meandering
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behaviour, has been updated and adjusted to ease comparisons with measured data [10,11]. However,
in Larsen et al. [10] and Churchfield et al. [11], a previously reported simulation of wake meandering
from Larsen et al. [9] was used. Keck et al. [12] introduced a stochastic approach that considers
meandering as it is related to atmospheric stability. Validation of these dynamic wake models requires
wind velocity data collected with high spatial and temporal resolution, either from suitably recorded
measurements or from high-fidelity computational fluid dynamics (CFD) simulations.

One of the most promising measuring devices for understanding wakes in free-field conditions is
wind-speed Doppler light detection and ranging (LiDAR). LiDARs are configured as continuous-wave
(CW) devices for short distances (<200 m) [13] or as pulsed systems for longer distances (<6000 m) [14].
Though LiDAR is commonly used for free-field measurements, Van Dooren et al. [15] took LiDAR
measurements in a wind tunnel under controlled conditions in order to investigate wake behaviour
using a synchronised dual-short-range LiDAR setup. Van Dooren et al. [15] captured two-dimensional
(2D) flow situations of a model wind farm with three turbines in the range of 20 s per horizontal scan.
Bartl et al. [16] investigated how selected yaw misalignments affected wake properties by varying
the inflow turbulence and shear in a wind tunnel. In experimental and numerical tests, atmospheric
conditions are not trivial to reconstruct, especially the recreation of fluctuations of length scales larger
than the turbine. Thus, CFD and wind-tunnel tests cannot replace measurements of a full-scale system
in the full field, but instead extend the range of research possibilities.

Due to the measurement principle used, some limitations apply when using a single long-range
LiDAR setup for full-scale wake measurements. In Section 2, we discuss the constraints due to the
one-dimensionality of the measurements, which include the complications in volume averaging due to
the laser pulse. We also discuss how all the scanning measurements must strike a compromise between
spatial and temporal resolution. These restrictions apply to both CW and pulsed LiDAR systems.

A significant advantage of short-range CW systems over long-range systems is their high
measurement frequency, which allows temporal processes to be captured on a shorter time scale.
In contrast, pulsed devices can take measurements at multiple quasi-instantaneous positions along
the laser beam at long range. This spatial distribution allows the flow pattern of one or many wind
turbines to be mapped within one scan.

Depending on the scan-repetition time and the maximum measurement range, characteristic air
parcels can be analysed in the form of flow structures at multiple times at different positions with
successive scans. Thus, the advection speed of the parcels can be determined and conclusions about
their behaviour can be drawn [17]. The reasonableness of the reconstruction must be considered
for each application. Resource assessment places more emphasis on time-interval-based values,
like 10-min average wind speed and the ambient turbulence intensity [18], than on more fine-grained
high-resolution flow dynamics. The numerical and temporal resources required to reconstruct
high-resolution flow dynamics are inconsistent with the resulting benefits. In contrast, high-resolution
time series are required for the characterisation and validation of models of wake meandering.
Larsen et al. [9], Bingöl et al. [19], and Trujillo et al. [20] used LiDAR-based wake wind-speed time
series with moderate sampling frequencies, between 0.04 Hz and 0.06 Hz, in order to compare the
wake deficit position with wake meander model predictions from the DWM [9].

However, when analysing wake measurements recorded with LiDAR systems, especially in
connection with other measurements, high-resolution multidimensional wake measurement data
is helpful for the sake of synchronisation and correlation with data about atmospheric or turbine
conditions’ information, like stability indicators, wind shear, wind veer, turbine thrust, and turbine
loads, measured at specific moments in time [21]. As measurement campaigns tend to become more
and more complex to allow detailed analysis of flow situations [21], the limitations of long-range
LiDAR systems need to be understood in detail. Specifically, researchers need to know how planar
measurement results can be used as time series in addition to the standard mode of statistical averages.
To the same end, data-processing methods that can overcome the limitations of individual measurement
systems with sufficient accuracy must be improved.
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The first objective of this paper is to produce synchronised temporal and spatial high-resolution
up-sampled flow data. The secondary objective is to facilitate comparison of this flow data with LES
reference data. This comparison requires that the dynamics of planar full-field wake measurements
are compatible with data from wind-tunnel experiments or CFD simulations. Further, this full-scale
measurement data can be used directly for the evaluation of temporally variable flow structures or
dynamic wake models.

To this end, Section 2 reports our parametric study of the measurement frequency of numerically
simulated LiDAR data from an LES wake flow field, to understand how the measurement parameters
influence the mapping quality. In Section 3, we present a method for temporal fluid-dynamics
interpolation based on space-time conversion, which improves the temporal resolution of long-range
planar LiDAR data to a sub-measurement-time scale. With this improvement in the temporal resolution,
the time shift within a scan can be corrected, and we can mutually synchronise distinct measurements
independent of their sampling time or temporal resolution. In Section 4, we show how the mapping
error of horizontal and vertical nacelle-mounted wake measurements shifts from a spatial to a temporal
nature as the measurement frequency changes. This analysis addresses how the representation of the
mean value and standard deviation is affected by retrospectively increasing the temporal resolution
of planar long-range LiDAR measurements. The effects of propagation and implied restrictions are
discussed in Section 5 and conclusions are drawn in Section 6. While the paper focuses mostly on
the presentation of horizontal measurements, appendices include detailed figures that show the
corresponding results for vertical measurements. The effects of temporal up-sampling of LiDAR scans
with different angular velocities are detailed in supplementary online video material.

2. Planar LiDAR Data

LiDAR systems are subject to limitations inherent to their principle of operation. Single systems
can only measure the so-called line-of-sight (LOS) velocity along the direction of the laser beam, which
is calculated from the light backscattered from aerosols [22].

A major source of inaccuracy is the spatial resolution of LiDAR, which depends mainly on
the pulse length. When using a pulsed laser in commercial devices, the spatial quantisation of the
wind speed in the radial direction is in the range of approximately 30 m [23]. This quantisation
limit leads to volume averaging within an assumed cylindrical probe volume. This characteristic of
LiDAR measurements has already been studied for its effects in turbulence measurement during the
early days of LiDAR wind measurements [23–25]. Depending on the mode of operation, a second
volume-averaging effect can build up in the scanning direction while recording planar measurements.
During free flow, the associated error is relatively small [26]. In strongly turbulent flow situations that
are very inhomogeneous, such as wind-turbine wakes, stronger deviations arise [26]. To understand
the errors in this case, Fuertes and Porté-Agel [27] studied the errors in scanned measurements caused
by heterogeneity in temporally averaged wake measurements.

A further restriction on LiDAR technology, which also applies to all scanning measurements
systems, is that the spatial and temporal resolution of the measurements is in a trade-off relationship.
The slower the selected scan speed, the finer the spatial resolution and the longer the scan-repetition
time. Within a scan, the velocities measured at each scan angle correspond to different time stamps
within a certain interval. Even though a whole scan may be visualised as a single picture or frame,
such an illustration is not physically based and may be misleading. To avoid this effect, planar LiDAR
data is usually averaged under the assumption that the time shift within a scan is negligible when
compared with the averaging time.

A serious obstacle to using LiDAR for measurements of wind farms lies in the limited temporal
resolution, or rather in the ideal combination of temporal and spatial resolutions that cannot yet be
achieved with LiDAR systems. When using a very slow scanning speed, flow measurements are not
recorded frequently enough to give a sufficient representation of the fluctuating behaviour, which is
why the errors are temporal in nature. When using a very fast scan, the quantisation of the flow is too
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coarse. In this case, small-scale flow structures cannot be mapped with sufficient accuracy, which leads
to errors of a spatial nature. Between these extremes lies an optimal parameter set that can clearly
depict spatial structures and temporal fluctuations in the flow.

A statistical approach can be used to determine the optimal parameters, and will guarantee that
the recorded data is sufficient:

Nm ≥
( z σm

e

)2
, (1)

where Nm is the required number of scans, z is the confidence interval, e is the maximum tolerable
error, and σm is the standard deviation of the measurements [28]. The scan resolution or measurement
frequency can be derived from the number of scans required to provide a statistical estimation of
the mean value. The basic problem here is that the requisite standard deviation (σm) is unknown.
In practice, this value can be calculated from additional measurements taken by instruments, like sonic
or cup anemometers, or it can be estimated from previous LiDAR measurements to select appropriate
LiDAR measurement parameters, like the angular-scan resolution.

The theoretical consideration of an optimal parameter set clarifies that many planar LiDAR
measurements are recorded sub-optimally and may be statistically under-determined. Furthermore,
for continuously optimal measurements, the measurement resolution will need to be adapted
continuously to the variability in the flow. This adaptation requires a re-assessment of the data
analysis and indicates that complex data-processing methods are in need of development.

In this study, we used simulated LiDAR data synthesised with a large-eddy simulation (LES) run
in a LiDAR simulator (Section 2.2) to improve the error evaluation. We performed a parametric study of
the measurement frequency to address the challenge of optimal measurement settings that can be used
in real LiDAR measurement campaigns that may use a broad spectrum of measurement frequencies.
The measurement parameters and trajectories used in these simulations were based on a real LiDAR
measurement campaign of an onshore wind farm near Brusow in northern Germany, recorded in
2015 [21]. In the following, we first discuss real measurement parameters, as they provide a foundation
for the variations that we used to generate LiDAR data from the LES, which are described afterwards.

2.1. Measurement Trajectories

During the measurement campaign, we were fortunately able to position two long-range LiDAR
devices on a single nacelle. At first, the measurement campaign in Brusow was intended for the
improvement of commercial measurements, but instead aimed at a specific investigation of wake
deflections caused by specific yaw misalignments. For this purpose, one device was used for horizontal
plan position indicator (PPI) scans and the other was used for vertical range height indicator (RHI)
scans. This combination of scans forms two unsynchronised perpendicular measurement planes in the
downstream direction, which sliced the wake in horizontal and vertical directions, as illustrated in
Figure 1. The installation of the LiDAR on the nacelle offers the advantage of reducing the measurement
elevation for the horizontal scans relative to that of ground-based scans, and avoiding obstacles when
adjusting the scan orientation to align with the direction of the wind.

Planar trajectories are executed either by fixing the elevation angle of the scanner (θ) and
continuously changing the azimuth angle (φ) (PPI) or by fixing the azimuthal scanner orientation while
varying the elevation angle (RHI). PPI scans are typically executed with a full 360◦ azimuth range,
and RHI scans are typically executed with a full 180◦ elevation range. In the configuration used in the
present study, we performed only sectoral scan patterns, which we refer to as PPI and RHI below for
the sake of readability. Since only sectors were measured, the scanning head requires some reset time
(tr) to return to its initial position. As no previous such measurements or studies about nacelle-based
wake measurements were available, the scanning parameters used in the 2015 measurement campaign
were not chosen specifically for certain atmospheric conditions, but they were instead chosen for their
potential use as universal settings for volumetric nacelle-based wake measurements.
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The structure of the LiDAR devices dictates that the measurement data is given in a spherical
coordinate system that has the typical characteristics of a polar grid, in which the planar point density
decreases as the measurement distance increases. The measurement grid is determined by the radial
measurement points along the laser beam and the accumulation time due to the angular velocity
in relation to the total opening angles, ∆φ and ∆θ. In the measurement trajectories that are actually
executed, the total opening angles are defined symmetrically as:

∆φ = |φ2 − φ1|, (2)

∆θ = |θ2 − θ1|. (3)

Measurement points were set in the radial direction in a range of 50 m to 1150 m at intervals of
7 m. During the measurements, we tested various accumulation times and found that ϑacc = 200 ms
strikes a good compromise between the backscattering intensity and temporal resolution. The initial
configuration for the angular speeds, ωφ and ωθ , was set to 2◦/s, with total opening angles, ∆φ and
∆θ, of 40◦. These settings yielded angular resolutions,Rφ andRθ , of 0.4◦.
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Figure 1. Illustration of cross-measurement trajectories. A horizontal PPI scan is shown in dark blue,
and a vertical RHI scan is shown in pink. The wake volume is indicated in light blue.

2.2. Synthetic LiDAR Data

A large-eddy simulation based on the parallelized large-eddy simulation model (PALM) [29]
and with the actuator line approach (ACL) [30] was used to calculate numerical approximations
of the reference wake flow field behind the National Renewable Energy Lab’s 5-MW model wind
turbine [31] with a rotor diameter (D) of 126 m. We decided to run this LES in an offshore environment
since we did not plan to compare the real LiDAR data directly with the synthetic data. Furthermore,
the simulation of the LiDAR measurement parameters is not affected by the choice between onshore
or offshore conditions. The atmospheric conditions corresponded to a mean wind speed (uo) of 8 m/s
at a hub height of 92 m with an ambient turbulence intensity (I0) of 5.8% at neutral stability. In these
simulations, we used a 10-min time interval for the entire simulation, which therefore has a temporal
resolution of 1 Hz and a spatial resolution of 10 m per grid cell in all three dimensions.

The varied parameter for the parametric analysis was the measurement frequency ( fs) as a
function of the angular velocities, ωφ and ωθ . These parameters are listed in Table 1. Figure 2 shows
that the spatial resolution of the measurement grid of the trajectories has a significant effect. To make
this data comparable to actual LiDAR measurement campaigns, we chose reasonable and realistic
scan durations and extended them to approach the upper physical limits of common commercial
long-range LiDAR devices. We selected a total of 11 different angular velocities for each value of ωφ

and ωθ and applied the accumulation time of ϑacc = 200 ms at the sampling frequencies of 0.024 to
0.417 Hz. The effect on the number of scans for each scan type within a 10-min interval (Nφ and Nθ),
the number of measurement points (npnt) for each scan type, the number of angular measurements
per scan (nφ and nθ), the angular resolution (Rφ and Rθ), the scan duration (Tφ and Tθ), and the
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measurement-time efficiency (ηm), all as a percentage of the total measurement time within a 10-min
interval, are listed in Table 1. The coordinate system and the wind-speed components, as they are used
below, are defined in Figure 1.

Table 1. Simulated LiDAR trajectories of cross-measurements for nr = 180 and T = 600 s.

ωφ,
ωθ

∆φ,
∆θ

Nφ,
Nθ

npnt
nφ,
nθ

Rφ,
Rθ

Tφ

Tθ
fs ηm

1◦/s 40◦ 15 36000 200 0.2◦ 40.0 s 0.024 Hz 97.2 %
2◦/s 40◦ 29 18000 100 0.4◦ 20.0 s 0.047 Hz 94.2 %
3◦/s 40◦ 42 11880 66 0.6◦ 13.3 s 0.068 Hz 91.0 %
4◦/s 40◦ 54 9000 50 0.8◦ 10.0 s 0.089 Hz 89.2 %
5◦/s 40◦ 66 7920 40 1.0◦ 8.0 s 0.011 Hz 86.8 %
6◦/s 40◦ 77 6840 33 1.2◦ 6.7 s 0.127 Hz 84.6 %
8◦/s 40◦ 97 4500 25 1.6◦ 5.0 s 0.161 Hz 80.6 %

12◦/s 40◦ 133 2880 16 2.5◦ 3.3 s 0.221 Hz 73.4 %
19.11◦/s 40◦ 183 1800 10 4.0◦ 2.1 s 0.303 Hz 63.4 %
26.22◦/s 40◦ 221 1260 7 5.7◦ 1.5 s 0.370 Hz 55.8 %
33.33◦/s 40◦ 250 1080 6 6.7◦ 1.2 s 0.417 Hz 50.0 %
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With the simulated measurement trajectories, we aimed to reproduce measurement points that
are comparable to those in the measurement campaign and maintain the radial resolution of 7 m.
The related choices result in an overlap of the pulses emitted by the LiDAR as 81.3% of the probe
volume length of ~60 m. This resulted in the total number of radial ranges (nr) being 180 at the radial
distances of 1 to 1260 m. The point density of the Cartesian LES and the polar LiDAR measurement
grid differ in the χ direction because of the radial spread of the angular measurements, which is
illustrated in Figure 2. Thus, numerical redundancies while interpolating within LES grid cells can
only be prevented with an extremely finely discretised wind field and the necessary numerical and
temporal capacities were not available within the scope of this study. Since the spatial resolution of
the LES with 10 m per grid cell is coarser than the 7-m radial resolution of the LiDAR simulation,
the permanent interpolation of the LES grid onto the LiDAR grid restricts our results to realistic
behaviours. We expect that the standard deviation of the simulated LiDAR measurement will be lower
than that of free-field measurements because of the interpolation from the polar to the Cartesian grid,
but the main cause of this difference in the standard deviation is the much lower accumulation time of
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the LiDAR at ϑacc = 0.2 s compared to the temporal resolution of the LES at 1 Hz. This difference is
critical, so we cannot ensure the absolute transferability of the results presented in Section 4 to real
LiDAR measurements taken from a free field. Nevertheless, our analysis of the standard deviations
gives some indication of trends in the wake behaviour.

However, to give simulated behaviour that is most similar to the full-scale measurements,
we considered the reset time (tr), which is needed by the LiDAR device to restart the trajectory. During
this time, the LiDAR returns to the initial scanner position without recording any measurements.
The repetition time of a scan is, therefore, the sum of the scan time (Tφ) and the reset time (tr). The reset
time (tr) was derived from real LiDAR measurements and was set to tr = 1.2 s for an opening angle
of 40◦. The following equations explain the formal relationship of the PPI and RHI trajectories. For the
sake of brevity, only the PPI case is written out below:

Tφ =
∆φ

ωφ
, (4)

nφ =
Tφ

ϑacc
, (5)

Rφ =
∆φ

nφ
, (6)

Nφ =

⌈
T

Tφ

⌉
, (7)

T = 600 s in the present study.
npnt = nφ·nr, (8)

ηm = 1− tr

Tφ
, (9)

fs =
1

Tφ + tr
, (10)

For the calculation of Nφ and Nθ , we rounded up the scans that began in the 10-min interval,
but did not finish within the interval. This rounding was not applied when determining ηm to visualise
how the measurement time efficiency is changed by the different angular velocities.

We also normalised the coordinate system to the wind turbine rotor diameter (D).
We used the defined measurement trajectories listed in Table 1 when running the LIXIM LiDAR

simulator developed at ForWind by Trabucchi [32], which was used by van Dooren et al. [33] to
calculate velocity data from an LES wind field. In total, 2334 synthetic scans representing 11 different
angular velocities were simulated within the same 10-min interval of the LES. As with the physical
LiDAR measurements, the resulting velocity data are given in radial coordinates.

The limitations and peculiarities of numerically simulated LiDAR measurements have been
investigated before. Stawiarski et al. [34] studied the errors that affect a simulated dual-Doppler
LiDAR system. They found that the error in the determination of the radial velocity consists of
a random error due to measurement inaccuracies caused by the speckle effect and detector noise,
a systematic error due to the frequency shift of the laser, non-linear amplifiers, digitising errors and
non-ideal noise statistics, and direction errors due to the imperfect adjustment of the LiDAR system
and/or scanner movement. Together, these errors cause a projection error, like that described in
Equation (14). Träumner et al. [35] used simulated data to investigate the ability of dual-Doppler
LiDAR systems to estimate turbulence length scales. The use of a LiDAR simulator in the present
study is meant to represent an ideal LiDAR which, apart from volume averaging, does not consider
any other interference, as described by Stawiarski et al. [34]. This ideal simulation emphasises the
peculiarities of the space-time conversion method discussed below.
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Within the LIXIM software, we used the weighted average of the LOS velocity over the sample
volume we considered. To this end, we defined a linear coordinate (s) in the beam direction and
varied its orientation as shown in Figure 2 with different azimuth/elevation angles. The linear
coordinate, s, represents the radial distance from the LiDAR to the measurement point. The range gate
length corresponding to the spatial extension (∆p = 36 m) and the Gaussian-formed laser pulse with
intensity, Ip, characterised by a full-width at half-maximum (∆r) of 30 m [36] were used to calculate
the LOS velocity:

Ip(s) =
1√
π∆r

e(−
s2

∆r2 ). (11)

The estimated LOS velocity is therefore:

υ̂LOS(s) =
1

∆p

∫ +∆p/2

−∆p/2
υp(s)ds, (12)

where:

υp(s) =
∫ +kp

∆r
2

−kp
∆r
2

υr′
(
s′ − s

)
I
(
s′ − s

)
ds′, (13)

with I = Ip(s)∫ +∞
−∞ Ip(s)ds

and kp = 2.56.

We are aware that the pulse intensity of a real LiDAR differs from the Gaussian representation
in Equation (11), but Frehlich used a similar Gaussian distribution [24]. Stawiarski et al. [34] and
Träumner et al. [35] used a similar weighting function. In other studies, the pulse shape was modelled
with other approaches. Mann et al. [37] used an axisymmetric function that, according to Lindöw [38],
reasonably approximates the distribution of the pulses emitted by the WindCube LiDAR system.
Fuertes et al. [39] built on Mann et al. [37] for the pulse-weighting of a single LiDAR, but they used a
3D Gaussian function to evaluate three synchronised LiDAR measurements.

The choice of the laser pulse function directly affects the calculation of the LOS velocity. As can
be deduced from Equation (11), the radial velocity component is a weighted average of the pulse
geometry. This averaging in the beam direction affects the resulting velocity, as it is affected by the
velocity shear within the pulse geometry. In a wind field with constant laminar wind speed, volume
averaging would have no effect. The stronger and faster the velocity shear within the probe volume,
however, the greater the error in the accumulated speed. This influences the representation of the mean
value and the standard deviation, which will thereby be under-estimated in relation to the reference.
Depending on the pulse shape that is assumed, volume averaging will have different effects.

As we used it, LIXIM was only able to calculate the spatial average in the radial direction,
but not in the scanning direction. This provided deeper insight into step-and-stare measurements,
in which the scanner stops and accumulates data for each measurement. This behaviour restricts
the transferability of the resulting parameters to on-the-fly measurements, in which the scanner
continuously accumulates data as it moves. LiDAR measurements are usually taken on-the-fly to
optimise measurement efficiency in terms of the measurement time. To give some insight into the
peculiarities of on-the-fly measurements, we will subsequently introduce a planar average that accounts
for this effect in Section 4.1.1.

3. Method

3.1. Wind-Speed Reconstruction

Since LiDAR provides 1D LOS velocities, we assume that horizontal and vertical wind directions
are constant within the considered time interval (T) of the flow field. Thus, the streamwise wind-speed
component (u) can be constructed relative to an external source of wind direction:
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u =
υ̂LOS

cos(φ′) cos(θ′)
, (14)

where φ′ is the difference between the horizontal wind direction, Φ, and the azimuth angle, φ, and θ′

is the difference between the vertical wind direction, Θ, and the elevation angle, θ, as illustrated in
Figure 3.
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→
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(φ), and the elevation angle, (θ), of (a) a horizontal PPI scan and (b) a vertical RHI scan. The red line
indicates the LiDAR laser beam.

With nacelle-based measurements, we can assume that the wind direction tracking of the turbine
is sufficiently good if no intentional yaw misalignment is present. Within the synthetic data, the lateral
wind-speed component (v) and the vertical component (w) are assumed to average out to zero, though
this assumption does not apply in the near-wake region (χD−1 ≤ 3). Alternatively, the PPI scans
we performed can be used to determine the wind direction at different downstream distances if we
use the horizontal velocity azimuth display (VAD) fitting approach. In other cases, Φ and θ can
be determined with external wind direction instruments, such as vertical profilers using VAD or
Doppler-beam-swing (DBS).

Below, we will calculate the average velocity and its standard deviation in the u direction.
This calculation applies Equation (14) to the time series of LOS velocities of each point within the
measurement area. The resulting statistics do not allow us to reconstruct the exact streamwise
wind-speed component statistics. Even so, the implied assumptions are unavoidable when using
LiDAR data without other external information or reconstructions based on turbulence spectra. We are
aware that our calculation of the standard deviation of the projected wind-speed component (σu) differs
from the standard deviation of the LOS velocities (συ̂LOS) for φ′ 6= 0 and θ′ 6= 0 due to the non-linear
dependence of the standard deviation of the LOS velocities (συ̂LOS) on the standard deviations of the
main wind-speed components (σu, σv, σw). Since the standard deviations of all wind-speed components
in LiDAR measurements (σu, σv, σw) represent unknowns with no additional external measurements,
Equation (14) represents a pragmatic approach for projecting the LOS velocity time series onto the
main wind direction, from which the standard deviation (σu) can be compared with the standard
deviation of the LES (σuLES ).

The LOS velocities were projected scan-wise, and individual scans were interpolated onto a
Cartesian (χ-γ or γ-ζ) coordinate grid using the natural-neighbour interpolation [40].

3.2. Wind-Field Propagation

For most wind speed analyses that aim to give wind speed averages, the recorded scans can be
assumed to be quasi-instantaneous. The time shift within a scan is relatively small when compared
to the total averaging time. In contrast, if certain dynamics will be calculated or derived from the
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wind-speed measurements, a high-resolution time series will be needed. If the measurement frequency
of points within the measurement region is higher, the conclusions about the dynamics will be more
accurate. When analysing scanned wake measurements, special attention must be paid to the temporal
shift within a scan, as this temporal shift means that the scan does not show the flow situation at
one moment, but instead covers a time interval. When scanning cross-wise in the flow direction,
characteristic flow structures are distorted depending on their expansion and flow velocity. If the scan
direction is parallel to the flow direction, flow structures may be distorted or may be imaged several
times in a single scan, depending on the flow dynamics and scan velocity. This effect is relevant when
determining the wake deficit of a wind turbine or when determining the dynamics at the centre of
the wake in the downstream direction. Two aspirations are joined with this effect: (1) Our aim is to
improve on the temporal resolution and (2) to give a temporally realistic representation of the scanned
data. As Section 3.3 will show, the improvement of the temporal resolution improves the physical
realism of the data.

Table 1 shows that planar scans are typically taken over intervals from 1.2 s to 40 s.
The scan-repetition time limits the temporal scale of the data that can be analysed and synchronised
with simultaneously measured data. As mentioned in Section 1, the correlation of flow structures
with atmospheric or turbine-measured data is essential for identifying specific synergies in the
LiDAR measurements.

The approach used in the following space-time conversion is chosen to meet the requirement
that a characteristic flow situation be measured several times in sequence. Depending on the flow
velocity and the measurement range, this limits the region in which wind-field propagation can be
applied. According to the requirement that a flow situation be measured in two or more consecutive
scans, we can use the laws of fluid dynamics to convert the spatial wind velocity information collected
in a scan into temporally expressed information. This general idea has been used in other studies
to interpolate or extrapolate flow situations from measurements or defined states. Schneiders and
Scarano [41] reconstructed instantaneous flow fields from time-resolved volumetric particle tracking
velocimetry (PTV) measurements using multidimensional velocity measurements and their derivatives.
Their vortex-in-cell plus (VIC+) method relies on the calculation of vorticity, which in turn requires
at least 2D velocity information, which cannot be collected with a single LiDAR system. Like the
approach we describe below, Rott et al. [42] used a semi-Lagrangian advection scheme and a stepwise
flow solver to estimate the available power during the curtailment of a wind farm by forecasting the
flow dynamics and aerodynamic interactions between the turbines. Valldecabres et al. [43] applied
the hypothesis of frozen turbulence [44] with local topographic corrections to forecast wind speeds at
specific downstream positions from LiDAR measurements taken over the very-short term.

In this section, we propose a model that describes how the flow evolves between subsequent
scans, which we then apply to achieve continuous closure of planar LiDAR data over time at a specific
downstream position. This approach assumes that the measured air parcels evolve downstream along
with the local streamwise velocity. This implies that the air parcels do not adhere to Taylor’s frozen
turbulence hypothesis that assumes advection with a global mean velocity [44]. Like the approach of
Rott et al. [42], the following approach can be described using a semi-Lagrangian scheme. At each
time step (t), the velocity data on a grid point is interpreted as a parcel of air that is free to move with
its own velocity (u ∈ R) and direction (

→
u ∈ S1 ⊂ R2), with S1

{
(χ, γ) ∈ R2

∣∣∣ √χ2 + γ2 = 1
}

. This can
be understood as an interpretation of Taylor [44] that applies to small spatial and temporal scales.

The advection of each parcel can be approximated in a discretised fashion using the
following equations:

∂u(χ, t)
∂t

= −u(χ, t)·∇u(χ, t), (15)

u(χ, t + ∆t) = u(χ, t)− ∆t·u(χ, t)· δu(χ, t)
δχ

, (16)
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u(χ, t + ∆t) = u(χ, t)− ∆t·u(χ, t)·u(χ, t)− u(χ− ∆χ, t)
∆χ

, (17)

with ∆χ
∆t = u(χ, t) respectively ∆χ = u(χ, t)·∆t. Note that this equation is given in only one dimension

because it is projected on the affine subspace, χ+ λ
→
u ⊂ R2, with λ ∈ R. This representation gives:

u(χ, t + ∆t) = u(χ, t)− (u(χ, t)− u(χ− ∆t·u(χ, t), t)), (18)

u(χ, t + ∆t) = u(χ− ∆t·u(χ, t), t), (19)

where ∆χ is the distance that the given air packet travels in one time step (∆t). If we define χoldχ−
∆t·u·→u as the initial position of the packet on the regular Cartesian grid, Equation (19) shows that,
at the next time step, tnewt + ∆t, each parcel transports its own velocity and direction to its new
location via advection (χ = χold + ∆t·u·→u ). This means that parcels on the regular Cartesian grid are
displaced to an irregular grid. To resolve the new velocity field in the original grid, the velocities in the
intermediate grid are interpolated onto the initial grid using natural-neighbour interpolation [40].

To give an example of this method, we initialise this space-time conversion approach using a
scan from Section 2.2 at tn and iterate it with selected temporal resolutions (∆t) to the time interval of
the subsequent scan (tn+1). Comparing the iterated and interpolated scans at tn+1 with the processed
LiDAR scan at tn+1, the flow structures are subjected to numerical diffusion and smoothed out
by the subsequent interpolation. To minimise the multiplication of errors with multiple iterations,
we applied a mixed propagation approach with the temporal weighted average of forward- and
backward-oriented propagations.

In the backwards-oriented propagation, we initialise the process with a negative time step (−∆t)
that causes the air parcel at tn+1 to propagate backwards in time to tn. The sinusoidal function, wn(t),
is used to calculate the weighted average of forward and backward propagations in order to minimise
numerical diffusion and to guarantee continuous advection with no unphysical gaps.

We are aware that fluid-mechanical mixing processes are irreversible. We assume, however,
that the spatial scale of the mixing process is considerably smaller than the spatial resolution of the
measurements, so irreversibility is not a concern. We define t ∈ {R | tn ≤ t ≤ tn+1} and:

wn(t) =


1, t ≤ mc − mr

2
1+cos

(
π
2 +

π
mr

(
t

tn+1
−mc

))
2 , mc − mr

2 < t < mc +
mr
2

0, mc +
mr
2 ≤ t

(20)

Thus, the weighting function, wn(t), has total width of tn+1 − tn and gives variable results in the
range from t > mc − mr

2 to t < mc +
mr
2 . The variable, mc, serves as the point in time between tn and

tn+1 at which the weighting functions, wn(t), for forward propagation and 1− wn(t) for backwards
propagation are in equilibrium. The variable, mr = 4

5 (tn+1 − tn), represents the centred window
around mc = 2

5 tn + 3
5 tn+1, within which wn(t) can take values between 1 and 0. Outside of mr,

the weighting function is either 1 or 0. The shift in the centre of the weighting function (mc) towards
tn+1 suggests the greater effect of forward propagation compared with the backwards propagation,
which accords with the irreversibility of the mixing processes. The behaviour of the weighting functions
is illustrated in Figure 4. This treatment of wn(t) and the configuration of mr and mc were developed
in an unpublished internal study that we will only outline briefly here.

Different approaches for mixing functions were tested in parametric studies to find the functions
that give the smallest error of mixed propagation in comparison to the mean and standard deviation of
the LES reference wind-speed values. We tested a linear approach, an exponential approach, and the
trigonometric approach that we eventually used. The exponential increase in the error with each
interpolation step was damped the most robustly when using the trigonometric function.
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1− wn(t), for backwards propagation (red).

The definition of wind-field propagation implies that ∆t is the variable that determines the error.
The number of interpolation steps (Πφ, Πθ) between two subsequent scans depends on this interval.
We define the number of propagation steps between two scans as:

Πφ =

∣∣∣∣Tφ + tr

∆t

∣∣∣∣, (21)

with Πφ ∈ N.

3.3. Temporal Correction and Data Synchronisation

Since planar LiDAR measurements are recorded with temporally distributed scans, each scan
maps the evolution of flow over the scanning period. This temporal shift within the scan increases
with longer scan duration, making scanned measurements difficult to compare with measurements
that are presented in instantaneous form. The temporal correction method discussed in this section is
intended to align the temporal shift within a scan so the flow situation at a single moment in time can
be expressed. The refinement of the temporal resolution to scales less than that of the measurement,
as introduced in Section 3.2, lays the foundation for the temporal correction.

The time interval of each scan can be described as Tn = [tn,1, tn,2]{tn,χ ∈ Tn | tn,1 < tn,χ < tn,2},
where tn,1 and tn,2 are the beginning and end of the scan. Since the azimuth angle (φ) and the
elevation angle (θ) are functions of time, they can be expressed as φ(tn,χ) and θ(tn,χ). As the
time gaps between φ(tn,χ) and φ

(
tn+1,χ

)
and between θ(tn,χ) and θ

(
tn+1,χ

)
are closed with discrete

interpolation steps because of the mixed wind-field propagation, 3D natural-neighbour interpolation
can be applied at time t [40]. The first two dimensions represent the scanned measurement area and
the third dimension represents time. Figure 5 illustrates the temporal correction method and the
3D interpolation in 2D form, and the measurement area is represented as the scan angle, φ(t), θ(t),
over time. The propagation steps (light-blue lines) between two consecutive scans (dark-blue lines)
are indicated by their slope, such that the measurement result and the refinement of the temporal
resolution represent the measurement area over a time interval. By choosing the interpolation time
step (∆t) carefully to give an integer number for interpolation (Π), we can exclude the reset time of
the scanner (tr) (green lines), during which no measurements are captured. As shown in Figure 5,
3D interpolation is used to give the values of wind speed over the entire measurement area at the
moment (t) (red line).

When a smaller value of ∆t is chosen, the temporal correction will have finer spatial resolution,
since the spatial coverage is time-dependent. With the application of the temporal correction,
measurements taken over a period of time can be interpolated into the same time and can thereby be
synchronised to a single moment. Next, the RHI and PPI scans are synchronised to match the temporal
resolution of the reference LES wind-field data.
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Figure 5. Temporal alignment of a PPI scan at time t. Dark-blue lines indicate LiDAR measurements,
light-blue lines indicate the propagation steps, green lines indicate the measurement reset time (tr),
and the red line marks the time of interpolation. This example shows Nφ = 11.

The possibility of synchronising time-series data is not entirely novel. Cheynet et al. [45] shifted a
time series of pulsed LiDAR data statically to a certain time using Taylor’s approach [44] to calculate
the data’s coherence. While this approach retains the time-series dynamics, our method instead gives
a new planar time series of data.

Figure 6 shows an example scan with ωφ = 1◦/s, from which the effect of the temporal alignment
can be seen within the planar scans. The first column (Figures 6a and 5d,g) shows the original LiDAR
data measured in the time interval, Tn = [160 s, 200 s]. In the second column (Figures 6b and 5e,h),
we see the temporal improved and corrected wake velocity data at the start of the scan at t = 160 s
(Figure 6b), at the middle at t = 185 s (Figure 6e) and at the end at t = 200 s (Figure 6h). The third
column (Figures 6c and 5f,i) visualises the instantaneous wind-speed deviations of the original LiDAR
scan to the corrected data. While in the original scans, in Figures 6a and 5d,g, the green marked
characteristic wake structures have the same downstream position for the time interval (Tn), it can
be seen in the corrected data in Figures 6b and 5e,h that the positions of the red marked structures
differ clearly from the green markings at individual points in time (t). We chose these three time
points in order to show the effect of temporal alignment using the most common time sampling
types, which set the time stamp either at the beginning of the measurement (Figures 6a and 5c),
at the middle of the scan (Figures 6d and 5f), or at the end of the scan (Figures 6g and 5i). From the
different positions of the green and red markers and with regard to the large wind-speed deviations in
Figures 6c and 5f,i, we emphasise the relevance of the temporal correction again. However, the extent
to which the temporal correction influences the results of the analysis of dynamic processes, like wake
centre tracking or load time-series correlation, was not within the scope of the results in Section 4 and
should be investigated in other studies.
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measurement frequency, since the angular velocities are easier to differentiate in terms of 
typography. We describe the effects of the space-time conversion with different propagation time 
steps (Δ𝑡 ) on the mean wind speed and its standard deviation in Section 4.2. For the sake of 
readability, we do not present detailed results of all the scan velocities we evaluated, instead 
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4.1. Calculation of Synthetic LiDAR Data 

The LiDAR simulation was applied to synthesise a 10-min wake flow field, yielding the 
horizontal and vertical measurements summarised in Table 1. The resulting scanning times limit both 
the spatial and temporal resolution. One can see in these results how the choice of different scanning 

Figure 6. Example of the temporal correction for a time shift with a PPI scan. The first column (a,d,g)
shows the original LiDAR scan in the time interval, Tn = [160 s, 200 s]. The second column (b,e,h)
shows the temporal improved and corrected data at (b) t = 160 s, (e) t = 185 s, and (h) t = 200 s.
The third column (c,f,i) illustrates the instantaneous wind-speed deviations of the data in the first and
second columns. The green circles mark the characteristic wake structure within the original PPI scan.
The red circles indicate the propagated position of the same characteristic wake structure within the
time-aligned data at the defined time points.

4. Results

This section first discusses the results of the synthetic LiDAR data with different angular velocities
(ωφ) in Section 4.1. These results are related to the angular velocity instead of the measurement
frequency, since the angular velocities are easier to differentiate in terms of typography. We describe
the effects of the space-time conversion with different propagation time steps (∆t) on the mean wind
speed and its standard deviation in Section 4.2. For the sake of readability, we do not present detailed
results of all the scan velocities we evaluated, instead illustrating only a selection of the data. We report
all the results related to the RHI measurements in the appendix. We previously normalised all the
wind speeds with a 10-min free-stream average and with the corresponding free-stream wind-speed
profile, so the velocities are dimensionless in our presentation.

4.1. Calculation of Synthetic LiDAR Data

The LiDAR simulation was applied to synthesise a 10-min wake flow field, yielding the horizontal
and vertical measurements summarised in Table 1. The resulting scanning times limit both the spatial
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and temporal resolution. One can see in these results how the choice of different scanning speeds
affects the mapping accuracy of successive LiDAR scans. For error analysis, we evaluated the data at
downstream distances of 4 ≤ χD−1 ≤ 9 to compare this data with the propagated data described in
Section 4.2. The RHI results that correspond to the data in Figures 7 and 8 are presented in Appendix A.
Nevertheless, in this section, we summarised the RHI data in Figure 9b.
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Figure 7. (a–c,g,h) Visualisation of the normalised 10-min averaged wind-speed component (u) of
the original PPI data and (d–f,j,k) the corresponding flow deviations (εu) in comparison to (i) the
normalised 10-min averaged wind-speed component (u) of the LES data.

Slow scan speeds yield fine spatial and coarse temporal resolution and fast scan speeds give
the opposite resolutions. These effects are shown in the visualisation of the 10-min averaged wind
speeds shown in Figure 7 and the distribution of the standard deviations shown in Figure 8. The low
temporal resolution is indicated by the wavy flow structures along the wake in the plot of average
wind speeds in Figures 7a and 6b,d,e and in the standard deviations in Figures 8a and 7b,d,e. These
features arise because the number of scans is not sufficient to form a smooth flow field, as stated in
Equation (1). In contrast, structural artefacts of quantification by the laser beam along the wake can be
seen in Figures 7c and 6f–h,j,k, which indicate that the spatial resolution is lower than the LES averages
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in Figure 7i. The strip-shaped structures in the standard deviation (Figures 8c and 7f–h,j,k) indicate the
limits of the LIXIM LiDAR simulator, which does not reproduce volume-averaging behaviour in the
scanning direction. The quantisation of the measurement area with single beams can be seen in the
reduction of the standard deviation. Since no measurements are recorded between the individual laser
beams, the standard deviation cannot be higher than it is directly on the beams due to the interpolation
from inter-polar coordinates to the Cartesian grid. Thus, we see a transition from good spatial to good
temporal resolution as the angular velocity changes from 1.00◦/s to 33.33◦/s. While the variation
of the angular velocity apparently has a minor influence on the measurement of the structure of the
average wake velocity, the expected under-estimation of the standard deviation caused by volume
averaging and the measurement frequency ( fs) can be seen in the wake region as the angular velocity
(ωφ) increases (Figures 8g and 7h).
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4.1.1. Error Case Discrimination

We determine the deviation from the LES by defining an average velocity error:

εu =
ulidar − uLES

uLES
, (22)

and the standard-deviation error:
εσu =

σlidar − σLES
σLES

, (23)

where Nlidar is the number of velocity points included in the original LiDAR data, while NLES is the
number of corresponding velocity points in the LES data. Note that u is normalised before this step,
so that εu and εσu are dimensionless and are given in percentages.

For a more detailed analysis, we distinguished three regions of errors:

• Error at the centreline in the wake: γD−1 = 0 and ζD−1 = 0.
• Planar wake error: −1 ≤ γD−1 ≤ 1 and −1 ≤ ζD−1 ≤ 1.
• Error in the free stream outside of the wake (opposite the planar wake case).

We introduce these three groups of errors to clarify the added volume-averaging error in the
scanning direction. Since this effect is not reproduced in the LiDAR simulator, we attempted to account
for it by posteriorly averaging the planar error. The aim of this process was not exactly to recreate
the scan-wise volume averaging in the measured data, but instead to reproduce a similar trend. As a
result, the first case, considering data on the centreline, reproduces the step-and-stare measurement
behaviour. The second case, planar wake error, resembles the behaviour of on-the-fly measurements.
The third case considers free-stream error in the measurements of flow outside of the wake.

The plots in Figure 9 show the behaviour of εu and εσu for each of the three types of error,
depending on the scan speeds, ωφ and ωθ . As mentioned above in Section 1, the largest errors occur at
the extremes of very slow and very fast measurements. In general, similar behaviour is seen in all the
errors in the PPI and RHI measurements. The errors are high at the scanning speed of 1◦/s, decrease as
the scan speed increases until the minima are reached, and increase again up to the speed of 33.33◦/s.
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Mean-value error (𝜀 ) and the standard-deviation error (𝜀 ) emerge along the centreline in the 
RHI scans, 𝜁𝐷 = 0. At the scanning speed of 𝜔 = 8°/s, these errors are more scattered than the 
other errors. In addition, the centreline errors in the PPI scans show an unexpectedly low value at the 
scanning speed of 𝜔 = 33.33°/s, which we are unable to explain. The wind-speed data along the 
centreline is clearly affected the least by the change between the polar and Cartesian coordinate 
systems, since the scan geometry and the resulting distribution of angular measurements cover this 
line more consistently than other positions with measurement points. While all errors in the RHI and 
PPI scans decrease along with increasing angular speeds, the ensemble minimum occurs at 
approximately 5°/s. The centreline error increases dramatically after 5°/s. The logarithmic 
representation in these plots makes it difficult to recognise the point symmetry of the error behaviour. 
The PPI error is symmetric around the minimum at 𝜔 = 4°/s and 𝜀  = 0.46 %. The minimum of the 
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Figure 9. Velocity error (εu, blue) and standard-deviation error (εσu , red) of synthetic LiDAR data as
compared against the LES for the planar section (crosses), centreline (circles), and free-flow region
(squares) of (a) PPI scans and (b) RHI scans.

Mean-value error (εu) and the standard-deviation error (εσu ) emerge along the centreline in the
RHI scans, ζD−1 = 0. At the scanning speed of ωθ = 8◦/s, these errors are more scattered than the
other errors. In addition, the centreline errors in the PPI scans show an unexpectedly low value at the
scanning speed of ωφ = 33.33◦/s, which we are unable to explain. The wind-speed data along the
centreline is clearly affected the least by the change between the polar and Cartesian coordinate systems,
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since the scan geometry and the resulting distribution of angular measurements cover this line more
consistently than other positions with measurement points. While all errors in the RHI and PPI scans
decrease along with increasing angular speeds, the ensemble minimum occurs at approximately 5◦/s.
The centreline error increases dramatically after 5◦/s. The logarithmic representation in these plots
makes it difficult to recognise the point symmetry of the error behaviour. The PPI error is symmetric
around the minimum at ωφ = 4◦/s and εu = 0.46 %. The minimum of the standard deviation is found
at ωφ = 5◦/s and εσu = 2.29 %. In the RHI scans, errors of the same magnitude are seen at ωθ = 4◦/s
with εu = 0.31 % and at ωθ = 4◦/s with εσu = 2.78 %.

By averaging all points in the wake, −1 ≤ γD−1 ≤ 1 and −1 ≤ ζD−1 ≤ 1, the representation of
wind speed with the LiDAR measurements is improved. The average wind-speed error (εu) is smaller
than the centreline error in the PPI and RHI scans. However, since the standard-deviation error (εσu ) is
more pronounced than the mean wind-speed error (εu), we conclude that volume averaging of the
LiDAR measurements and the associated time shift within the scans accurately reproduces the mean
wind speed, although the measured values are widely dispersed. In this case, the minimal error of the
standard deviation is εσu = 5.40 % at ωφ = 3◦/s for the PPI scans and εσu = 4.98 % at ωθ = 3◦/s for
the RHI scans. This minimum indicates that the local turbulence intensity averaged over the wake can
be reproduced with an accuracy of ~5 % in absolute terms.

As expected, the free-flow errors for the PPI scan are the lowest of any in our analysis. Since the
RHI scans mainly map the wake due to the scan geometry (Figure 9), free flow could not be defined
exactly. These values are given for completeness, but should not be used for drawing generalised
conclusions. The PPI free-stream error shows similar behaviour to that of the averaged wake errors,
which is likely due to the process of area averaging. The errors are scaled over the scan speeds towards
lower values. The minimum of εu = 0.17% occurs at ωφ = 6◦/s, and the minimum of εσu = 3.68%
occurs at ωφ = 5◦/s, which are comparable to the centreline errors. Since the turbulence intensity
increases considerably compared to the ambient conditions in the high-shear areas of the wakes
(Figure 8i), we deduce that, with lower turbulence intensities, the mapping error is minimal so the
optimal scanning speed is faster. This relationship means that the more a flow fluctuates, measuring
spatial structure becomes more important than measuring temporal changes.

The data corresponding to Figure 9 is listed in Tables A1 and A2 in Appendix B.

4.2. Time-Resolution Improvement

To evaluate the effects of increasing the temporal resolution of the synthetic LiDAR data, we first
propagated the LiDAR scan backwards and forwards using the wind-field propagation method
described in Section 3.2 to obtain a mixed and closed space-time conversion. Then, we compared the
propagated scans with the reference LES wind field. We corrected the scan-containing time error and
synchronised the propagated data with the LES time data. In this subsection, we first discuss the effect
of the propagation on the temporally averaged values, like the mean value and the standard deviation,
before we address the dynamic behaviour. The following results are based on the averages of the
optimal time steps achieved in Section 4.3. For the results herein, we used Πφ = 16 as the number of
interpolation steps for the PPI data and Πφ = 14 for the RHI data. The influence of Πφ,θ is discussed
in Section 4.3. We present all the RHI-related results in Appendix C.

Figure 10 illustrates the averaged wind speed (u) of the propagated PPI data, which are analogous
to the original PPI data shown in Figure 7. As with the original LiDAR scan discussed in Section 4.1,
no significant differences in the mean wind speeds of the wake appear. When considering the
differences from the LES data (Figures 10d and 11f,j,k, Figures 1d–f and 12j,k), the same deviation
structures occur independently of the angular velocity, even though the structures become coarser
because of angular quantisation at faster sampling rates. Compared with Figures 8a and 7b,d,e,
in which individual flow artefacts that are caused by the very low number of samples appear,
the artefacts in the propagated data in Figures 10a and 11b,d,e are smoothed into the flow direction and
are much more like the LES reference data. With propagation and synchronisation with the LES time



Remote Sens. 2019, 11, 867 19 of 30

steps, the number of scans is increased by a factor of 2.4 to 40 within the 10-min time period. Depending
on the scanning speed, the structural representation of the flow field is significantly improved.Remote Sens. 2019, 11, x; FOR PEER REVIEW 19 of 31 
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Figure 10. Visualisation of the normalised 10-min averaged wind-speed component (u) of the
propagated PPI data and (d–f,j,k) the corresponding flow deviations (εu) in comparison to (i) the
normalised 10-min averaged wind-speed component (u) of the LES data.

For the angular velocities, ωφ = 1◦/s and ωφ = 5◦/s (Figures 10a and 11b,d,e), propagation
artefacts are clearly visible at the extremes of the measurement domain around χD−1 = 10. In those
cases, the interpolation time (Tφ) and the propagation domain create a mixture of wind speeds with
boundary conditions in combination with the mean flow velocity, and this blending manifests as a
reduction of wind speed. These artefacts can also be seen in the visualisation of the standard deviation
of the wind speed shown in Figures 1a and 12b,d,e, which are no longer detectable if ωφ > 5◦/s.

The effect of the quantisation of the measurement area by individual angular measurements,
which is also remarked upon in Sections 4.1 and 4.3, is not compensated for by wind-field propagation
and is still visible if ωφ ≥ 8◦/s (Figures 1c and 12f–h,j,k).
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To address the dynamic effects of wind-field propagation and to reveal a holistic understanding 
of the dynamic behaviour, the reader should refer to the supplementary information of video S1 for 
horizontal slices and video S2 for vertical slices. Videos S1 and S2 show the main wind-speed 
components (𝑢) of the propagated LiDAR data and deviations from the LES reference for different 

Figure 11. Visualisation of the normalised 10-min standard deviation (σu) of the wind-speed component
(u) of the propagated PPI data and (d–f,j,k) the corresponding deviations (εσu ) in comparison to (i) the
normalised 10-min standard deviation of the wind-speed component (u) of the LES data.

To address the dynamic effects of wind-field propagation and to reveal a holistic understanding
of the dynamic behaviour, the reader should refer to the supplementary information of video S1
for horizontal slices and video S2 for vertical slices. Videos S1 and S2 show the main wind-speed
components (u) of the propagated LiDAR data and deviations from the LES reference for different
angular velocities, which are analogous to the data in Figure 7. As the angular velocity increases,
flow structures are represented with decreasing accuracy because of the decreasing point density of
the polar grid. Artefacts due to inconsistent advection velocities during the propagation between two
scans can be detected in the errors (εu) oriented in the flow direction. These artefacts are most evident
at the midpoint between two laser-beam passes (red line) and below the laser beam. In addition,
the effect of mixing the boundary conditions with the measured wind speeds appears below the
laser beam.

Because of the interpolation method visualised in Figure 5, the instantaneous wind-speed error
(εu =

upropagated−uLES
uLES

) is lowest around the position of the moving laser beam, since the wind speed



Remote Sens. 2019, 11, 867 21 of 30

in this region corresponds to the un-propagated LiDAR data. The resulting error in the immediate
surroundings of the laser beam indicates the volume-averaging error in the beam direction.

Remote Sens. 2019, 11, x; FOR PEER REVIEW 21 of 31 

 

angular velocities, which are analogous to the data in Figure 7. As the angular velocity increases, flow 
structures are represented with decreasing accuracy because of the decreasing point density of the 
polar grid. Artefacts due to inconsistent advection velocities during the propagation between two 
scans can be detected in the errors (𝜀 ) oriented in the flow direction. These artefacts are most evident 
at the midpoint between two laser-beam passes (red line) and below the laser beam. In addition, the 
effect of mixing the boundary conditions with the measured wind speeds appears below the laser 
beam. 

Because of the interpolation method visualised in Figure 5, the instantaneous wind-speed error 
(𝜀 = ) is lowest around the position of the moving laser beam, since the wind speed 

in this region corresponds to the un-propagated LiDAR data. The resulting error in the immediate 
surroundings of the laser beam indicates the volume-averaging error in the beam direction. 

       Wake region        Wake centreline    Free flow  

 
     (a)      (b)      (c)  

 
     (d)      (e)      (f)  

Figure 12. Effect of different numbers of interpolation steps, Π , on the error of (a–c) the average 
wind speed, 𝜀 , and (d–f) the error of the standard deviation, 𝜀  , for (a,d) the wake in the range of −1 ≤ 𝛾𝐷 ≤ 1, (b,e) along the centreline, 𝛾𝐷 = 0, and (c,f) in free flow of the propagated PPI 
scans. 

4.3 Influence of the Interpolation Time Step, ∆𝑡, on the Statistical Error 

As we discussed in Section 3.3, the number of propagation steps (Π) between two measured 
scans influences the temporal accuracy of the mapping of a scan interpolated at a certain time (t). If Π is too low, the temporal changes in the flow structures are not resolved sufficiently, which increases 
the temporal error. Since our interpolation method employs a simplistic approach to represent fluid 
dynamics, the propagation will make the representation diverge somewhat from a realistic physical 
picture of the flow field. As more steps are interpolated between two scans, the temporal aspect of 
the reproduction of the flow between each scan will improve. At the same time, the reconstruction 
error will increase. Since some inaccuracy will arise in the speed of advection between pairs of scans, 
the position of the flow structures will be shifted somewhat. To investigate the effects of different 
interpolation steps (Δ𝑡) and to determine the parameter configuration that has the lowest statistical 
errors, we have evaluated different values of Π for each scanning speed, 𝜔 , . The corresponding 
results for RHI scans are presented in Appendix D. 
  

Figure 12. Effect of different numbers of interpolation steps, Πφ, on the error of (a–c) the average
wind speed, εu, and (d–f) the error of the standard deviation, εσu , for (a,d) the wake in the range
of −1 ≤ γD−1 ≤ 1, (b,e) along the centreline, γD−1 = 0, and (c,f) in free flow of the propagated
PPI scans.

4.3. Influence of the Interpolation Time Step, ∆t, on the Statistical Error

As we discussed in Section 3.3, the number of propagation steps (Π) between two measured
scans influences the temporal accuracy of the mapping of a scan interpolated at a certain time (t). If Π
is too low, the temporal changes in the flow structures are not resolved sufficiently, which increases
the temporal error. Since our interpolation method employs a simplistic approach to represent fluid
dynamics, the propagation will make the representation diverge somewhat from a realistic physical
picture of the flow field. As more steps are interpolated between two scans, the temporal aspect of
the reproduction of the flow between each scan will improve. At the same time, the reconstruction
error will increase. Since some inaccuracy will arise in the speed of advection between pairs of scans,
the position of the flow structures will be shifted somewhat. To investigate the effects of different
interpolation steps (∆t) and to determine the parameter configuration that has the lowest statistical
errors, we have evaluated different values of Π for each scanning speed, ωφ,θ. The corresponding
results for RHI scans are presented in Appendix D.

Applying the definition of the averaged error (εu) in Equation (2) and the standard-deviation error,
εσu , in Equation (3) to the temporally improved wind fields with different combinations of ωφ and Πφ

(respectively, ωθ and Πθ), Figure 2 shows the resulting three error cases that were reduced above:

• Inside the wake for −1 ≤ γD−1 ≤ 1 and −1 ≤ ζD−1 ≤ 1.
• Along the centreline for γD−1 = 0 and ζD−1 = 0.
• In the free flow.

The errors are shown in colour, and the iso-lines represent the power of the ratio of the error of
the propagated data to the error of the original LiDAR data, ηu =

εu propagated
εulidar

and ησu =
εσu propagated

εσu lidar
.

For the sake of readability, we have listed the configurations that give minimum errors in Table 2.
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Table 2. Combinations of ω and Π that give local minima for different error regions in the PPI and
RHI data.

PPI RHI
Wake Region Wake Centreline Free Flow Wake Region Wake Centreline Free Flow

ω 5◦/s 5◦/s 5◦/s 5◦/s 5◦/s 3◦/s
Π 16 18 9 14 16 7
εu 0.24% 0.15% 0.14% 0.20% 0.13% 0.40%
ω 4◦/s 5◦/s 4◦/s 4◦/s 5◦/s 3◦/s
Π 33 21 16 33 26 13
εσu 2.89% 0.60% 3.02% 2.79% 1.61% 4.53%

The results in Figure 12 show that an optimal interpolation time step exists for each angular
velocity. If we compare these results with those in Figure 9, we see that a single optimal angular
velocity yields the smallest mapping errors for a set of wake speed and atmospheric conditions.
The resulting ηu and ησu are plotted as iso-lines in Figure 2 to show which value of Πφ most improves
the temporal resolution and minimises the absolute error. These values show the exponent of the
decimal expression of ηu and ησu . The zero line is a significant feature as it indicates the boundary at
which the combination of ωφ and Πφ shifts from reducing to amplifying the mapping error. In all three
regions, both the average wind-speed error and standard-deviation error are reduced over the entire
range of angular velocities. The most significant improvements are achieved at scanning speeds slower
than the optimum, but they do not reflect the absolute smallest error. The results in Figure 2 show that
for the test case we considered, the error is reduced to the minimum of ηu = 30.5% of the original εu
and to ησu = 42% of the original εσu . The most significant improvements are outlined in Table 3.

Table 3. Combinations of ω and Π that optimize ηu and ησu for different cases of PPI and RHI data.

PPI RHI
Wake Region Wake Centreline Free Flow Wake Region Wake Centreline Free Flow

ω 1◦/s 2◦/s 2◦/s 1◦/s 1◦/s 1◦/s
Π 16 21 13 13 16 8
ηu 35.5% 31.0% 36.9% 30.5% 31.2% 46.5%
ω 1◦/s 1◦/s 1◦/s 1◦/s 1◦/s 1◦/s
Π 33 42 37 67 60 26
ησu 42.8% 43.6% 45.6% 43.9% 42.0% 60.5%

5. Discussion

Scanning LiDAR measurements must strike a compromise between temporal and spatial
resolution. Since full-field measurements are usually very expensive, the scan parameters are usually
chosen to minimize the scanning time. The greatest obstacle to the choice of effective scanning
parameters is the limited availability of adequate validation measurements, so we used synthetic
LiDAR data to verify the validity of parameter choices. This synthetic dataset raises questions about
transferability and the extent to which the combination of a synthetic wind field and a LiDAR simulator
can represent realistic characteristics of full-field LiDAR measurements. As discussed in Section 2.2,
the lack of volume averaging in the scanning direction limits the direct transferability of synthetic
data to step-and-stare LiDAR measurements. In most actual cases [21,26,33,43,46–51], scanning
measurements are taken on-the-fly to minimize the scanning time. This tendency implies that during
the angular movement of the scanner head, backscattering is accumulated continuously, so the velocity
measurements are averaged over the traversed volume of air. Real on-the-fly measurements will show
a higher reduction in the standard deviation caused by this additional averaging. Though the data
processing within a LiDAR system can be regarded as a non-linear signal process, we compensated for
the effects of scanning-volume averaging with retrospective averaging. We considered this missing
effect with a separate consideration of the mean and standard-deviation error at the centreline to
representing the on-beam behaviour and planar error.
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Optics and internal signal processing are also not considered in the LiDAR simulator, as described
by Stawiarski et al. [34]. The calculated velocities have the typical device characteristics of
one-dimensionality and beam-wise volume averaging, but no indication of the measurement quality,
which is usually given by the carrier-to-noise ratio (CNR) or signal-to-noise ratio (SNR). In a real
device, the variations in the CNR or SNR and the resulting fluctuations in the wind speed after filtering
tend to reduce the data availability [26], which is also not reproduced in the simulation. The test
case discussed above therefore represents an idealisation of the measurements in every respect, so it
naturally draws attention to the peculiarities of real LiDAR measurements.

The results given above are based on the projection of the LOS velocities in the main wind
direction that was described in Section 3.1. The assumption of homogeneity in the projection affects the
accuracy of the representation of the wind-speed statistics, especially in areas where the assumption
does not apply (in the near-wake region (χD−1 ≤ 3)). Further, the calculation of the standard
deviation from the projected time series of LOS velocities introduces some error due to the non-linear
dependency of the standard deviation of the LOS velocities (συ̂LOS) on the standard deviations of the
main wind-speed components (σu, σv, σw). From Figures 8 and 11, one can see that the error in the
standard deviation from deviations in the measurement angle (φ′ 6= 0 and θ′ 6= 0) in the main flow
direction is marginal compared to the error of the standard deviation due to the spatial and temporal
quantisation. Otherwise, a clear trend in the error versus the measuring angle would be apparent in
Figures 8 and 11. This statement only applies to the present test case since the difference in the angles
of the measurement and the main wind direction (φ′, θ′) are very small because of the nacelle-based
measurement setup. We are aware that the projection error increases with increasing φ′ and θ′, but we
cannot isolate this effect within the scope of this paper. We do assume that this source of error will have
more of an effect if the scanned area is not aligned with the main wind direction, which is confirmed
in Fuertes and Porté-Agel [27] for ground-based measurements.

For these reasons, we cannot claim that transfer to real data will results in the same degree
of improvement in the mapping accuracy. The basis of data with which this study was conducted
is too limited. To consider the general transferability of the propagation method discussed above,
more flow situations with variable atmospheric conditions will need to be investigated analogously.
These could be combined into a database that would give optimal measurement parameters for a
range of atmospheric conditions.

When improving temporal resolution, the space-time conversion proposed above will introduce
some error. The results in Section 4.3 indicate that this numerical error increases along with the
number of interpolations and will produce the minimal mapping error with some combinations of scan
parameters. In the present study, we were not able to determine the extent to which the improvement
in the mapping accuracy is due to the statistical correlation described in Equation (1).

Regardless of the requirement of statistical independence imposed by Equation (1), we saw an
improvement in the mapping quality of the mean values. The improvement in the standard deviation
should be considered more critically and will be analysed again in a future study. A reasonable
approach might consider, first, the ratio of the LiDAR accumulation time to the temporal resolution
of the LES and, second, the nature of the step-and-stare measurement method. Further studies
should evaluate the extent to which improvements to the standard deviation achieved with the
wind-field propagation method satisfy turbulence characteristics, or whether this improvement is
merely coincidental.

6. Conclusions

This paper has presented a space-time conversion method for long-range planar LiDAR data,
which achieves temporal interpolation that reflects reasonable approximations of fluid-dynamic
processes. This method allowed us to retrospectively improve the temporal resolution of successive
scans and to synchronise the scans with measurements collected with different time stamps.
This method corrects for time shifts within a scan by applying a sinusoidal weighted average of
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forward- and backward-propagated wind fields taken from different completed scans, which fills in
the unmeasured flow behaviour. We used synthetic LiDAR data generated by a numerical simulator
and in an LES wind-turbine wake flow field to evaluate the method in terms of the mean wind speed
and standard deviation.

A parametric study of 11 scanning velocities for both PPI and RHI scans was then carried out for
a test case with an ambient wind speed of u0 = 8 m/s and a turbulence intensity of I0 = 5.8 %. Using
a total of 2334 scans, we revealed how the mapping error in the LiDAR measurements is affected by
the angular-scan velocity. This error is temporal in nature at low scanning speeds and shifts to a spatial
error at high scanning speeds. The optimal scanning speed is determined by the turbulence intensity
and the corresponding spatial variability in the wind-turbine wake. Analysis of 11 different scan
velocities showed that, with the careful selection of typical measurement parameters, the compromise
between temporal and spatial resolution is well balanced. In the specific test case we considered,
the optimal measurements are taken with slower scan speeds and higher spatial resolutions. The use
of wind-field propagation increased the volume of synthetic LiDAR data by a factor of 2.4 to 40,
allowing synchronisation with the LES reference data. This synchronization led to an improvement of
the structural mapping, in terms of both the mean wind speed and the standard deviation.

The interpolation method can be used with various configurations of interpolation steps between
two scans, so it can serve as a universal tool for increasing the temporal resolution of planar LiDAR
measurements with a minimal increase in statistical errors. This interpolation is particularly useful for
the analysis and comparison of wake measurements, for which some wake characteristics might be
correlated with data of finer temporal resolution recorded external to the wind turbine, such as load
data. In addition to synchronising the data from complex measurement campaigns taken with various
LiDAR devices and sensors, the possibility of temporal up-sampling allows for easier processing.
In the test case discussed above, the maximum reduction of the error of the mean wind speed was
30.5% and the standard-deviation error was reduced by 42%.

Supplementary Materials: The following videos are available online at https://zenodo.org/record/2635033#
.XK3C0qIRWUk: Video S1: Visualisation of up-sampled horizontal wind-speed data and the wind speed error in
comparison to the LES reference for different angular velocities. The red line indicates the scanning laser beam.
Video S2: Visualisation of up-sampled vertical wind-speed data and the wind speed error in comparison to the
LES reference for different angular velocities. The red line indicates the scanning laser beam.
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Appendix B

In the following, we list the average wind-speed error and the standard-deviation error of the
LiDAR simulator against the LES reference data for different scan speeds, ωφ, of PPI scans in Table A1
and of RHI scans in Table A2.

Table A1. Average wind speed and standard deviation error against the LES of PPI scans for different
angular velocities, ωφ.

1◦/s 2◦/s 3◦/s 4◦/s 5◦/s 6◦/s 8◦/s 12◦/s 19.1◦/s 27.2◦/s 33.3◦/s
wake region −1≤γD−1≤1

ε ¯
u 1.68% 0.72% 0.36% 0.29% 0.31% 0.35% 0.49% 0.99% 1.99% 3.17% 4.21%

εσu 12.61% 5.71% 4.81% 5.00% 5.93% 7.06% 9.43% 14.83% 21.04% 25.63% 27.85%
wake centreline γD−1=0

ε ¯
u 1.71% 0.81% 0.54% 0.46% 0.49% 0.81% 1.54% 2.77% 4.91% 4.27% 0.65%

εσu 9.81% 5.54% 3.59% 2.36% 2.29% 5.23% 11.87% 20.65% 27.09% 20.72% 2.01%
free flow

ε ¯
u 0.77% 0.43% 0.25% 0.19% 0.18% 0.17% 0.18% 0.23% 0.38% 0.74% 1.17%

εσu 11.78% 7.19% 4.91% 3.77% 3.68% 3.90% 5.00% 8.34% 14.22% 18.15% 16.69%

Table A2. Average wind speed and standard deviation error against the LES of RHI scans for different
angular velocities, ωθ .

1◦/s 2◦/s 3◦/s 4◦/s 5◦/s 6◦/s 8◦/s 12◦/s 19.1◦/s 27.2◦/s 33.3◦/s
wake region −1≤ζD−1≤1

ε ¯
u 2.15% 0.76% 0.40% 0.26% 0.31% 0.30% 0.54% 1.04% 2.21% 2.84% 3.59%

εσu 11.87% 6.15% 4.66% 4.96% 5.70% 6.94% 9.24% 12.87% 18.43% 21.02% 29.30%
wake centreline ζD−1=0

ε ¯
u 1.58% 0.73% 0.39% 0.31% 0.32% 0.50% 1.11% 0.56% 4.13% 2.11% 8.20%

εσu 10.28% 5.29% 3.97% 2.78% 2.87% 5.47% 9.37% 7.58% 19.78% 10.00% 28.98%
free flow

ε ¯
u 2.01% 0.72% 0.45% 0.42% 0.51% 0.53% 0.81% 1.44% 2.39% 3.00% 3.58%

εσu 12.02% 6.27% 4.98% 5.51% 6.48% 7.92% 10.60% 14.26% 19.26% 22.48% 30.87%
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propagated RHI data and (d–f) and (j–k) the corresponding flow deviations, εu, from (i) the normalised
10-min averaged wind-speed component, u, of LES data.
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RHI scans.
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