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Abstract: With the warming of the global climate, the mass loss of the Greenland ice sheet is
intensifying, having a profound impact on the rising of the global sea level. Here, we used Gravity
Recovery and Climate Experiment (GRACE) RL06 data to retrieve the time series variations of ice
sheet mass in Greenland from January 2003 to December 2015. Meanwhile, the spatial changes of
ice sheet mass and its relationship with land surface temperature are studied by means of Theil–Sen
median trend analysis, the Mann–Kendall (MK) test, empirical orthogonal function (EOF) analysis,
and wavelet transform analysis. The results showed: (1) in terms of time, we found that the total mass
of ice sheet decreases steadily at a speed of −195 ± 21 Gt/yr and an acceleration of −11 ± 2 Gt/yr2

from 2003 to 2015. This mass loss was relatively stable in the two years after 2012, and then continued
a decreasing trend; (2) in terms of space, the mass loss areas of the Greenland ice sheet mainly
concentrates in the southeastern, southwestern, and northwestern regions, and the southeastern
region mass losses have a maximum rate of more than 27 cm/yr (equivalent water height), while
the northeastern region show a minimum rate of less than 3 cm/yr, showing significant changes
as a whole. In addition, using spatial distribution and the time coefficients of the first two models
obtained by EOF decomposition, ice sheet quality in the southeastern and northwestern regions
of Greenland show different significant changes in different periods from 2003 to 2015, while the
other regions showed relatively stable changes; (3) in terms of driving factors temperature, there
is an anti-phase relationship between ice sheet mass change and land surface temperature by the
mean XWT-based semblance value of −0.34 in a significant oscillation period variation of 12 months.
Meanwhile, XWT-based semblance values have the largest relative change in 2005 and 2012, and the
smallest relative change in 2009 and 2010, indicating that the influence of land surface temperature
on ice sheet mass significantly varies in different years.

Keywords: Greenland ice sheet; GRACE; Theil–Sen median trend analysis; Empirical Orthogonal
function analysis; wavelet transform analysis

1. Introduction

The Greenland ice sheet is the second largest ice sheet in the world after Antarctica, covering an
area of 1.73 million square kilometers, and accounting for 10% of total global ice sheet volume [1].
In recent years, with the development of human civilization, the impact of human activities has
become more pronounced on the mass balance of the Greenland ice sheet, which highlights serious
environmental problems. Its melting rate is much faster than in the previous 20 years, contributing
about 0.5 mm/yr to the current global sea level rise of about 3.2 mm/yr [2]. If this acceleration
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continues, the total sea level rise caused by the melting of the Greenland ice sheet will reach about
9 cm by 2050 [3]. Therefore, the mass change of the Greenland ice sheet is of great significance to the
study of global climate change, sea level change, and related fields; then, it is particularly important to
understand the spatial–temporal distribution characteristics of ice sheet mass changes in Greenland,
and especially its influencing factors.

In March 2002, the Gravity Recovery and Climate Experiment (GRACE) Satellite, launched by the
Center for Space Research (CSR), made it possible to monitor the mass balance of the Greenland ice
sheet. GRACE consists of two polar orbiting satellites. By detecting the distance between them, we can
observe the spatial–temporal variation of the Earth’s gravity field, and then obtain the redistribution of
the Earth’s surface mass [4–9]. In addition, the spatial resolution of the global gravity field is estimated
to be several hundred kilometers and the temporal resolution is one month. At present, GRACE
observational data have been well applied in many application fields, such as monitoring surface
drought events [10–12], groundwater depletion [13–15], total water storage change [16,17], and glacier
melting [18,19]. Among them, in terms of glacier melting, it is helpful to understand the impact on
thermohaline circulation in the Atlantic Ocean. Murray found that the large freshwater input from
the Greenland ice sheet may weaken or destroy the “thermo-salt” cycle of marine saltwater, thereby
seriously altering the climate of the Northern Hemisphere [20]; Yang et al. estimated new heat and salt
flows from the North Atlantic to the Labrador Sea using updated GRACE satellite data, and suggested
that the changes in Labrador Sea Water Density (LSW) might be related to the weakening of the
Atlantic Meridional Overturning Circulation (AMOC) [21]. In addition, it also plays an important role
in the study of the mass change of the Greenland ice sheet.

Some scholars took glacier dynamics into account when they studied the Greenland region,
and compared the differences of glacier sheet quality monitoring with GRACE through the climate
model and ice sheet model simulation. Alexander et al. [22] found that some areas showed significant
differences in peak values times in the annual cycle of mass change on sub-ice-sheet-wide scales,
by GRACE with the simulation model; Schlegel et al. [23] found that hydrological and ice–ocean
interaction processes should be considered in the model with relatively high temporal resolution (from
month to season) to achieve an accurate estimation of Greenland’s mass balance; Xu et al. [24] found
that the approximate mass balance between GRACE and input–output method (IOM) is consistent in
most Greenland Ice Sheet regions, and the difference in the northwest may be due to underestimating
the uncertainty of IOM solutions; Flowers [25] found that about 60% of Greenland’s mass loss in
1991–2015 is attributed to surface mass balance, the net difference between melting and snowfall.
The remaining 40% is attributable to dynamic mass loss or uncompensated ice flowing into the ocean.

However, some scholars did not consider glacier dynamics in the process of ice sheet mass analysis.
They used different institutions and data sources to study the trend and acceleration of mass change
over Greenland’s entire ice sheet over different periods of time. For example, Velicogna et al. [26–28]
earlier used GRACE data to study the mass balance of Greenland ice sheet, which concluded that the
total melting rate of the Greenland ice sheet showed an increasing trend of 248 ± 36 km3/a, and an
acceleration of −30 ± 11 Gt/yr2; Ramilli et al. [29] estimated that the melting rate of the Greenland
ice sheet was −109 ± 9 Gt/a from 2002 to 2005; Slobbe et al. [30] used GRACE post-processing
data to compare Greenland ice sheet mass changes from four different organizations. The results
indicated that the different data sources caused different results; Baur et al. [31] explored the annual
average Greenland ice sheet melting with a rate of 162 ± 11 km3/a through GRACE RL04 data
during 2002–2008; Joodaki et al. [32] found that the mass of the Greenland ice sheet melted at the rate
of −166 ± 20 Gt/a and the acceleration of melting was −32 ± 6 Gt/a by GRACE RL04 data from
2002 to 2011; Lu Fei et al. [33] found that the melting speed and acceleration of the ice sheet were
−157.8 ± 11.3 Gt/a and −17.7 ± 4.5 Gt/a2, respectively, through GRACE RL05 data from 2003 to
2012. In addition, the melting rate significantly increased after 2010, from −132.2 Gt/a in 2003–2009 to
−252.5 Gt/a in 2010–2012; Forsberg et al. [34] concluded that the mass change rate of the Greenland
ice sheet was 265 ± 25 Gt/a, and the correlation coefficient was 0.72 with the global mean sea level
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change. In addition, some scholars studied ice sheet mass trends in different regions of Greenland.
Chen et al. [35,36] reported that the mass change rate of Greenland ice sheet was −239 ± 23 km3/yr
from April 2002 to November 2005. In addition, its decrease rate increased in the northwest and tended
to be balanced in the southeast between 2007 and 2009; Wouter et al. [37] found that the overall mass
change rate of the Greenland ice sheet was −179 ± 25 km3/yr on a smaller scale from February 2003 to
January 2008 and the greatest mass loss occurred in the southeastern coast (279 Gt) and the northwest
coast (328 Gt) in the summer of 2005 and 2007; Zhu Chuandong et al. [38] found that the annual total
melting amount of the Greenland ice sheet was 188 ± 10 km3/a during 2002–2011, and the melting
area mainly concentrated in the southeast and northwest of the ice sheet; Shamshiri et al. [39] used
GRACE RL05 data to conclude that the peak loss of ice mass was −15 cm/yr in the southeast and
northwest of Greenland, and loss acceleration was −2.5 cm/yr2 in the southwest during 2003–2014.

Previous studies not only covered a relatively short period, but also mainly focused on the trend
of time series, so there were few studies on the significant distribution of spatial trends and the driving
factors of ice sheet mass loss. In this paper, we used longer and the latest time series GRACE RL06 data
from January 2003 to December 2015 to invert the mass balance of the Greenland ice sheet, and analyze
the change trend of ice sheet mass in Greenland. Then, the spatial–temporal variations of the Greenland
ice sheet mass were analyzed by using the empirical orthogonal function (EOF) decomposition method.
Finally, the common power, relative phase, and correlation of the time series of the Greenland ice
sheet mass change and land surface temperature were derived by using continuous wavelet transform
(CWT) and cross wavelet transform (XWT) in a time-frequency domain. The research results will help
us to macroscopically understand the relationship between ice sheet mass change and land surface
temperature in Greenland, which is of great significance for understanding global climate change.

2. Study Area and Data

2.1. Study Area

Greenland is the third largest country of North America and the largest non-continental island
in the world [40] (see Figure 1). It lies between longitudes 11◦ and 74◦W, and latitudes 59◦ and 83◦N.
In addition, Greenland is bordered by the Greenland Sea to the east, the Arctic Ocean to the north,
Baffin Bay to the west, and the North Atlantic Ocean to the southeast. Meanwhile, Iceland is located in
the southeast of Greenland in the Atlantic Ocean. Including other offshore minor islands, the total area
of Greenland is 2,166,086 km2 (836,330 sq mi). Among them, the Greenland ice sheet has a volume of
about 2,850,000 km3 (680,000 cu mi) and covers 1,755,637 km2 (677,855 sq mi) (81%) [41].
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2.2. GRACE Data

In this study, we use monthly GRACE data that are processed by the (CSR), University of Texas
in Austin, to investigate Greenland ice sheet mass change. The CSR RL05 Level-2 data products are
available for data spanning from April 2002 through July 2015, and it does not cover the remaining
months of 2015. However, the latest release of GRACE Level-2 RL06 data (http://icgem.gfz-potsdam.
de/grace/Level-2/CSR/RL06) covers the whole study period, and has some advantages in spatial
resolution, accuracy, and periodic variation characteristics compared with RL05 [42,43]. So, we used
CSR RL06 data up to a degree (l) and order (m) 60 in the form of spherical harmonics to study, which
includes 142 monthly datasets from January 2003 to December 2015, and compensated for missing
data with linear interpolation. Then, one can evaluate monthly local changes of the Earth’s surface
mass by using the time-varying gravity spherical harmonic coefficients provided by GRACE [4], with
a time resolution of one month, and spatial resolution of 1◦ × 1◦:

∆σ =
aρave

3

lmax

∑
l=0

l

∑
m=0

2l + 1
1 + kl

(∆Clm · cos(mλ) + ∆Slm · sin(mλ))P̃lm(sin(θ)) (1)

where ∆σ is terrestrial water storage change (surface density variation), a, ρave, θ, λ, kl , ∆Clm, ∆Slm are
the equatorial radius of the Earth (6377 km), mean density of Earth (5517 kg/m3), latitudes, longitudes,
love numbers of degree l with lmax = 60 [44,45], and coefficients changes of the normalized complex
spherical harmonic (Stokes’ coefficients), respectively. Meanwhile, P̃lm(sin(θ)) is the fully normalized
Legendre function of degree l and order m.

In order to eliminate the influence of Earth’s long period and average gravity field, the spherical
harmonic coefficients changes are relative to the mean of the 142 monthly solutions. In data processing,
the Degree 2 coefficients provided by SLR were used to replace C20 terms based on GRACE orbital
solution [46], the degree 1 coefficients provided by Swenson et al. [47] were used to correct the variation
terms of Earth’s center of mass (i.e., S11, C11, and C10). Because GRACE observations cannot separate
the effects of Glacial Isostatic Adjustment (GIA), the GIA model of Geruo et al. [48] was used to deduct
its effects on GRACE observations.

In addition, due to the combined effects of satellite orbit error, ocean–atmosphere model error
and the correlation error of the spherical harmonic coefficient of Earth’s gravity field, there are obvious
north–south “stripes” error and high frequency error [49] in the inversion of surface mass changes
by using Formula (1). Considering the limitation of single filter, this paper used improved P4M6
de-correlation filter to remove north–south “stripes” errors [50], and used a Gaussian filter weight
function with a 250 km radius to smooth the noise of the high-order spherical harmonic coefficient [51].
The calculation model is

∆σ =
aρave

3

lmax

∑
l=0

l

∑
m=0

2l + 1
1 + kl

Wl(∆Clm · cos(mλ) + ∆Slm · sin(mλ))P̃lm(sin(θ)) (2)

Wl = −
2l + 1

b
Wl + Wl−1 (3)

W0 =
1

2π
, W1 =

1
2π

(
1 + e−2b

1− e−2b −
1
b
) (4)

b =
ln(2)

1− cos(r/a)
(5)

where Wl is a Gaussian-averaging kernel function related to order, and r is the Gaussian filter smooth
radius [4].

Finally, we note that the use of spherical harmonic coefficients of a finite order and spatial filtering
leads to ‘leakage’ errors in data processing. However, scale factor 1.95, which was calculated by
Velicogna and Wahr [22] could be used to minimize the combined signal leakage and measurement

http://icgem.gfz-potsdam.de/grace/Level-2/CSR/RL06
http://icgem.gfz-potsdam.de/grace/Level-2/CSR/RL06
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error. In addition, in order to evaluate ice sheet mass changes, surface mass anomalies can be calculated
by integrating over the area of specific, since ∆σ

ρw
is interpreted as the equivalent water height (i.e.,

in mm), in that ρw is the density of water (10 × 103 kg/m3). The ice sheet mass variation ∆m of
Greenland can thus be given as [4]

∆m =
∫

∆σ(θ, λ)τ(θ, λ)dA (6)

dA = (
π

180
)

2
cos(θ)dθdλ (7)

τ(θ, λ) =

1, inside the region

0, outside the region
(8)

where θ, λ, and dA are the latitudes, longitudes, and surface element, respectively. In addition, τ(θ, λ)

is a region smoothing kernel function, which can be used to accurately evaluate the regional variation
of ice sheet mass in Greenland.

2.3. Land Surface Temperature data

GHCN CAMS (Fan et al., 2008) [52] data were downloaded from the website (http://www.esrl.
noaa.gov/psd/data/gridded/tables/.temperature.html) of the National Oceanic and Atmospheric
Administration (NOAA), which is a high resolution (0.5◦ × 0.5◦) analyzed global land surface
temperature (LST) from 1948 to near present. In this study, GHCN CAMS data were used to study the
relationship between ice sheet mass change and land surface temperature in Greenland.

3. Methods

3.1. Theil–Sen Median Trend Analysis

Theil–Sen median trend analysis is a robust non parametric statistical trend calculation method
proposed by Hirsch and Slack [53] and Kumar and Saharia [54], which can reduce the influence of
abnormal values [55]. For example, this method can calculate the slope of equivalent ice sheet mass
from GRACE and temperature changes to analyze trends. The formula is

SV = Median(
Vj−Vi

j−i ) (2003 ≤ i < j ≤ 2015) (9)

where SV , i, and j denote the slopes, and time points, respectively. In addition, Vj and Vi are values at
the points of j and i, respectively. The negative value means a decreasing trend, and the positive value
means an increasing trend [53].

3.2. Mann–Kendall (MK) Trend Test

The nonparametric M–K test is widely used for trend analysis and significance test of
hydrometeorological elements such as rainfall, temperature, and runoff. It has a simple structure,
convenient calculation and is not disturbed by a few abnormal values [56]. Statistic S could be obtained
based on Equations (1) and (2) [57]

S =
n−1

∑
i=1

n

∑
j−i+1

sgn(xj − xi) (10)

sign(xj − xi) =


1, (xj − xi > 0)
0, (xj − xi = 0)
−1, (xj − xi < 0)

(11)

http://www.esrl.noaa.gov/ psd/data/gridded/tables/.temperature.html
http://www.esrl.noaa.gov/ psd/data/gridded/tables/.temperature.html
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where n is the number of data sets, xj and xi are values at jth and ith points, and sign is a sign function.
Then, the M–K statistic, Z, is calculated as

Var(S) =
n(n− 1)(2n + 5)

18
(12)

Z =


(S− 1)/

√
Var(S) (S > 0)

0 (S = 0)

(S + 1)/
√

Var(S) (S < 0)

(13)

Given a significant level of α, when |Z| > Z1−α/2, there is a significant change in the study sequence
at the level of α. The confidence limit was α = 0.05 in this study, which means |Z| > Z1−α/2 = 1.96.

3.3. Rotated EOF Method

Empirical orthogonal function analysis is also called principal component analysis or feature
vector analysis. It can be used to analyze the variance contribution of different components for
extracting the spatial–temporal feature of TWS [58]. The details are

Y = (y1, y2, · · ·, yp) =

 y11 · · · y1p
...

. . .
...

yn1 · · · ynp

 (14)

where n and p denote the number of space point, the time period, respectively. In addition,
the covariance matrix C of time series is obtained and orthogonally decomposed as

C =
1
p

YYT (15)

C = EΛET = (e1, e2, · · ·, ep) =

 λ1 · · · 0
...

. . .
...

0 · · · λn




eT
1

eT
2
...

eT
n

 (16)

where λ1 > λ2 > · · · > λp, the orthogonal decomposition of space domain can be obtained by
calculating the feature vector of YYT, and the EOF value can then be obtained by normalizing the
decomposition. In addition, the principal component Z can be calculated in the time series.

EOF = E ∗ diag(
1√
∑ E2

) (17)

Z = ETY (18)

3.4. Continuous and Cross Wavelet Transform

Firstly, we briefly describe the CWT. The CWT definition of time series (Xn, n = 1, 2, · · · , N) is [59]

WX
n (s) =

√
δt/s

N

∑
n′=1

Xn′ϕ0

[
(n′ − n)

δt
s

]
(19)

where WX
n (s) is the wavelet coefficient, s is the wavelet scale, ϕ0 and δt are the mother wavelet

function and the time scale, respectively, and
√

δt/s and n′ represent the normalization factor and the
reversed time, respectively. The idea of wavelet transform is that the wavelet as a band-pass filter is
applied to time series where the characteristic period of the filter is linearly related to the wavelet scale.
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XWT is a new signal analysis technology that combines cross-spectrum analysis with wavelet
transform, and studies the relationship between two time series from multi-time scales in the
time–frequency domain. Temperature is a well-known trigger for ice sheet melting. Hence, XWT was
used to analyze Greenland ice sheet mass changes and temperature time series, which can reveal the
regions in which two nonlinear time series with a consistent phase relationship with high common
power. The cross wavelet transform of two time series Xn and Yn is given as [60–62]

WXY = WXWY∗ (20)

where WY* denotes a complex conjugation of WY. The cross wavelet power spectrum is defined as
|WXY|, and the complex argument of WXY can be seen as the local relative phase between Xn and
Yn in time–frequency domain. While the larger the |WXY| value, indicating that Xn and Yn have a
common high-energy region, which significantly correlates them with each other. More details about
Cross Wavelet Power Spectrum test and phase difference calculation are given by Grinsted et al. [59]
and are not repeated here.

In analysis, we use the circular mean of the phase and XWT-based semblance to quantify the
phase relationship and correlation between two time series. The circular mean of a set of angles (αi, i =
1, 2, . . . , N) is defined as

am = a tan 2(X, Y) = a tan 2(
1
n

n

∑
i=1

cos(αi),
1
n

n

∑
i=1

sin(αi)) (21)

We can use circular standard deviation s =
√
−2 ln(R/n) (R =

√
X2 + Y2) to qualify the

scatter of angles around the mean. The XWT-based semblance is defined as [63]

ρ = cos(αi) (22)

The range of the ρ value is −1 to 0 to 1, which is expressed as negative correlation, irrelevant
correlation and positive correlation, respectively. Among them, the closer the value of ρ is
to 1, the greater the correlation. In this analysis, we compare the two time series by using
XWT-based semblance.

4. Results and Discussion

4.1. Time Variation Analysis

4.1.1. Time Series and Change Trends

For Greenland, we estimated the total ice sheet mass change for each month. As it is shown in
Figure 2, the time series variation of monthly Greenland ice sheet mass was estimated in Gt. With the
least squares estimate, we fit a linear trend in a mass loss of −268 ± 12 Gt/yr and a quadratic trend
in an acceleration of −11 ± 2 Gt/yr2 in 2003–2015, as was done in most previous studies. We use a
quadratic form to obtain a trend of−195± 21 Gt/yr for the Greenland ice sheet between 2003 and 2015.
The uncertainties of the data results (±12, ±2, and ±21) include contributions from the gravity field
error, signal leakage effects, truncation error, GIA correction, and the statistical uncertainty of the fit.
Mass loss increases with time in a relatively consistent pattern from 2003 to 2012, and a sudden decline
in the time series could be observed in 2012. This was followed by a relatively stable mass loss in the
next two years after 2012, and then continued in a decreasing trend. The above results are basically
consistent with those obtained by researchers using GRACE data in recent years [27,28,33,36,39,64].
However, the time series of the results of this study are longer than those of previous studies, especially
the trend of change in 2015 relative to 2014, and their different values are due to different data sources,
time series, and post-processing methods.
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Figure 2. Monthly mass change of Greenland from January 2003 to December 2015 estimated based on
the GRACE solution of the CSR processing center. The blue line, green line and red curve represent the
mass change of the time series, and the best fitting of linear and quadratic trend, respectively.

Then, we used the adjusted R-squared (R2
Adj) of the data fit to investigate which of the quadratic

or linear models is more suitable for time series fitting. More details about R2
Adj were computed by

Johnson et al. [65] and are not repeated here. Finally, we found that the R2
Adj for the linear model

is 0.9713, which is smaller than the 0.9763 value of the quadratic one. The result agrees with those of
other researchers [27,32,64].

4.1.2. Monthly Mean and Seasonal Change

In order to investigate ice sheet mass of intra-annual variability, we calculate the monthly and
seasonal changes of ice sheet mass in Greenland, respectively, which are shown in Figure 3. Seasonal
changes in the ice sheet mass were averaged from the ice sheet mass in the corresponding months.
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Figure 3. (a) and (b) represented monthly and seasonal changes in the mass of the Greenland ice sheet
from January 2003 to December 2015, respectively.

From Figure 3a, it can be found that positive ice sheet mass change values from GRACE primarily
occurred in the first half of each calendar year, while negative ones existed in the second half of each
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calendar year. The change of ice sheet mass in the whole study area slowly increases between October
and April, but decreases between May and September, indicating that the ice sheet mass starts to
decrease from May and increase from October. This conclusion is consistent with other scholars,
but there are still some differences with regional changes, mainly due to different factors in different
regions [22,23,32].

From Figure 3b, it can be found that the average change of ice sheet mass in the whole study area
is positive in spring and negative in the rest of the year. Meanwhile, we can also see that the mass
of ice sheet decreases from spring to autumn, and then increases from autumn to winter, which is
consistent with monthly ice sheet mass changes.

4.2. Spatial Change Analysis

To further study the change trend of ice sheet mass in Greenland from 2003 to 2015, this paper
used Theil–Sen median trend analysis and the M–K test to analyze the change trend and significant
spatial distribution characteristics of the ice sheet mass (GRACE), and then obtain pixel scale change
trends in the whole study area.

In Greenland, we distinguish Greenland into five regions according to the division principle of
van den Broeke et al. [66]: (1) southeast (SE), which has a high accumulation, a large number of glaciers
at its outlet, a fast speed and a small export; (2) northwest (NW), with highly accumulated and rapidly
moving glaciers; (3) southwest (SW), where most glaciers are terrestrial terminals, with the largest
melting area; (4) north (N), with a small number of low accumulation, large, and slow-moving glaciers;
and (5) northeast (NE), which is similar to N, but glaciers flow through alpine mountains.

Figure 4 shows the spatial distribution of the inter-annual mass loss trend and significance of
the Greenland ice sheet from 2003 to 2015, which showed an increasing trend as a whole. The mass
loss areas of the Greenland ice sheet are mainly concentrated in the southeastern, southwestern,
and northwestern regions, which passed the M–K test of 95% confidence interval. Especially in
southeastern Greenland, the trend of mass loss is the largest, with a significant increase rate greater
than 27 cm/yr (equivalent water height). In addition, although mass loss rate is less than 3 cm/yr in
the northeastern region, it still passes the M–K test of 95% confidence interval, indicating a significant
change trend. The above results are consistent with previous studies on regional trends of ice sheet
mass loss [28,33].
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4.3. EOF Analysis

In order to analyze the spatial distribution characteristics of the mass change of the Greenland ice
sheet, the data of GRACE ice sheet mass change were decomposed by EOF from 2003 to 2015. The first
second PCA modes account for 98.6% and 0.6% of the variance, respectively, whose accumulative
variance is 99.2%; we show the spatial distribution and time-varying characteristics in Figure 5.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 19 
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Figure 5a shows that the overall trend of temporal and spatial variations in Greenland ice
sheet mass. EOF1 increases around the southeastern region of Greenland with strong negative values,
and the whole region shows negative values, with the northeastern region being the smallest negative
value. In terms of time coefficients (i.e., Figure 5c), there is an obvious upward trend from 2003 to 2015,
which indicates that the change of ice mass in southeastern Greenland has had a downward trend in
the past 13 years. Among them, time coefficients change was obviously weakened in 2010 and 2012,
which indicates that the decreasing trend of the ice sheet mass was obvious in 2010 and 2012. At the
same time, by comparing ice sheet mass change curve in Figure 2 and the ice sheet mass spatial change
significant distribution map in Figure 4, we can also find the corresponding rules.

Figure 5b is the second eigenvector and time coefficient (variance contribution value, 0.6%)
derived from the EOF decomposition of GRACE ice sheet mass change in Greenland. As shown in
Figure 5b, the southeastern region of Greenland is strongly negative, while the northwestern region is
strongly positive, and the other regions are not obvious. In terms of time coefficients (i.e., Figure 5d),
there was a significant upward trend from the first half of 2004 to the second half of 2007, and from
the first half of 2010 to the first half of 2011, which indicates that the mass loss of the ice sheet in
southeastern Greenland was increasing while that in northwest Greenland was decreasing. This result
is consistent with that of Lu et al. [33], but the time coefficients from the second half of 2007 to the first
half of 2010 and from 2014 to 2015, significantly decreased, which indicates that the loss of ice sheet
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mass in southeastern Greenland was decreasing while that in northwestern Greenland was increasing.
In addition, the change of ice sheet mass in other regions is relatively stable.

4.4. Relationship between Temperature and Ice Sheet Mass

4.4.1. Spatiotemporal Contrastive Analysis

In a time series, in order to eliminate the influence of ice sheet mass and land surface temperature
changes within a year, the original time series data were averaged from 13 points, and the Greenland
ice sheet mass (GRACE) and land surface temperature change maps were obtained for the study period.
Figure 6 shows that the change of GRACE ice sheet mass is obviously opposite to the change of land
surface temperature, which reflects the correlation between them to a certain extent. Although there
are some differences between them, the main peak–valley characteristics of ice sheet mass changes can
be well identified by land surface temperature changes, and the peak–valley value is 1–2 months earlier
than the ice sheet mass changes. Overall, the land surface temperature changes show a downward
trend (a linear change equation of y= −0.052x + 93) during the study period, which can explain the
decline of ice sheet mass to a certain extent.
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Figure 6. Annual changes of GRACE ice sheet mass and land surface temperature in Greenland from
2003 to 2015.

Compared with Figures 4 and 7, it can be found that the land surface temperature changes from
the southeast to the southwest of Greenland show a significant downward trend, while ice sheet mass
loss is significant. In the northwestern region of Greenland, land surface temperature rise is particularly
obvious, while the trend of ice sheet mass loss is not the most significant change, which is mainly
caused by glacial discharge, temperature, and snow cover [66]. Land surface temperature changes in
the northeastern part of Greenland are not significantly decreasing, and the loss change of the ice sheet
mass also showed a small but significant reduction. In summary, the change of ice sheet mass and
land surface temperature in Greenland are correlated with changes in spatially significant distribution.
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Figure 7. Spatial distribution of annual change trend of GHCN CAMS land surface temperature
in Greenland from 2003 to 2015. Note: Lattice point representation passed the M–K test of 95%
confidence interval.

4.4.2. Wavelet Transform Analysis

In order to study the relationship, continuous wavelet transform (CWT) and XWT were used
to detect a common power and common relative phase between the time series of ice sheet mass
changes and the time series of land surface temperature in Greenland. These wavelet tools can be
used to detect local intermittent periodicity [67]. The National Oceanography Center provided the
MATLAB code we used [68]. The thick, black contour line indicates that the 95% confidence test was
passed, and the thin, black line represents the influence cone (COI), which defines the area not affected
by the edge effect. As shown in Figure 8, the energy distribution of the wavelet power spectrum
of land surface temperature and ice sheet mass changes is generally consistent, and peak value is
mainly concentrated in 10–14 months. In the whole study period, we could see a clear annual cycle,
the 12-month spectral energy passed the 95% confidence test, and the shape of the significant band of
the wavelet power spectrum in this frequency band is very similar. Results show that the change of
land surface temperature and ice sheet mass has a significant 12-month oscillation period.
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Figure 8. Continuous wavelet transform with average mass and land surface temperature represented
by (a) and (b) from 2003 to 2015.

Similarly, the cross-wavelet power spectrum of land surface temperature and ice sheet mass
changes in Greenland could easily be calculated (Figure 9). The arrow direction reflects the relative
phase relationship [36] in Figure 9 (with anti-phase pointing left, in-phase pointing right, ice sheet mass
changes leading land surface temperature changes by 90◦, pointing straight down, and land surface
temperature changes leading ice sheet mass changes by 90◦, pointing straight up). From Figure 9,
the red high-energy region shows that the common power of the two time series was higher for
10–14 months. Since the annual period of 12 month was dominant in the whole observation period,
this study mainly focused on the relative phase angles in the 12 month period band, and its average
phase angle is −110◦ ± 6◦ (6◦denotes circular standard deviation).
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Figure 9. Cross wavelet transform of ice sheet mass and land surface temperature fluctuations. Arrows
indicate relative phase relations, where straight-up arrows represent ice sheet changes, and land surface
temperature shows an anti-phase relationship.
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Figure 10 describes the XWT-based semblance curve at the period that is closest to one cyclic
period year (cpy) outside COI to better show the correlation. The mean XWT-based semblance is−0.34,
indicating that the ice sheet mass and land surface temperature changes have an anti-phase relationship
in the whole observation period of a significant common power. This correlation is not high. On the
one hand, this is because land surface temperature data are surface (3 m) temperature, not ice sheet
temperature, so accuracy is relatively low. On the other hand, ice sheet mass change is a combination of
increased snow accumulation, increased coastal glacier discharge, and increased surface temperature.
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5. Conclusions

In this study, the GRACE and GHCN CAMS data were used to investigate the spatiotemporal
distribution of ice sheet mass changes and their relationship with land surface temperature in
Greenland. GRACE data were used to calculate the mass changes of the Greenland ice sheet from
January 2003 to December 2015. The major conclusions of this study are as follows:

From 2003 to 2015, the total mass of the ice sheet decreased steadily at a speed of −195 ± 21
Gt/yr and an acceleration of −11 ± 2 Gt/yr2, which was relatively stable for the two years after 2012,
and then continues to show a downward trend. However, in terms of monthly and seasonal variations,
the change of ice sheet mass in the whole study area slowly increases between October and April,
but decreases between May and September.

According to the inter-annual and spatial variation trend of ice sheet mass and land surface
temperature in Greenland, it could be found that ice sheet quality in different regions of Greenland has
a significant change trend. For example, Greenland ice sheet mass loss areas are mainly concentrate in
the southeastern, southwestern, and northwestern regions, and the southeastern region mass losses at
a maximum rate of more than 27 cm/yr (equivalent water height), while northeastern region losses
happen at a minimum rate of less than 3 cm/yr. In addition, for EOF results, the variance contribution
of the first two eigenvectors is 98.6% and 0.6% respectively, totaling 99.2%. Through the spatial
distribution and time coefficients of the first two models, it can be seen that overall ice mass change
in Greenland significantly declined in 2010 and 2012. Meanwhile, the ice sheet mass changes in the
southeastern and northwestern regions of Greenland showed different significant changes in different
periods from 2003 to 2015, while the other regions showed relatively stable changes.

In the time–frequency domain, continuous and cross-wavelet transform were used to study
the seasonal relationship between the two time series. We found that land surface temperature
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and ice sheet mass changes had a significant oscillation periodicity in the 12-month period, and the
mean XWT-based semblance value was −0.34, which indicates that ice sheet mass and land surface
temperature changes had anti-phase relationships in the whole observation period of a significant
common power. In addition, the XWT-based semblance values had the largest relative change in 2005
and 2012, and the smallest relative change in 2009 and 2010, which indicates that the influence of
land surface temperature on ice sheet mass significantly varies in different years. However, there are
some limitations in the analysis of the relationship between land surface temperature and ice sheet
mass changes. It is necessary to take glacier dynamics into account in order to achieve more accurate
analysis results in the future.
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