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Abstract: In synthetic aperture radar (SAR) images, azimuth ambiguity is one of the important factors
that affect image quality. Generally, the azimuth ambiguity-to-signal ratio (AASR) is a measure of
the azimuth ambiguity of SAR images. For the low signal-to-noise ratio (SNR) ocean areas, it is
difficult to accurately estimate the local AASR using traditional estimation algorithms. In order to
solve this problem, a local AASR estimation method based on the Doppler power spectrum in SAR
images is proposed in this paper by analyzing the composition of the local Doppler spectrum of SAR
images. The method not only has higher estimation accuracy under low SNR, but also overcomes
the limitations of traditional algorithms on SAR images when estimating AASR. The feasibility and
accuracy of the proposed method are verified by simulation experiments and spaceborne SAR data.
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1. Introduction

Due to the limitation of azimuth sampling, the azimuth spectrum of SAR images will be aliased
in the process of data acquisition of synthetic aperture radar (SAR) [1]. The aliasing phenomenon of
the spectrum is known as azimuth ambiguity [2–4]. For spaceborne SAR systems, azimuth ambiguity
is highly prone to occur in SAR images [1,5], especially for the SAR ocean images at the sea–land
junction. Because the scattering coefficient of the ocean region is quite low, the azimuth ambiguity
signal of the land strong-scattering target will form a “ghost” in the low-scattering region of the ocean.
The “ghost” will undoubtedly bring false alarms to the detection of marine targets [6].

In SAR systems, the azimuth ambiguity-to-signal ratio (AASR) is an important parameter to
measure the influence of azimuth ambiguity signals on SAR images [7,8]. Factors affecting the AASR
include azimuthal processing parameters (wavelength, azimuth processing bandwidth, pulse repetition
frequency (PRF)) and azimuth antenna pattern (AAP) [9,10]. In general, one or more influencing factors
can be controlled for the suppression of the azimuth ambiguity. First, a weighting of the azimuth
antenna pattern could be considered when designing a SAR system, thereby the aliased azimuth
ambiguity signal energy can be reduced. Moreover, the PRF could be properly set before the acquisition
of SAR data. If the SAR image has already been acquired, a reduced Doppler bandwidth could be
adopted, or an amplitude weighting of the Doppler spectrum could be applied in the processing [11,12].
However, these processing methods may result in a decrease in azimuth resolution, and even signal
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energy that is overwhelmed by azimuth ambiguity will be lost. Therefore, it is particularly important
to improve the degree of suppression of azimuth ambiguity by estimating the accurate local AASR.

In 2005, Guarnieri proposed the adaptive removal of azimuth ambiguities in SAR images [8],
and estimated the AASR in SAR images based on backscatter technique, which is referred to as
a backscatter-based (BB) algorithm in this paper. However, this method is limited to the fact that the
ambiguity source signal must appear in the focused SAR image. In 2014, Villano, et al. proposed the
spectral-based (SB) estimation algorithm of the local AASR in SAR images [13]. This method gets rid
of the limitation that the BB algorithm requires that the ambiguity source signal must appear in the
focused SAR image. However, the SB algorithm does not consider the effect of the signal-to-noise
ratio (SNR) of SAR images on the estimation result when performing local AASR estimation. For most
ocean areas, the SNR of the SAR image is relatively low. Therefore, the influence of system noise on
the estimation results cannot be ignored.

In order to make up for the shortcomings of the two local AASR estimation methods above,
a local AASR estimation method based on the Doppler power spectrum in SAR images is proposed
in this paper. The procedure of the proposed method is as follows. Firstly, the relationship between
the local AASR and the Doppler power spectrum of local SAR images is derived by analyzing
the Doppler spectral composition of the local SAR image. Secondly, the ratio of the left and right
blurred positions to the normalized radar cross-section (NRCS) of the main signal position can be
estimated by the relationship between the Doppler center spectrum and the edge spectrum, respectively.
Finally, the local AASR can be calculated from the ratio of the left and right blurred positions to the
NRCS of the main signal position.

The rest of this paper is organized as follows. Section 2 gives the composition analysis of the
Doppler spectrum and the theoretical derivation of the proposed method. In Section 3, the feasibility
and accuracy of the proposed method are verified by simulation experiments, and the estimation
accuracy under different SNRs is given. In Section 4, the proposed method is verified by the real
spaceborne SAR data. Finally, conclusions are presented in Section 5.

2. Local AASR Estimation Method Based on the Doppler Power Spectrum

2.1. The Analysis of Local Doppler Power Spectrum Composition

From the SAR imaging theory [14,15], it is well known that the shape of system noise,
azimuthal ambiguity, and the backscattering signal present as different patterns in the Doppler
spectrum of the SAR raw signal (here, it is supposed that the range match filtering and range cell
migration correction have been done), i.e., the system noise power density is a certain constant
in the Doppler spectrum, whereas the shape of the Doppler spectrum of the backscattering signal
and azimuthal ambiguity depend on the antenna pattern: The backscattering signal and azimuthal
ambiguity correspond to the main lobe and side lobe respectively. The Doppler spectrum of the SAR
raw signal can be expressed as the following [16,17]:

E[p( f , x0, y0)] =
n=∞

∑
n=−∞

σ(x0 + nDx, y0 + nDy)Pa( f − f0 + nFa) +
N0

Fa
(1)

where (x0, y0) are the center positions of the area upon which the Fourier transformation is applied;
x and y are the coordinates in the flight and look directions respectively, E[·] refers to the mathematic
expectation, f denotes the Doppler frequency, and p( f , x0, y0) denotes the azimuth power spectrum of
the SAR raw signal, in order to simplify the reading, p( f ) is used instead of p( f , x0, y0). n is the fuzzy
number, Pa( f ) is the power spectrum of an ideal point target with a 0 dB normalized radar cross-section
(NRCS) and its shape is determined by the two-way AAP. Further, f0 is the Doppler centroid, Fa refers
to the pulse repeat frequency of the SAR system, N0 is the intrinsic noise floor of the SAR system,
σ
(

x0 + nDx, y0 + nDy
)

is the mean NRCS of the pixels located between
(

x0 + nDx − L/2, y0 + nDy
)

and
(

x0 + nDx + L/2, y0 + nDy
)

(L is the data length for calculating the Doppler spectrum), Dx and
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Dy are the displacements between the position of the azimuth ambiguity signal and the real target
position in the flight and look directions, respectively. They can be written as [18]

Dx =
RλFa

2V
, Dy = −λ2 f0FaR

4V2 (2)

where R is the slant range of the target, λ is the radar wavelength, and V is the velocity of the
SAR platform.

Generally, the energy of the first blurred regions in SAR image accounts for at least 85% of the
total blur energy [9,19]. Therefore, we only consider the ambiguity energy introduced by the first side
lobes of the antenna pattern. Hence, Equation (1) can be simplified to

E[p( f , x0, y0)] ≈ σ(x0, y0)Pa( f − f0) + σ
(

x0 + Dx, y0 + Dy
)

Pa( f − f0 + Fa)

+σ
(

x0 − Dx, y0 − Dy
)

Pa( f − f0 − Fa) +
N0
Fa

(3)

Equation (3) indicates that the shape of the averaged power spectrum of backscattering signal,
azimuth ambiguity, and system noise are determined by the AAP (Pa( f )) and N0.

2.2. Methods and Solutions to Estimate the Local AASR from the Doppler Power Spectrum

According to Equation (3), the local AASR can be defined as

AASR =
NAASRl

∫ Bd/2
−Bd/2 Pa( f − f0 − Fa)d f + NAASRr

∫ Bd/2
−Bd/2 Pa( f − f0 + Fa)d f∫ Bd/2

−Bd/2 Pa( f − f0)d f
(4)

where, Bd is the azimuthal processing bandwidth. NAASRl =
σ(x0−Dx ,y0−Dy)

σ(x0,y0)
represents

the ratio of the NRCS of the left blurred position to that of the main signal position,

while NAASRr =
σ(x0+Dx ,y0+Dy)

σ(x0,y0)
represents the ratio of the NRCS of the right blurred positions to

that of the main signal position.
It can be seen from Equation (4) that if we want to estimate the local AASR from the local Doppler

power spectrum, NAASRl and NAASRr must be estimated first. Therefore, Equation (3) can be
expressed as

E[p( f , x0, y0)] ≈ σ(x0, y0)[Pa( f − f0) + NAASRrPa( f − f0 + Fa) + NAASRl Pa( f − f0 − Fa)] +
N0
Fa

(5)

Since the Pa( f ) can be obtained by SAR calibration [20,21], there are only three unknowns
(NAASRl ,NAASRr and N0) in Equation (5). Therefore, Equation (5) can be simplified by choosing
three different frequency points in the Doppler spectrum (for example, f1, f2, and f3), then the following
two linear relationships is derived out.{

E[p( f1)] = {E[p( f1)]− E[p( f3)]}β1 +
N0
Fa

E[p( f1)] = {E[p( f1)]− E[p( f2)]}β2 +
N0
Fa

(6)

where, β1 = w( f1)
w( f1)−w( f3)

β2 = w( f1)
w( f1)−w( f2)

, w( f ) = Pa( f − f0) + NAASRrPa( f − f0 + Fa) + NAASRl Pa( f − f0 − Fa) (7)

The two equations in Equation (6) are linear, in which the constant term depends on the noise
floor N0, and the linear coefficient β1, β2 depends on NAASRl and NAASRr (see Equation (7)).
Theoretically, if there are more than two sufficiently averaged Doppler spectra, β1, β2, and N0 can be
resolved by Equation (6). More Doppler spectra will result in a more precise estimation of β1, β2 and
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N0. To increase the estimation precision, f1, f2, and f3 should be selected to make E[p( f1)]− E[p( f2)]

and E[p( f1)] − E[p( f3)] as large as possible while E[p( f2)] and E[p( f3)] as small as possible [17].
Therefore, f1 = f0, f2 = f0 − Fa/2, and f3 = f0 + Fa/2 are selected in this paper.

In order to simplify reading, the sinc model is selected as the AAP model. Therefore, the AAP can
be expressed as

Pa( f ) = sin c4(
f
b
) (8)

Substituting Equation (8) into Equation (7), Equation (7) becomes
β1 =

1+NAASRlsin c4( Fa
b )+NAASRrsin c4( Fa

b )

1−sin c4( Fa
2b )+NAASRl [sin c4( Fa

b )−sin c4( 3Fa
2b )]+NAASRr[sin c4( Fa

b )−sin c4( Fa
2b )]

β2 =
1+NAASRlsin c4( Fa

b )+NAASRrsin c4( Fa
b )

1−sin c4( Fa
2b )+NAASRl [sin c4( Fa

b )−sin c4( Fa
2b )]+NAASRr[sin c4( Fa

b )−sin c4( 3Fa
2b )]

(9)

β1, β2 b Fa are the known amount, NAASRl and NAASRr are unknown. The above equation is
a linear equation system with two unknowns, which can be expressed in the form of a matrix operation.(

p11 p12

p21 p22

)(
NAASRl
NAASRr

)
=

(
q1

q2

)
(10)

where,



p11 = sin c4( Fa
b )− β2sin c4( Fa

b ) + β2sin c4( 3Fa
2b )

p12 = sin c4( Fa
b )− β2sin c4( Fa

b ) + β2sin c4( Fa
2b )

p21 = sin c4( Fa
b )− β1sin c4( Fa

b ) + β1sin c4( Fa
2b )

p22 = sin c4( Fa
b )− β1sin c4( Fa

b ) + β1sin c4( 3Fa
2b )

q1 = β2 − β2sin c4( Fa
2b )− 1

q2 = β1 − β1sin c4( Fa
2b )− 1

.

By performing a matrix operation on Equation (10)(
NAASRl
NAASRr

)
=

(
p11 p12

p21 p22

)−1(
q1

q2

)
(11)

The local AASR can be obtained by substituting the estimation result into Equation (4).
The sidelobe weight of the azimuth weighting filter is then appropriately adjusted by the estimated
local AASR, so that the azimuth ambiguity signal energy can be more accurately suppressed.

2.3. The Flow Chart of the Proposed Method

The proposed method starts with the SAR raw data. SAR images obtained by traditional
commercial spaceborne radars typically use weighted filtering in the azimuth. However, this processing
can result in a loss of the true NRCS of the target, which does not apply to the proposed method in this
paper. In order to preserve the most accurate NRCS of the target, an unweighted azimuthal matching
filter must be applied to the SAR raw data. The procedure of the proposed method is as follows.

In the first step, the SAR data is imaged using the unweighted azimuth filter to obtain a single-look
complex (SLC) image. In the second step, the Doppler center frequency must be estimated from the
SLC image [22–24], and then the Doppler centroids of the SLC image are shifted to the zero-frequency.
In the third step, the corrected SLC image is segmented into n-block local SLC images, and the size
of each image is Rr × Ra(range multiplied by azimuth). An average Doppler power spectrum is
obtained for each range gate of each image. We assume that the average Doppler power spectrum is
E[p( f )] = P( f ). By the statistics of the linear relationship between the Doppler center spectrum and
the two edge spectra in each Doppler power spectrum, two different linear factors β1 and β2 can be
obtained. The ratio of the NRCS of the left and right ambiguity signal position to that of the main
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signal position can then be obtained by solving the binary equations. Finally, the AASR of the local
SLC image can be obtained by substituting the estimation result into Equation (4).

The proposed method is summarized in Figure 1.
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3. Verification Based on the Simulation Experiment

3.1. The Simulation Experiment of the Proposed Method

Section 2 describes the principle of the proposed method. In this section, the method is verified
by simulation experiments. The parameters of the simulation experiment are shown in Table 1.
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Table 1. Parameters of the simulated data.

Parametric Name Parametric Symbol Parametric Value

Number of Doppler spectrum pixels L 128
Pulse repetition frequency (Hz) Fa 1256.98

Simulation repeat number Repeat_number 800
Look number of SAR image M 10
Signal-to-Noise Ratio (dB) SNR 5

Platform Velocity (m/s) V 7062
Antenna Length (m) La 10

Wavelength (m) —— 0.0566
Sampling bandwidth (Hz) —— 32.317× 106

AAP scale factor (Hz) b 1.1× Fa
Ratio of the NRCS values of the left ambiguity signal

and the real target position NAASRl 1

Ratio of the NRCS values of the right ambiguity
signal and the real target position NAASRr 2

According to the parameters in Table 1, the simulated Doppler power spectrum is shown in Figure 2.
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Figure 2. Simulated Doppler spectrum. (a) Before multi-looking; (b) After multi-looking.

It can be seen from Figure 2 that because the ambiguity energy of the left and right ambiguity
positions is different in the simulation process, the left and right edge spectra of the simulated Doppler
spectrum are asymmetrical. Using the same method as Figure 2 to generate several Doppler power
spectra to form a two-dimensional frequency domain image. The statistical relationship between
P(0)− P(−Fa/2) and P(0) from the simulated two-dimensional image is shown in Figure 3a, and the
statistical relationship between P(0)− P(Fa/2) and P(0) from the simulated two-dimensional image
is shown in Figure 3b.
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Figure 3. Relationship between P(0)− P(−Fa/2), P(0)− P(Fa/2) and P(0) for the simulated data.
(a) Relationship between P(0)− P(−Fa/2) and P(0); (b) Relationship between P(0)− P(Fa/2) and
P(0).

The variables β1 and β2 in Equation (7) are the slope of the fitted lines in Figure 3a,b, respectively.
The variable NAASRl and NAASRr can then be solved by Equations (9)–(11). Substituting the result
into Equation (4), we can obtain the true local AASR. The comparison between the estimation results
of the proposed method and the estimation results of the two traditional algorithms (SB algorithm and
BB algorithm) is shown in Table 2.

Table 2. Comparison of simulation results.

Parameters True Value Estimated Value

NAASRl 1 0.997
NAASRr 2 1.9125

AASR −20.53(dB) −0.94(dB)

As can be seen from Table 2, when the SNR is 5 dB and the local AASR is −9.435 dB, the NAASRl
and NAASRr estimated by the proposed method are very close to the true values. In addition, as far
as the local AASR estimation results are concerned, the estimation result of the proposed method is
closer to the true value.

3.2. The Influence of the SNR of SAR Image on Estimation Accuracy

In order to analyze the estimation accuracy of the proposed method under different SNR
conditions, 200 random Monte Carlo experiments are performed. The curve of the root mean squared
error (RMSE) of the estimated result changes with SNR is simulated. The results are shown in Figure 4.
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It can be seen from Figure 4 that as the signal-to-noise ratio increases, the RMSE of the NAASRl
and NAASRr estimation results gradually decrease. This illustrates the feasibility of the proposed
method in this paper.

3.3. Comparison of Three Local AASR Estimation Methods

The estimation error of local AASR under different SNR conditions among the proposed methods,
BB algorithm, and SB algorithm are simulated in this section. According to the simulation parameters
in Table 1, a point target image with a size of 1280 * 1280 is simulated. Point targets are simulated at
the position of the main target and the fuzzy targets in the image respectively, and then its AASR is
estimated by three algorithms respectively.

Among them, the BB algorithm mainly obtains the ratio of the energy of the blurred position
signal to that of the uniform background signal by sufficiently averaging the image of the SAR time
domain. According to the literature [13], the simulation process of the SB algorithm is shown in
Figure 5, and the left and right AASRs can be obtained by Equation (12).

(
AASRLSB [x0, y0]

AASRRSB [x0, y0]

)
=

 PE1
PE
− caL1

PE1
PE
− caR1

PE2
PE
− caL2

PE2
PE
− caR2

−1

·

 cm1 −
PE1
PE

cm2 −
PE2
PE

 (12)

where, caL1, caL2, caR1, caR2, cm1 and cm2 can be derived from the literature [13].
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Figure 1. The flow chart of spectral-based (SB) algorithm [13]. Figure 5. The flow chart of spectral-based (SB) algorithm [13].

Two hundred Monte Carlo random experiments were also performed on the simulation process
of the three algorithms. The three curves of Figure 6 are the RMSE of the estimated results of the three
algorithms as a function of SNR, respectively.
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Figure 6. The comparison results of the RMSE of the three local AASR estimation algorithms
(The proposed method, BB algorithm, and SB algorithm using Hk( fy) with PaL/Pm = 1 [13]).
Where, Local AASR = −20.53 dB.
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As can be seen from Figure 6, when the SNR is high, the RMSE of the proposed method is close to
the estimation results of the two traditional algorithms. However, when SNR is low, the RMSE of the
proposed method is significantly lower than the two traditional local AASR estimation algorithms.

In order to further compare the estimation error of the three algorithms in different AASR values,
the RMSE of the estimation results of the three algorithms are simulated when SNR is −5 dB, 0 dB and
5 dB, respectively. The simulation results are shown in Figure 7.
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As can be seen from Figure 7, when SNR is low, the estimation results of the proposed method are
significantly better than the two traditional estimation algorithms with the increase of AASR. In the
case of high SNR, when the AASR is low, the estimation results of the three algorithms are highly
consistent; When the AASR is high, the estimation results of this algorithm and the SB algorithm are
consistent, which are better than BB algorithm.

4. Experimental Verification Based on Radarsat-1 Image

In this section, the Radarsat-1 satellite SAR image will be used to verify the proposed method.
Its SAR raw data was obtained from the accompanying CD of literature [25]. According to Figure 1,
the raw data is first subjected to SAR imaging processing, and the Doppler center frequency is shifted
to the zero-frequency position. The imaging process is shown in Figure 8.
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Figure 8. SAR imaging process.

SAR imaging results are shown in Figure 9a, Figure 9a is a RADARSAT-1 image of Vancouver.
As can be seen from the figure, this SAR image has strong azimuth ambiguity.

As can be seen from Figure 9b, the image area is disturbed by the azimuth ambiguity signal,
and the sea surface texture is almost covered by the ambiguity signal. According to the description
in the literature [25], the SNR of the water area of this image is −10 dB, the SNR of the land area is
8 dB, and its AASR is about −17 dB. There are clear blur targets in the red dotted frame of Figure 9;
therefore, the red dotted frame image in Figure 9 is selected to verify the AASR estimation method.

In the red dotted frame image in Figure 9, there are 1664 pixels in the flight direction, 600 pixels
in the look direction, and its SNR is −3.5 dB. In this example, each Doppler spectrum is a 128-point
discrete spectrum that is averaged by 13 times in the flight direction and 10 times in the look direction.
A total of 60 Doppler spectra from the entire SAR image are obtained. One of the Doppler power
spectra obtained is shown in Figure 10.
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Figure 9. Radarsat-1 SAR image of Vancouver collected on 16 June 2002, at 02:24 UTC. (a) Full image;
(b) An enlarged view of the green box in Figure 9a.
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Figure 10. The Doppler power spectrum of the selected image block.

As can be seen from Figure 10, the Doppler center frequency of the selected image block area has
been moved to the zero frequency, and the right edge spectrum of the Doppler spectrum is significantly
higher than the left edge spectrum. This is because the left ambiguity caused by the littoral zones is
more serious in Figure 9b. Then, according to the theoretical analysis in Section 2, the linear relationship
statistics are performed on the Doppler spectrum, and the statistical results are shown in Figure 11.
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As can be seen from Figure 11, the Doppler power spectrum in Figure 10 is asymmetrical due to
the presence of azimuth ambiguity. However, the points in Figure 11a,b are still evenly distributed on
both sides of the fitted curve. According to the estimation theory in Section 2, NAASRl and NAASRr are
estimated respectively. Then, the estimation result is substituted into Equation (4), and the final AASR
of the image block is obtained. This section also compares the BB algorithm and the SB algorithm with
the proposed method. The comparison results are shown in Table 3.

Table 3. Comparison of results of three local AASR estimation methods.

Estimation Method Mean of AASR Estimates

BB algorithm −16.01 dB
SB algorithm −16.35 dB

Proposed method −16.57 dB
True value −17 dB

As can be seen from Table 3, the local AASR estimation result of the proposed method is closer to
the value of the SB algorithm than that of the BB algorithm. The SB algorithm and the BB algorithm
have been compared in [13], both of which have higher estimation results in special conditions.
However, the above two algorithms have limitations. The proposed method overcomes their limitations
and can accurately estimate the local AASR of SAR images.

5. Discussion

5.1. Applicability Analysis of the Proposed Method

Compared with the traditional AASR estimation algorithms (BB algorithm and SB algorithm),
both advantages and disadvantages of the proposed method exist.

The advantages include the following:

(1) Even in the case of low SNR, the proposed method still has higher estimation accuracy than the
traditional AASR estimation algorithms;

(2) The proposed method starts from the original data and can retain the original information of the
echo signal to the maximum extent;

(3) The fuzzy source signal does not have to appear in the SAR image.
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The shortcomings include the following:

(1) Since AAP must be known, it is necessary to start from the raw data when performing
AASR estimation.

(2) The number of pixels used to calculate the azimuth Doppler power spectrum is large.
Therefore, the local AASR resolution of the proposed method is low.

Therefore, this section mainly analyzes the above two shortcomings.

5.1.1. Limitation of Data Selection

The azimuthal resolution of the SAR raw signal is too coarse for most applications. To increase
the azimuthal resolution, the azimuthal matching filter must be applied on the SAR raw signal to
convert it to a single-look complex image. Therefore, the unweighted azimuthal matching filter can be
used, which only changes the phase of the Doppler spectrum without modifying the amplitude of the
Doppler spectrum. Thus, the azimuthal power spectrum of the single-look complex image has the
same shape characteristic as that of the SAR raw signal. The relationship between the power spectra of
the single-look complex images and the SAR raw signal is given as the following:

ps( f , x0, y0) = pr( f , x0, y0)|H( f )|2 = pr( f , x0, y0) (13)

where H( f ) = exp
(

jπ λR f 2

2V2

)
is the unweighted azimuthal matching filter, ps( f , x0, y0) and pr( f , x0, y0)

are the azimuthal power spectra of the single-look complex image and the SAR raw signal, respectively.
This technical requirement undoubtedly limits the scope of application of the proposed method.

For SAR products after the second level, if the weighted AAP is known, the proposed method can
also be used for AASR estimation. However, in most cases, it is difficult to obtain a weighted AAP.
Therefore, the proposed method in this paper is mainly applicable to estimate the AASR from the SAR
raw data.

5.1.2. Estimated Resolution of AASR

In this section, according to Table 1, the estimation accuracy of the proposed method is verified
by changing the number of pixels used to calculate the Doppler spectrum. The result is shown in
Figure 12.
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Figure 12. RMSE of the AASR estimation results as a function of pixels used to calculate the Doppler
power spectrum.

As can be seen from Figure 12, as the number of pixels used to calculate the Doppler power
spectrum increases, the RMSE of the estimation result decreases. When RMSE = 0.41, the number
of pixels used to calculate the Doppler power spectrum is 1280. This is consistent with the
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number of azimuth pixels of the point target image generated in the simulation experiment in
Section 3.3. In Figure 6, when SNR is 5 dB, AASR is −9.435 dB, the RMSEs of AASR for the proposed
method, SB algorithm, and BB algorithm are 0.41, 0.4508, and 0.5302, respectively. According to
the literature [13], the AASR estimation resolution of the SB algorithm and the BB algorithm can
reach 25 * 25 pixels. However, currently, it is difficult to achieve such high resolution using the
proposed method.

In addition, it can be concluded that when the SNR is high, even if the number of pixels used to
calculate the Doppler power spectrum is small, the proposed method can also have a high estimation
accuracy. When the SNR is low, the number of pixels used to calculate the Doppler power spectrum
must be increased to achieve the deserved estimation accuracy.

5.2. Sensitivity Analysis of AAP on AASR Estimation Results

The proposed method in this paper requires a known AAP. Therefore, if the AAP model does not
match the real AAP, the estimation result will be inaccurate. The sensitivity of AAP is analyzed by
simulations, the results are shown in Figure 2. Where b is the AAP shape factor.

As can be seen from Figure 13, True values are the red lines. When 1381Hz ≤ b ≤ 1404Hz,
the estimated results of the NAASRl and NAASRr are close to the true values, and the estimated
results of the AASR are also close to the true values. Therefore, we can ascertain that the estimation
results of the proposed method are more accurate in this case.
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The proposed method in this paper requires a known AAP. Therefore, if the AAP model does 
not match the real AAP, the estimation result will be inaccurate. The sensitivity of AAP is analyzed 
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5.3. The Application of the Estimated Local AASR

According to the experimental verification results in Section 4, the AASR in Figure 9b estimated
by the proposed method, SB algorithm and BB algorithm are very close. Therefore, this paper mainly
uses the AASR estimated by the proposed method to perform azimuth ambiguity suppression.

In order to achieve the effect of suppressing the azimuth ambiguity, according to the and estimated
by the proposed method we improve the azimuth filter mentioned in the literature [8], as shown in the
following equation:

H f =

(
Pa( f ) + NAASRl

|Pa( f − Fa)|2

|Pa( f )|2
+ NAASRr

|Pa( f + Fa)|2

|Pa( f )|2
+ SNR−1

)−1

(14)

The improved azimuth ambiguity suppression process is as follows. Firstly, the SAR raw data
in Figure 7b is divided into several sub-blocks, and the AASR of each sub-block is estimated by the
proposed method. Secondly, the local Doppler spectrum is weighted by Equation (14). Finally, the SAR
data is transformed into the time domain to complete the suppression of azimuth ambiguity. The results
are shown in Figure 14.
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As can be seen from the position of the solid yellow frame in Figure 14, the improved filter using
the proposed method suppresses the azimuth ambiguity signal very well. Moreover, as can be seen
from the yellow dotted frame in the figure, the SAR image processed by the proposed method can
preserve the original ocean texture while suppressing the azimuth ambiguity. This further illustrates
the feasibility and accuracy of the proposed method.

6. Conclusions

In order to solve the problem of the influence of azimuth ambiguity signal on SAR image quality,
a local AASR estimation method based on the Doppler power spectrum in SAR images is proposed.
The azimuth weighting filter is optimized by estimating the local AASR, thereby achieving the
suppression of the azimuth ambiguity.

In order to fully illustrate its feasibility and accuracy, the proposed method is validated by
simulation experiments and real spaceborne SAR data experiments. The simulation results show
that the local AASR estimated by the proposed method is very close to the true value. In addition,
the estimation accuracy of the three algorithms under different SNR conditions is compared and
analyzed. In the case of high SNR, the estimation results of proposed method are very consistent
with the traditional BB algorithm and SB algorithm. In the case of low SNR, the estimation error of
this method is slightly smaller than the traditional two estimation algorithms. In addition, the three
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estimation methods are compared and verified by the real SAR data of Radarsat-1. The results show
that the estimated values of the three estimation methods are close.

The proposed method can estimate the local AASR of SAR images accurately. The disadvantage
is that the local AASR resolution estimated by this method is low. Therefore, further research is needed
on how to improve the resolution of the estimation result of the local AASR.
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