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Abstract: ICESat-2 is the new generation of NASA’s ICESat (Ice, Cloud and land Elevation Satellite)
mission launched in September 2018. We investigate the potential of forest parameter estimation using
metrics from photon counting LiDAR data, using an integrated dataset including photon counting
LiDAR data from SIMPL (the Slope Imaging Multi-polarization Photon-counting LiDAR), airborne
small footprint LiDAR data from G-LiHT and a stem map in Howland Research Forest, USA. First,
we propose a noise filtering method based on a local outlier factor (LOF) with elliptical search area to
separate the ground and canopy surfaces from noise photons. Next, a co-registration technique based
on moving profiling is applied between SIMPL and G-LiHT data to correct geolocation error. Then,
we calculate height metrics from both SIMPL and G-LiHT. Finally, we investigate the relationship
between the two sets of metrics, using a stem map from field measurement to validate the results.
Results of the ground and canopy surface extraction show that our methods can detect the potential
signal photons effectively from a quite high noise rate environment in relatively rough terrain.
In addition, results from co-registration between SIMPL and G-LiHT data indicate that the moving
profiling technique to correct the geolocation error between these two datasets achieves favorable
results from both visual and statistical indicators validated by the stem map. Tree height retrieval
using SIMPL showed error of less than 3 m. We find good consistency between the metrics derived
from the photon counting LiDAR from SIMPL and airborne small footprint LiDAR from G-LiHT,
especially for those metrics related to the mean tree height and forest fraction cover, with mean R2

value of 0.54 and 0.6 respectively. The quantitative analyses and validation with field measurements
prove that these metrics can describe the relevant forest parameters and contribute to possible
operational products from ICESat-2.
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1. Introduction

The reliable and accurate estimation of important forest parameters such as forest height and
canopy cover is crucial for understanding the global carbon stock and cycle [1–5]. LiDAR (Light
Detection And Ranging) has demonstrated the capability to detect the vertical structure of forests with
high accuracy [6–9], and a spaceborne LiDAR system would significantly contribute to the continued
long term vegetation monitoring over large spatial context. The relevant studies using the data from
the Geoscience Laser Altimeter System (GLAS) system onboard the NASA’s ICESat (Ice, Cloud and
Land Elevation Satellite) mission showed very promising results in vegetation studies [10–13]. Several
global vegetation products focused on the key forest parameters were produced by combining with
GLAS data and other source data [14,15], and the data remain actively used even after the failure of
the laser sensors.

ICESat-2, the new generation of ICESat missions, was launched in September 2018 [16]. In contrast
with the previous waveform LiDAR system [17], ICESat-2 will use a new photon counting approach
adopted for the first time on a spaceborne platform. This newly designed system is named ATLAS
(Advanced Topographic Laser Altimeter System), which is a micro-pulse, multi-beam photon counting
LiDAR working at 532 nm [18]. To investigate the expected performance and develop relevant
algorithms for this new sensor, several spaceflight prototype instruments including SIMPL (The Slope
Imaging Multi-polarization Photon-counting LiDAR) [19] and MABEL (the Multiple Altimeter Beam
Experimental LiDAR) [20,21] were designed and tested in airborne flight campaigns over the past few
years [22], and a large collection of relevant data products were archived.

There have already been studies to explore the current released ATLAS-like data from the airborne
prototype. These studies show that one of the challenges for application to vegetation study is the
significant quantity of noise photons, with photon return time giving the appearance of originating
in the atmosphere and even below the ground [23,24]. Several attempts have been made to separate
the signal photons from the noise photons by methods such as spatial statistical based detection
algorithms, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), ellipsoidal
histogramming method, and a framework to retrieve ground and canopy height [25–29]. In addition,
some studies focused on the application rather than the data pre-processing showed some promising
results, especially for vegetation studies [30–33]. However, studies focusing on the potential estimation
of forest parameters by using the ATLAS-like data are still very limited. There are some findings
including investigating the dryland ecosystem vegetation cover and biomass by using a combination
of Landsat 8 and ATLAS-like data [34], the similarity comparison with airborne LiDAR system of
the ICESat-2 laser altimetry for savanna ecosystem [28,35], and an automated approach for better
estimating vegetation canopy height [36]. The study to explored potential for biomass retrieval over
boreal ecosystems, using the radiative transfer model FLIGHT to simulate ICESat-2 [37].

These studies have shown some promising results of the potential of photon counting LiDAR,
but a comprehensive analysis in terms of different forest parameters focusing on SIMPL data is very
limited. In this context, the Eco3D SIMPL flight campaign produced some valuable datasets but
these are not yet fully analyzed. The flight path coincides with the data coverage of Goddard’s
LiDAR, Hyperspectral and Thermal Imager (G-LiHT) and Howland stem map, which has tremendous
ecological value having escaped the mechanized logging that characterizes the northern forests of
Maine. In addition, although ICESat-2 has been successfully launched last year, the data products are
still not publicly available to access. Also, it would require a period of time to cover some typical forest
types such as the northern forests of Maine. Therefore, it still remains a good aim to concentrate on the
existing simulation data, of which the 532 nm data from SIMPL is a good testing data because it has
the same working wavelength as ATLAS. In these circumstances, relevant researches to explore the
potential of forest parameter estimation using SIMPL data would be of use for the future applications
of ICESat-2 vegetation studies.

This study investigates the potential of forest parameter estimation using metrics from photon
counting LiDAR data, by using a combination of SIMPL, G-LiHT, and field measurement data collected
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in Howland Research Forest. To achieve this goal, we develop pre-processing methods to extract the
canopy photon surface and co-registration with G-LiHT data, we further propose a set of photon
metrics and examine the consistency and accuracy with airborne small footprint LiDAR data. Finally
we quantitatively analyze the results and validate with field measurements.

2. Study Site and Data

2.1. Study Site

The Howland Research Forest is a 558 acre tract of mature, lowland evergreen forest located in
central Maine, west of the town of Howland. Red spruce, Eastern hemlock and white cedar trees
dominate the forest canopy. Stands contain large amounts of woody biomass (up to 350 Mg/ha),
standing and downed dead trees, and pit-and-mound topography created by tree tip-over. The tract
of land was designated as a research forest in 1986, and has tremendous ecological value having
escaped the mechanized logging that characterizes the northern forests of Maine. A 29 m walkup flux
measurement tower has been in operation since the 1980s. Near the flux tower, every tree in a 200 m
by 150 m area was measured for its location, DBH (Diameter at Breast Height), and species in 1989,
2003 and measured again in 2010.

Figure 1 shows the location and data obtained for this study, including: (1) the photon counting
LiDAR data from the Eco3D SIMPL flight path on 1 September 2011; (2) the airborne small footprint
LiDAR data from the G-LiHT in 2012; (3) the stem map based on the measurements in 2010 used to
conduct the validation.

Figure 1. The location (right) of the Howland forest area, and image (left) of the Goddard’s LiDAR,
Hyperspectral and Thermal Imager (G-LiHT) Canopy Height Model (CHM); the red line represents the
SIMPL trajectory.
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2.2. Photon Counting LiDAR Data from SIMPL

Figure 2 shows the profile of the photon counting LiDAR data from SIMPL within our study site.
SIMPL is a spaceflight prototype which incorporates beam splitting of a micropulse laser, single-photon
ranging and polarimetry technologies at green (532 nm) and near-infrared (1064 nm) wavelengths.
The data across both the G-LiHT coverage and the Howland stem map was collected in September 2011.
It can be seen that there are significant noise photons randomly distributed in the atmosphere and even
below the ground, which therefore requires some techniques to filter the noise photons and extract the
ground and canopy surfaces.

Figure 2. The profile of the photon counting LiDAR data from SIMPL within the Howland Research
Forest. The horizontal x-axis stands for the UTM x coordinate; the vertical y-axis stands for the
ellipsoidal height.

2.3. Airborne LiDAR Data from G-LiHT

The airborne small footprint LiDAR data from G-LiHT was collected in June 2012, which is near the
acquisition time of the SIMPL data. G-LiHT is a portable, airborne imaging system that simultaneously
maps the composition, structure, and function of terrestrial ecosystems using a combination of LiDAR,
Hyperspectral, and Thermal sensors. G-LiHT’s profiling LiDAR is an LD321-A40 (Riegl USA, Orlando,
FL, USA), multi-purpose laser distance meter which produces a 50 cm diameter footprint at the
nominal operating altitude of 335 m [38]. Figure 3a,b shows the 1 m resolution Digital Terrain Model
(DTM) and the Canopy Height Model (CHM) driven from the point cloud of G-LiHT.
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(a) (b)

Figure 3. The 1 m resolution DTM and CHM of the study site driven from G-LiHT. (a) The DTM from
G-LiHT. (b) The CHM from G-LiHT.

2.4. Field Measurement

The stem map was collected in the year 2010. There is a total number of 7989 trees at a rectangle
size of 150 m × 200 m. The field measurements include tree species, tree height, diameter at breast
height (DBH), crown diameter at North-South direction (d-North-South) and crown diameter at
East-West direction (d-East-West), which are summarized in Table 1.

Table 1. Statistics for the Howland stem map collected in 2010. Min is the minimum value, Max is the
maximum value, Mean is the averaged value, and SD is the standard deviation.

Species No. of Trees Statistics Height (m) DBH (cm) d-East-West (m) d-North-South (m)

Hemlock 7239

Min 3.17 2.90 0.21 1.10
Max 37.99 60.90 6.91 13.21

Mean 12.94 12.12 1.19 4.5
SD 7.91 8.10 0.53 2.75

Aspen 750

Min 4.36 3.0 0.23 1.05
Max 46.47 61.8 2.66 11.22

Mean 15.47 10.9 1.12 3.74
SD 9.49 7.37 0.43 2.29

All 7989

Min 3.17 2.9 0.21 1.05
Max 46.47 61.8 6.91 13.21

Mean 12.83 12.0 1.19 4.43
SD 7.86 8.04 0.52 2.72
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3. Methods

3.1. Overview

The method we use in this study is shown in Figure 4. The method is divided into 4 parts:
first, we extract the ground and canopy surface from the potential signal photons identified by the
noise filtering algorithm using a local outlier factor (LOF) with an elliptical searching area [39]. Next,
a co-registration technique based on moving profiling is applied between SIMPL data and G-LiHT
data to correct the geolocation error. Then, we calculate the height metrics from both photon counting
LiDAR data from SIMPL and airborne small footprint LiDAR data from G-LiHT. Finally, we investigate
the relationship between the two sets of metrics, and use the stem map from field measurement to
validate the results.

Figure 4. The flowchart of the proposed method used in this study.

3.2. Extraction of Ground and Canopy Surface

It can be seen from Figure 2 that there are abundant noise photons with apparent locations ranging
from the atmosphere to below ground level, which makes it difficult to detect vegetation and ground
photons with existing methods that work on airborne point cloud data. However, it is still noticeable
that the density of the signal photons is different in terms of horizontal and vertical directions, therefore
we implement a modified LOF algorithm with an elliptical search area and assign the class tag based
on the score which was returned.

LOF is an unsupervised outlier detection method which computes a score for a point which
indicates the local density around the given point to its near neighbors [40]. The outliers are considered
to be the points which are substantially lower than a threshold score compared with the density level
among their neighbors.
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For the noise detection method we propose here, we first calculate the K-Nearest Neighbors
(KNN) distance using an elliptical search area for every photon. For any given point p and q in the data,
the elliptical search area is defined by the following equation:

distk(p, q) =

√
(xp − xq)2

a2 +
(hp − hq)2

b2 (1)

where x and h represent the distance and height of photons, a and b represent the major and minor
axis of the ellipse respectively. In this paper, we use an empirical ratio which is a:b = 6:1 [39].

Figure 5 demonstrates the distance matrix from the ellipse searching shape. The red dot stands
for point X7 and the blue dot stands for point X9. It can be seen from the figure that for a horizontal
ellipse searching area, the potential noise point X7 can be distinguished from the signal point X9.

Figure 5. The distance matrix from the horizontal ellipse searching area, a darker and thicker line
indicates closer reachability between these points.

Next, a reachability distance from point p to q is estimated using Equation (2), which is
the maximum value between the KNN distance of point q and the distance from point p and q.
Then a reachability distance function of each point from its neighbors is calculated to get a local
reachability density function.

reachdist(p, q) = max{(distk(q), dist(p, q)} (2)

Furthermore, we will get the score of the local outlier factor with the ellipse nearest neighbors,
which is defined as the average local reachability density of the neighbors divided by point p’s own
local reachability density. If this score is greater than the mean value of scores then it is classified
as signal otherwise as noise. Although most of the noise can be removed by filtering the higher
LOF scores, there can still be some dense cluster centers within the noise photons. To correct the
mislabeling points, a histogram filter was implemented to detect these noise photons. In addition, we
used a moving window to find the local maximum and minimum value within the signal photons
as the top of canopy (TOC) and ground seed points respectively. Finally, cubic spline interpolation is
used to get the canopy and ground surface.
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3.3. Co-Registration between SIMPL and G-LiHT Data

It can be seen that the geolocation between the SIMPL and G-LiHT data is not satisfying; therefore,
an approach based on moving profiling [28] is implemented to match these two datasets. First,
we extract the ground photons from our signal detection results and create a DTM profile; next we
compare this profile with the DTM profile generated from G-LiHT. Then we shift the X-Y coordinates
of the SIMPL-DTM profile, tracking the RMSE in the difference between these two profiles. Finally,
the shift that produces the minimum RMSE is then considered to be the least error position, thus we
add that shift to the SIMPL photons’ coordinates to obtain the corrected geolocation.

3.4. Metrics and Accuracy Assessment

Table 2 shows the 14 height metrics from the 2 groups that we used in this study. The metrics from
photon counting LiDAR data are calculated based on similar concepts from the traditional point cloud
LiDAR metrics such as height statistics and fractions. Height statistics include the maxH, meanH,
height percentiles, standard deviation (STD) and coefficient of variation (CV), which are considered to
have good relationships with forest height. In addition, the fraction of the number of points/photons
above 1.3 m is considered to be a good indicator of forest canopy cover.

In addition, 6 different scale sizes ranging from 10 m to 50 m are designed to investigate the
suitable statistical size to estimate relevant forest parameters for the forest application of ICESat-2
data, of which the 16 m value is the nominal footprint size for ICESat-2. Also, the nominal along-track
sampling distance is 0.7 m, resulting in very dense overlapping footprints along the trajectory, which
would be useful to aggregate all these observations to form some certain link-scale sizes for the
parameter inversion. Therefore, we designed a few sizes from 10 m up to 50 m, given that SIMPL has a
similar design like ATLAS.

Table 2. Height metrics from SIMPL and G-LiHT.

Source of Data Name of the Metrics Description

Metrics from SIMPL

SmaxH Max value of all photon heights
SmeanH Mean value of all photon heights

Sh99 99th percentile of all photon heights
Sh50 50th percentile of all photon heights

SPercentage Fraction of the number of photons above 1.3 m
SSTD Standard deviation of all photon heights
SCV Coefficient of variation of all photon heights

Metrics from G-LiHT

GmaxH Max value of all return heights
GmeanH Mean value of all return heights

Gh99 99th percentile of all return heights
Gh50 50th percentile of all return heights

GPercentage Fraction of the number of points above 1.3 m
GSTD Standard deviation of all return heights
GCV Coefficient of variation of all return heights

To assess the accuracy of the results for these two datasets and the field measurement,
four statistical indicators known as coefficient of determination (R2), Root Mean Square Error (RMSE),
relative RMSE (rRMSE), and relative Error (rError) are computed to conduct the validation, where
rRMSE and rError are defined as follows:

rRMSE =
RMSE

yi
× 100% (3)

rError =
y′i − yi

yi
× 100% (4)

where yi stands for the metrics from the reference value for the ith observation; yi is the mean value of
yi; y′i are the metrics from the photon counting LiDAR data for the ith observation.
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4. Results

4.1. Results of Extraction of Ground and Canopy Surface

The result of forest signal detection from SIMPL data is shown in Figure 6. It can be seen from the
result that our method can separate the forest signal from the noise effectively. The photons which
belong to the TOC, ground and within the canopy are well detected, especially in a quite high noise
rate environment in relatively rough terrain across our study site. It is also noticeable that the TOC
surface and ground surface are extracted accurately.

Figure 6. The result of ground and canopy surface extraction in Howland research forest.

4.2. Results of Co-Registration between SIMPL and G-LiHT Data

Figure 7 demonstrates the result of the moving profiling method to match the SIMPL and G-LiHT
data. The red dash line represents the TOC surface; the grey dash line represents the ground surface,
and the blue line represents the best fitting G-LiHT DTM profile, which is considered to be the shift
that produced the minimum RMSE between the SIMPL and G-LiHT DTM profile. It can be seen
that with the correction of the geolocation, the co-registration between SIMPL and G-LiHT data has
been improved.

Figure 7. The result of the moving profiling method to match the SIMPL and G-LiHT data.
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4.3. Results of Metrics from SIMPL Data

For the analysis of photon counting LiDAR metrics from the SIMPL data, we compared the
relationship of the metrics including the maxH, meanH, height percentiles, standard deviation (STD),
coefficient of variation (CV) and fraction of the number of points/photons above 1.3 m, from the
relevant metrics derived from SIMPL and G-LiHT data. Here we investigate 6 different scales ranging
from 10 m to 50 m, of which the 16 m value is the nominal footprint size for the ICESat-2 mission.

The results of the max tree height related metrics from SIMPL data show good consistency with
those from G-LiHT. Figure 8 shows the relationship between the max value of all photon heights from
SIMPL and the max value of all return heights from G-LiHT for different scales. It can be seen from
these figures that the 40 m scale has the highest value of R-square and the lowest value of RMSE.
In terms of the results of max height, Figure 9 shows similar findings for the 99th height percentile.
The mean R-square values for all these six different scale sizes are 0.35 and 0.39 for the max value of
height and the 99th height percentile respectively. The 99th height percentile has a slightly higher
overall accuracy over the max height metrics with an increasing percentage of 3–6%. The mean value of
the RMSE for the max values of height and the 99th height percentile are 4.8 m and 4.2 m respectively,
which shows a difference which is over 4 m for the estimation of max tree height in our study site.

The results of mean tree height related metrics including the 50th height percentile and mean
value of heights are shown in Figures 10 and 11. The mean R-square values for all these six different
scale sizes are 0.54 and 0.49 for the mean value of height and the 50th height percentile respectively.
It shows that the overall accuracy to estimate mean tree height for the different scales is better than
those of max tree height metrics with improvements of 19% and 10% respectively. Also, we can see the
mean height metric has a higher overall accuracy compared with the 50th height percentile, with an
increasing percentage of 3–10% for the different scale sizes. Compared with metrics related to the max
tree height, the mean values of the RMSE for the mean value of height and the 50th height percentile
are 3 m and 4 m respectively, of which the best fitting result is at the scale size of 50 m with an R-square
of 0.69 and RMSE of 2.2 m for the mean value of height. It is also noticeable that with a smaller scale
size, the range of the rRMSE values of meanH is 26.8–47% compared with those values of 21.3–30%
from maxH, suggesting that the maxH maintains relatively good estimation for small scale sizes.

The fraction of the number of photons above 1.3 m from SIMPL, which is considered to be related
with the canopy cover, shows good consistency with the metrics from G-LiHT as demonstrated in
Figure 12. The mean values of R-square and RMSE for all these six different scale sizes are 0.6 and 16%
respectively, of which the best fitting result is for the 50 m scale size with an R-square over 0.6 and
RMSE less than 15%.

Similarly, we investigate the consistency of the remaining two height metrics which are standard
deviation (Figure 13) and coefficient of variation (Figure 14) of photon heights, which are indicators of
the variability of the data. We find that the estimation accuracy for these two metrics increases with a
larger scale size, especially for the coefficient of variation, where the R-square improved from 0.073
to 0.72.

To summarize, for the metrics related to the max tree height, we can see that the 99th height
percentile have a higher overall accuracy over the max height metrics. However, it is also noticeable
that the RMSE is over 4 m for the estimation. In terms of the metrics related to the mean tree height,
it can be seen that the overall accuracy for the different scales is better than those of max tree height
metrics. Also, we found that the RMSE dropped to around 2 m at the scale size of 50 m. Likewise,
the statistical metrics like the standard deviation and coefficient of variation suggested similar patterns
and the overall accuracy improves with a larger scale size. Finally, for all the metrics related to canopy
cover, good results were achieved with a mean R-square of 0.6.
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(a) 10 m (b) 16 m (c) 20 m

(d) 30 m (e) 40 m (f) 50 m

Figure 8. The relationship between the max value of all photon heights from SIMPL and the max value
of all return heights from G-LiHT for different scales.

(a) 10 m (b) 16 m (c) 20 m

(d) 30 m (e) 40 m (f) 50 m

Figure 9. The relationship between the 99th percentile of all photon heights from SIMPL and the 99th
percentile of all return heights from G-LiHT for different scales.
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(a) 10 m (b) 16 m (c) 20 m

(d) 30 m (e) 40 m (f) 50 m

Figure 10. The relationship between the mean value of all photon heights from SIMPL and the mean
value of all return heights from G-LiHT for different scales.

(a) 10 m (b) 16 m (c) 20 m

(d) 30 m (e) 40 m (f) 50 m

Figure 11. The relationship between the 50th percentile of all photon heights from SIMPL and the 50th
percentile of all return heights from G-LiHT for different scales.
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(a) 10 m (b) 16 m (c) 20 m

(d) 30 m (e) 40 m (f) 50 m

Figure 12. The relationship between the fraction of the number of photons above 1.3 m from SIMPL
and the fraction of the number of points above 1.3 m from G-LiHT for different scales.

(a) 10 m (b) 16 m (c) 20 m

(d) 30 m (e) 40 m (f) 50 m

Figure 13. The relationship between the standard deviation of all photon heights from SIMPL and the
standard deviation of all return heights from G-LiHT for different scales.
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(a) 10 m (b) 16 m (c) 20 m

(d) 30 m (e) 40 m (f) 50 m

Figure 14. The relationship between the coefficient of variation of all photon heights from SIMPL and
the coefficient of variation of all return heights from G-LiHT for different scales.

4.4. Validation with Field Measurements

To further investigate the potential of forest parameter estimation using photon counting LiDAR
data, we use the stem map collected in the Howland Research Forest to validate the estimation accuracy
of mean tree height from SIMPL data. As it is shown in Table 3, we compare both SIMPL and G-LiHT
data at four different scale sizes ranging from 10 m to 30 m, and assess the results using three criteria
including Mean Absolute Error (MAE), Standard Deviation (SD) and Root Mean Square Error (RMSE).
Since the trajectory across our plot is less than 200 m, we only analyze scale sizes of up to 30 m.

The results from Table 3 suggest that the geolocation corrected G-LiHT data has a relatively good
consistency with our field measurements, with mean values of 2.1 m, 2.4 m and 2.4 m for MAE, SD and
RMSE respectively. For SIMPL data, the mean value of MAE is 2.9 m while the mean value of SD and
RMSE are 5.3 m and 4.9 m.

Table 3. Result of validation using the Howland stem map. MAE is mean absolute error, SD is the
standard deviation, and RMSE is the root mean square error.

Data Source Scale Size MAE (m) SD (m) RMSE (m)

G-LiHT

10 m 2.9 3.9 3.6
16 m 2.4 1.7 2.1
20 m 1.7 1.8 2.1
30 m 1.2 2.1 1.9

Mean value 2.1 2.4 2.4

SIMPL

10 m 3.5 4.6 4.5
16 m 2.7 5.7 5.3
20 m 3 5.4 5
30 m 2.4 5.3 4.9

Mean value 2.9 5.3 4.9
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5. Discussion

From the results of extraction of ground and canopy surfaces, we can see that the method we
implemented using the local outlier factor modified with ellipse searching area achieved good results
to detect the potential signal photons from the noise photons. The ellipse searching area utilized the
unbalanced distribution of signal photons in the vertical direction compared with the original circle
area of the local outlier factor detection algorithm, especially in a quite high noise rate environment in
relatively rough terrain.

The ellipse searching area is determined by the ratio of the major and minor axis, the empirical
ratio (a:b = 6:1) used for SIMPL data here is based on our previous testing results with 30 different
MABEL/MATLAS data. Figure 15 shows the accuracy respond to various combinations of a
and b. It can be seen from the figure that the four statistical indicators including accuracy, kappa
coefficient, specificity, and F1, become stable at the ratio of 6:1. Although there is a small increase for
specificity and F1 at the ratio of 8:1, the overall accuracy and kappa coefficient does not necessarily
increase accordingly.

Figure 15. The accuracy respond to different ratios of the ellipse searching area.

Furthermore, the detected photons which belong to the TOC, ground and within the canopy
are also well depicted by the moving window technique. The canopy and ground surface extracted
by applying the cubic spline interpolation showed good results in our study site. These results
demonstrate that the noise filtering and surface extraction methods we implemented work well for
SIMPL data in the Howland site, and could be potentially useful to extract forest photons from
ICESat-2 data.

The results of co-registration between the SIMPL and G-LiHT data show that the geolocation
problem between the SIMPL and G-LiHT data has been improved by extracting and examining the
difference between these two profiles. In addition, validation results further confirmed the relatively
good consistency from both the visual and statistical indicators. These findings proved that this
moving profiling method would help to co-registration of the SIMPL and G-LiHT data, and could
be further applied to match satellite data from ICESat-2 with other sources of remote sensing data.
However, our method can only improve the relative matching result; we would expect to obtain a
more accurate longitude–latitude geolocated photon set by introducing techniques like ground control
points in the future.
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The sensitivity analyses between the SIMPL and G-LiHT data in Howland site for different scale
sizes are summarized in Figure 16. It can be seen that the coefficients of determination show clear
increases with a larger scale size for most metrics. Interestingly, the max tree height related metrics
(i.e., maxH and h99) do not necessarily give a better accuracy result with a larger scale size, where the
R2 dropped about 0.1 from 40 m to 50 m. The results also indicate that 40 m is the optimal scale size for
estimating the max tree height with the highest value of R2 and the lowest value of RMSE. In addition,
it can be seen that h99 has better overall accuracy compared with maxH. One possible explanation is
that the mechanism of the photon counting approach might miss hitting the very top of the canopy,
resulting in the underestimation of the actual canopy profile. Another possible reason could be that
some signal photons near the TOC were misidentified as noise photons, which would also likely add
some uncertainty.

For the mean tree height related metrics (i.e., meanH and h50), the overall accuracies are higher
than the max tree height related metrics in the same scale sizes, especially when the scale size is over
20 m. Also, we would expect a higher accuracy at the scale size of 50 m compared with other sizes,
due to a relatively homogeneous forest type in our Howland site. However, it is also noticeable that
there is a very small drop from 0.41 to 0.4 when the scale size increased from 16 m to 20 m for h50,
suggesting that meanH has a better response than h50. Furthermore, the canopy cover related metrics
(i.e., Percentage) also showed good relationships with the metrics from the G-LiHT data, which is
likely because the forest closure is very high in the study site, as it can be seen that canopy cover cases
which are over 80% contributed a large portion of all observations. Similarly, for the data variation
related metrics (i.e., std and CV), we could expect a higher accuracy with a large scale size, since that
more points would be included at a larger size, and there would be more likely the two datasets would
show similar spatial distributions.

Furthermore, validation using the field measurements showed that the geolocation corrected
G-LiHT profile has a relatively good consistency with field measurements compared with SIMPL.
Although the mean absolute error of SIMPL is relatively low, the other two indicators show an error
around 5 m. The possible explanation is that the SIMPL trajectory within our stem map is less than
200 m, resulting in a small number of observations especially for large scale sizes.

For optimal scale size, the line plot suggested that the best scale was not consistent across the
various metrics, but observations from the boxplot indicated that there exists an increasing tendency,
as the median value of accuracies for all metrics increased with a larger scale size. It is also noticeable
that for scale sizes from 30 m to 50 m, the median values of accuracy are over 0.5, compared with
around 0.4 for the scale size of 20 m, suggesting these would be relatively good statistical sizes for the
estimation of forest parameters.

Theoretically, a large scale size would have better estimation results due to a more accurate
profile is formed with more points been included, and most of the metrics indeed proved the best
accuracy occurs at the size of 50 m. However, only for max tree height related metrics (i.e., maxH
and h99), the optimal scale is 40 m rather than 50 m. To understand this inconsistency of these
findings, we further analyze the relative error distribution of different bins for metrics at various
scale sizes shown in Figure 17. These distributions are computed from the relative errors between the
measurements from SIMPL and G-LiHT, and depicted with box-and-whisker plot overlaid with fitting
lines, which are connected using the median values (center line) within each boxplot.
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Figure 16. The sensitivity analyses between the SIMPL and G-LiHT data in Howland site for different
scale sizes.

The distributions of relative errors within each bin size show variability that generally decreases
from scale sizes of 10 m to 50 m. This variability is significant for the scale size of 10 to 30 m, especially
for metrics such as Percentage, std, and CV. For these metrics, the one to one comparison for bins with
lower values at smaller scales would more likely bring uncertainties due to fewer points come from
photon counting LiDAR. Furthermore, the regression lines across the whole bins become increasingly
linear, and the ’whiskers’ become shorter, indicating a tendency closer towards the center. In addition,
it can be seen that the median value of the boxplot for height above 30 (35 in the graph) is closer to
0 at the size of 40 m, as well as the bins in the lower value side. This indicates that the size of 40 m
has better estimations in the low and high tree heights, which could be more trees are included for
the size of 50 m, and the dynamic range of the tree heights has been enlarged due to more trees are
introduced with a larger scale size. However, this does not contribute a better estimation of maxH due
to the photon counting approach. In the meantime, it brings some lower and higher values than the
previous scale size, resulting in a potential loss of accuracy.
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Figure 17. The relative error distribution of different bins for metrics at various scale sizes. The vertical
y-axis represents the relative error (measurements from G-LiHT are used as reference values);
the numbers in horizontal x-axis represent certain bin sizes. For example, in maxH graph, 15 stands
for tree height within 0–15 m; 20 stands for 15–20 m; 25 stands for 20–25 m; 30 stands for 25–30 m;
35 stands for tree height above 30 m.

These findings are consistent with previous waveform LiDAR studies which showed that LVIS
data (with a footprint size of 25 m in diameter) gives better estimation than GLAS data (with a footprint
size of 70 m in diameter) [41,42]. It is also confirmed by simulation studies which prove the optimal
footprint diameters of 25 and 30 m [43]. Also, study focus on MABEL data showed similar findings
that 50 m is not always the optimal size to estimate the maxH [28].

The sensitivity studies showed the relatively good performance of the SIMPL data for dense
conifer forest in our Howland site, but still it is not as good as the discrete return LiDAR system
G-LiHT. We believe that better results could have been obtained if more accurately geolocated photons
could be provided, despite the work we have done to match the SIMPL data. The SIMPL data used
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here is the Release 2 version, which is a preliminary work to produce geolocated SIMPL data in an
HDF5 format. Also, the stability of the bias results within and between flights during a deployment has
not been evaluated in detail, so the geolocated data are not considered to be fully calibrated. However,
the 532 nm data from SIMPL is the same working wavelength as ATLAS, hence it is useful to inform
methods for forest parameter estimation using ICESat-2 data.

6. Conclusions

This study implemented noise filtering and co-registration methods for SIMPL data at 532 nm, and
further investigated the sensitivity of retrieval of forest parameters from SIMPL and G-LiHT data from
a dense conifer forest in Howland for different scale sizes. The quantitative analyses and validation
from the field measurements proved these metrics could contribute to the inputs of inversion models.
We further found that h99 and meanH are good indicators for the estimation of max and mean tree
height, and Percentage gives a good correspondence to describe canopy cover. In addition, std and CV
both confirmed the similar spatial variations of these two datasets. We also found that the optimal
scale size is around 50 m for the estimation of forest parameters. Results from the SIMPL data showed
mean absolute error in height of 2–3 m, and fractional cover correlation with R2 of 0.6. While more
accurate results were possible with the dense spatial sampling of the discrete return G-LiHT, such
dense sampling would not be available from satellite, and better estimations could be expected by
integrating other sources of remote sensing data with the photon metrics we propose. These findings
are of direct relevance to the estimation of forest parameters using photon counting LiDAR and could
be of use for future applications of ICESat-2 vegetation studies.
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