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Abstract: Building detection using airborne Light Detection And Ranging (LiDAR) data is the
essential prerequisite of many applications, including three-dimensional city modeling. In the paper,
we propose a coarse-to-fine building detection method that is based on semi-suppressed fuzzy
C-means and restricted region growing. Based on a filtering step, the remaining points can be
separated into two groups by semi-suppressed fuzzy C-means. The group contains points that
are located on building roofs that form a building candidate set. Subsequently, a restricted region
growing algorithm is implemented to search for more building points. The proposed region growing
method perfectly ensures the rapid growth of building regions and slow growth of non-building
regions, which enlarges the area differences between building and non-building regions. A two-stage
strategy is then adopted to remove tiny point clusters with small areas. Finally, a minimum bounding
rectangle (MBR) is used to supplement the building points and refine the results of building detection.
Experimental results on five datasets, including three datasets that were provided by the International
Society for Photogrammetry and Remote Sensing (ISPRS) and two Chinese datasets, verify that
most buildings and non-buildings can be well separated during our coarse building detection
process. In addition, after refined processing, our proposed method can offer a high success rate for
building detection, with over 89.5% completeness and a minimum 91% correctness. Hence, various
applications can exploit our proposed method.

Keywords: airborne LiDAR; building detection; fuzzy C-means; region growing; filtering

1. Introduction

Airborne Light Detection And Ranging (LiDAR) is an active Earth observing system that is
composed of an Inertial Measurement Unit (IMU), Global Positioning System (GPS), and a laser
scanner [1]. The primary purpose of LiDAR is to acquire high-accuracy three-dimensional (3D)
geospatial data of the Earth’s surface. Despite the fast development and integration of hardware
components over the past three decades, limitations still exist regarding data post-processing
algorithms; the current software systems are far from automatic in processing, even if a single task,
such as ground points extraction, is performed [2]. Object extraction from point cloud, in general, and
particularly building detection, pose challenges to multiple research communities [3,4].

Buildings are considered to be one of the most important components in urban areas. As airborne
LiDAR can now obtain high-density and high-accuracy roof data, building detection has become
one of the key steps in LiDAR data processing. Building detection is a prerequisite of city planning,
disaster assessment, digital mapping, transportation planning, and more [5–7]. In the LiDAR field,
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building detection means separating the points that belong to buildings from other points, which
can also be termed as building extraction [8,9]. The International Society for Photogrammetry and
Remote Sensing (ISPRS) has been committed to promoting the development of research that is related
to automatic building detection and construction in complex scenes using airborne LiDAR and image
data. During the last two decades, many researchers have uploaded their algorithms and experimental
results that are based on test data provided by ISPRS, and the related comparative analysis on their
precisions has been published [10]. However, the current research on building detection still faces two
problems [11,12]:

(1) There are various roof types, and most existing algorithms only focus on plane roofs, which may
be associated with a point cloud’s configuration. For example, the shape of curved roofs is similar to
that of vegetation. In addition, roof material can affect data density and might lead to missing data,
which presents difficulties in building detection.

(2) It is hard to achieve automatic building detection in complex scenes. Many existing algorithms
are intricate and they have particular requirements for source data. In general, the automation of
building detection is a long and arduous task.

Thus, it is of great importance to continue building detection research using airborne LiDAR
data. The main contribution of this paper is to introduce a novel building detection method that
is based on semi-suppressed fuzzy C-means clustering and restricted region growing. Unlike most
previous building detection methods, our method can effectively extract the elliptical roofs and
several attachment structures, like long-corridors and railings, which is beneficial to the subsequent
three-dimensional building’s modeling. The remaining contents of this paper are organized, as follows:
Section 2 briefly reviews the related work; Section 3 describes the principles and implementation steps
of our proposed method in detail; Section 4 presents and analyzes the experimental results, as well as
making comparisons with other algorithms; and, the main conclusions are provided in Section 5.

2. Related Work

As the main component in urban areas, buildings are some of the most important pieces of
fundamental geographic information. The main data sources for acquiring 3D building information
include image data and airborne LiDAR data [13]. Building detection has become a hot research issue
in airborne LiDAR data processing. It should be noted that building detection research in the airborne
LiDAR field mainly focuses on the extraction of points that are located on roofs and their attachments.
Many airborne LiDAR-related building detection algorithms have been proposed, and they all can be
categorized into two groups according to data source:

(1) Combining airborne LiDAR data and other data

In this group, image data is the most commonly used. The abundant spectral and texture
information in image data can be considered as a helpful complement to precise height information in
airborne LiDAR data [14]. However, in terms of improving classification, image data and the first echo
information of LiDAR data are not significantly different when compared to separating buildings and
vegetation only with the last echo information of LiDAR data [15]. Many researchers have adopted
the normalized Digital Surface Model (nDSM) and normalized difference vegetation index (NDVI) to
roughly remove vegetation areas, before refining the classification results by shape area thresholds [16],
spectral values [17], or texture features [18,19]. Additionally, some researchers have attempted to
combine Geographic Information System (GIS) data [20,21]. However, these methods unavoidably
involve multi-source registration issues, which can lead to decreased precision.

(2) Only airborne LiDAR data

The common methods in this group include Random Sample Consensus (RANSAC) and
three-dimensional Hough transform [11]. The RANSAC algorithm [22] is robust and widely adopted
in building plane detection [23]. However, RANSAC is prone to finding pseudo planes and its
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computational efficiency significantly decreases with an increasing amount of point cloud data [24].
To solve this problem, [25] adopted weighted RANSAC to eliminate pseudo planes, and the weight
function considered the relationship between points and planes. In their paper, they also defined
an error suppression ratio coefficient to measure error distribution between the true plane and the
pseudo plane. Their experimental results showed that the proposed method could improve the ability
of RANSAC in plane identification efficiently. RANSAC has been combined with a least squares
algorithm to extract both plane and curved roofs and enhance the robustness in building detection [26].
The classical Hough transform has been mainly used in two-dimensional images for describing lines,
circles, or other shapes [27]. The Hough transform was introduced into point cloud data processing for
detecting planes and spheres, which combined several constraint conditions, such as local planarity
and normal vector consistency [28]. Hough transform was extended further to detect arbitrary shapes,
independent of objects’ direction and scales [29]. However, their experimental results were easily
affected by sampling intervals, when sampling in parameter space.

A region growing algorithm is also often used in building detection, and it is simple and easy
to operate; however, it only works well when the initial seed points are of high quality, and it is
prone to excessive growth [30]. A novel building detection method was proposed while using robust
voxel-based region growing, and combining some geometric constrains, such as smoothness, continuity,
and convexity [31]. Their experimental results showed it could work efficiently in a complex situation,
with an overall quality measure better than 0.6. Clustering algorithms can also be adopted to measure
the similarity between points and segmented LiDAR data [32,33]. A clustering algorithm was used
for curved roofs to efficiently extract building area, by depicting the contour lines of the test area,
clustering those contour lines with similar height values, and combining several geometric constraints,
such as connectivity and smoothness [33]. In addition, the profile analysis method was introduced into
point cloud data processing to identify plane features, but it was invalid for the roofs with complex
shapes [34].

Supervised learning algorithms are also very popular in point cloud classification [9,35,36], which
are generally composed of three steps, including sample training, feature extraction, and classification.
However, the classification precision of these methods is greatly dependent on the quality of sample
points, and the results are sometimes hard to explain [37].

3. Methodology

In general, building detection algorithms focus on the local features of a certain point to determine
whether it belongs to buildings or not [9,25]. From a local perspective, the ground points show similar
characteristics to building points, such as planarity and height continuity, which will affect the building
detection results. Hence, in this paper, we provide a building detection workflow on the basis of
ground point extraction (termed as filtering in the LiDAR field [3,38]). The whole process includes
three main steps: filtering, coarse, and refined building detection. The details will be introduced in the
following parts.

3.1. Filtering

Originally proposed by [39], an improved progressive TIN (Triangulated Irregular Network)
densification (PTD) method for urban areas is proposed and adopted in the paper. In general, PTD is
an iterative process, which includes three steps [39]: (1) searching for initial seed points in the preset
grids, (2) constructing TIN by points in seed-point set, and (3) densification for the seed-point set. If no
new point has been added into a seed-point set, iteration immediately terminates, otherwise, back to
step (2). Here, one point Pi considered as a seed point should satisfy two essential requirements [39],
as shown in Figure 1: (1) the distance d between Pi and its corresponding TIN (P1P2P3) is shorter than
a threshold, (2) the angles (α, β, γ) between the corresponding TIN and lines connecting Pi to each
vertex of the TIN are smaller than a threshold.
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Figure 1. The diagram of progressive TIN (Triangulated Irregular Network) densification
(PTD) algorithm.

It should be noted that low noise points that are caused by the multipath effect could mainly affect
the accuracy of PTD. In other words, seed points in step (1) should exclude those low noise points.
Hence, in our improved PTD algorithm, an essential strategy is added in step (1), to judge whether the
selected “seed” point Pi belongs to low noise points or not. To work efficiently, the strategy should
be implemented based on sorting of regional height values. The strategy includes two necessary
requirements: (1) variance of distances from its k (20) nearest points to the plane estimated by these
points is smaller than a threshold (1 meter), (2) the height difference between the certain point to
the highest point in its cylinder-based neighborhood (as shown in Figure 2a [37]) is smaller than a
threshold (2.5 meters). If both of the requirements are satisfied, Pi can be considered as a seed point;
otherwise, the search for the new seed point again in the seed-point set without Pi. To avoid impacts
on subsequent building detection, those abandoned points are also labelled as ground points when
PTD is finished.

Figure 2. Neighborhood definitions: (a) Cylinder-based neighborhood; and, (b) Sphere-based
neighborhood. The red point means the current point and the blue points means its neighbor points.
“r” represents the radius of the neighborhood.

3.2. Building Detection

After filtering, the remaining unclassified LiDAR points mainly belong to two types of ground
objects, which are referred to as building and vegetation. An automatic coarse-to-fine building
detection method is proposed in the paper to improve the flexibility and automation of the existed
methods for complex roofs. To protect classification precision from sample selection, a clustering
algorithm, semi-suppressed fuzzy c-means, is herein considered to separate building points from
other points. Before that, feature extraction is an important and unavoidable step. Based on analyzing
point neighborhood information, a region growing algorithm is adopted to refine the building
detection results.
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3.2.1. Feature Extraction

As Figure 3 shows, planar information of point cloud data, like two-dimensional coordinates,
does not work in building detection. However, height value and its derivative statistics, such as height
variance and average, present an obvious difference between buildings and vegetation from the visual
point of view, as shown in Figure 3c. Thus, Table 1 lists the extracted features that were adopted in
the paper and Figure 2 shows the neighborhood definitions. Details of these features can be found
in [37,40,41].

Figure 3. The different views of airborne Light Detection And Ranging (LiDAR) point cloud data: (a)
Two-dimensional view; (b) Three-dimensional view; and, (c) Profile view. The color in the figure is
displayed by height values, which ascend from blue to red.

Table 1. The extracted features in building detection.

Features
Neighborhood Cylinder-Based Sphere-Based

Height-related Height variance
Height range

Eigenvalue-related Planarity Sphericity
Omnivariance Change of curvature

Plane-related
Surface roughness
Distance to plane

Density-related Point density
Point density ratio

Others Point count ratio

(1) Height variance
This feature is the variance of point height in the neighborhood.
(2) Height range
This feature is the maximum height difference between the highest height and the lowest height.
(3) Planarity

λP =
λ2 − λ3

λ1
(1)
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where λ1 > λ2 > λ3 represent the eigenvalues of the covariance matrix. This value is large if the
points in the neighborhood are coplanar.

(4) Sphericity

λS =
λ3

λ1
(2)

This value is large if the points in the neighborhood are discrete.
(5) Omnivariance

λO = 3
√

λ1λ2λ3 (3)

This feature is the structure tensor of the surface.
(6) Change of curvature

λC =
λ3

λ1 + λ2 + λ3
(4)

This feature describes the surface variation.
(7) Surface roughness
This feature is the standard variance of the distance between the points and the fitted plane.
(8) Distance to plane
This feature is the distance between the current point and the fitted plane.
(9) Point density
This feature is the density of points within a given neighborhood.
(10) Point density ratio
This feature is the ratio of point density in cylinder-based neighborhood to point density in

sphere-based neighborhood.
(11) Point count ratio
Similar to point density ratio, this feature means the ratio of point counts.

3.2.2. Coarse Building Detection Based on Semi-Suppressed FUZZY C-Means

Clustering algorithms belong to one of the most important unsupervised classification methods,
which divide the sample space into several groups by a certain similarity measurement [32]. Among
these algorithms, the fuzzy C-means (FCM) method is widely used [42]. FCM belongs to iteration
algorithms and it is evolved from hard C-means (HCM) [43]. For binary classification, HCM divides
the samples into two groups, 0 or 1, according to distance. Although HCM is simple and fast, the
classification precision is not always promising. FCM is proposed based on HCM, which changes the
values of class membership function from {0, 1} to [0, 1] [43]. Each sample point has a membership
degree for each class, and for one certain point, the sum of membership degree for different classes is 1.

Fuzzy clustering issues can be presented as the following equation [43]:

minJm(U, V) =
n

∑
j=1

c

∑
i=1

um
ij d2

ij (5)

where X = {x1, x2, . . . , xn} ⊂ Rs, s is the dimension of sample space, n is the number of samples,
c is the number of clustering classes, m > 1 is fuzzy factor, dij =

∥∥xj − vi
∥∥ is the distance between

sample point xj and ith cluster center vi, V =
[
vij
]

c×s; similarly, vi ⊂ Rs, fuzzy membership matrix
U =

[
uij
]

c×n satisfies Equation (5), and uij is the membership degree of xj belonging to the ith class,
which satisfies:

c

∑
i=1

uij > 1, 1 ≤ j ≤ n (5a)

uij ≥ 0, 1 ≤ i ≤ c, 1 ≤ j ≤ n (5b)
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n

∑
j=1

uij > 0, 1 ≤ i ≤ c (5c)

Thus, FCM can be considered as a constrained optimization issue. The steps of FCM include [43]:
(1) Initialize the cluster center V(0), the iterative index k = 0, the maximum iteration number K,

and the threshold ε > 0.
(2) Calculate the membership degree matrix U(k) while using Equations (6) and (7). Given

∀j, r, dij(k) > 0, then

uij =
1

c
∑

r=1

[[
dij[k]/drj[k]

] 2
m−1

] (6)

where i 6= r, if there exists j and r values that make dij(k) = 0, then

urj(k) = 1, uij(k) = 0(i 6= r) (7)

(3) Compute the cluster center Vi
(k+1) using the following equation:

Vi(k + 1) =

n
∑

j=1
um

ij (k)xj

n
∑

j=1
um

ij (k)
(8)

(4) If
∥∥∥Vi
‖k+1‖ −Vi

‖k‖
∥∥∥ < ε or k > K, iteration terminates immediately; otherwise, k = k + 1 and

back to step (2).
FCM enhances the optimizing capability of HCM, but it decreases the convergence rate [42]. As

such, a suppressed FCM (S-FCM) algorithm [42] has been proposed by introducing a competitive
mechanism. S-FCM adds a modification process for membership degree U(k) in step (2) of FCM. The
details can be described, as follows:

Given a certain sample xj, if the membership degree of xj belongs to the rth class, which is the

maximum in all classes, the degree value is labeled as urj,urj =
c

max
i=1

uij, and the membership degrees

of other classes for xj are labeled as uij, where 1 ≤ i ≤ c and i 6= r. Modify urj and uij by Equation (9).

urj
′ = αurj + (1− α)

uij
′ = αuij(i 6= r)

(9)

where α(0 ≤ α ≤ 1) is called the suppressed factor and 1− α is called the suppressed rate. 0.5 is the
recommended α [42].

It should be noted that the membership degree values for all points are modified in each
iteration [44]. S-FCM aims at improving the convergence rate of cluster centers. However, S-FCM only
considers the absolute values of the maximum membership degrees, which leads to the premature
convergence of cluster centers and unpromising clustering results. In addition, if the maximum of
membership degrees for a certain sample xj is close to 0.5, xj may be located in the boundary of several
clusters. In this situation, once all membership degrees are changed in this iteration, xj is likely to be
categorized into the wrong cluster. Therefore, we added the suppressed threshold Tα(0.5 ≤ Tα ≤ 1),
and Equation (9) can be rewritten as:

urj
′ =

{
αurj + {1− α , urj > Tα

urj, urj ≤ Tα

uij
′ =

{
αuij, urj > Tα

uij, urj ≤ Tα

(10)
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For a certain sample xj, only when its maximum of membership degrees is bigger than Tα, the
semi-suppressed FCM algorithm should suppress its non-maximal membership degree. In such a way,
the convergence rate is improved, and samples with large membership degree values still determine
the cluster centers. Subsequently, the unclassified points (except ground points) can be categorized
into three groups: suspected building points, suspected vegetation points and unclassified points. To
efficiently separate building points from vegetation points, we proposed a post-processing method
that is based on height constraints. Firstly, a big grid index is constructed to contain building points,
low vegetation points, and ground points as much as possible, and its radius can be set to five meters.
If the height difference between one certain suspected building (or vegetation) point and its nearest
ground point in the same grid is lower than two meters (the threshold is set with reference to [9,32]),
this suspected point is not considered as a building (or vegetation) point. Secondly, a small grid index
is constructed and its radius is set as twice the average point space. If the eight neighborhood grids
of the current grid are all empty, and the point number in the current grid is fewer than three, all of
the points in the current grid are considered as unclassified points. After post-processing, most low
vegetation that is close to the ground can be removed, further reducing the impact of vegetation on
subsequent building detection.

3.2.3. Refined Building Detection Based on Restricted Region Growing

After coarse building detection, the non-ground points are clustered into two groups: (1) mainly
includes points located on roofs; and, (2) mainly includes points located in the building boundary and
vegetation. It is noteworthy that building boundary points can be completed by region growing to
ensure the completeness of building detection. Thus, the proposed refined algorithm is designed for
the first group Lroof, and its steps include:

(1) For each xi in Lroof, if xj (i 6= j) in its neighborhood satisfies the region growing requirements,
and then add xj into Lroof and label xj as building points.

(2) If no new point has been added into Lroof, iteration immediately terminates; otherwise, back to
step (1).

Here, the region growing parameters should follow two requirements to achieve restricted
requirements: (1) improve the growth of plane regions and (2) slow down the growth of surfaces
with large curvature. Three parameters have been used in the refined algorithm for each point to be
classified, including (1) distance variance between points and the plane that is estimated by points in
the neighborhood (0.4 meters), (2) curvature variance of neighborhood points (0.05 meters), and (3) the
absolute height difference between the current point and the lowest (or highest) point (0.2 meters).
Figure 4 shows the local area difference of building and non-building point clusters after restricted
region growing, where green points belong to buildings and red points belong to non-building objects.

Figure 4. Area comparison of building and non-building point clusters before (a) and after (b) the
restricted region growing.
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Area threshold (20 square meters) is also commonly used in building detection to remove small
point clusters that may belong to vegetation or cars [5,7,30]. We adopt a two-stage strategy to remove
too small non-building point clusters:

(1) Set the buffer distance and merge nearby point clusters. Here, buffer distance should be set as
neither too small nor too large. If too small, several adjacent point clusters that belong to the same
object cannot be merged, which may lead to decreased completeness of building detection. If too large,
the non-building point clusters are likely impossible to remove. Thus, buffer distance is set as twice
the average point spacing according to point density. When the buffer zones of two point clusters
overlap, it should be considered that these two clusters are adjacent and can be merged together into
one cluster. As shown in Figure 5, different point clusters have been presented in different colors,
where blue, red, and yellow clusters are large point clusters, and green and white clusters are scattered
non-building point clusters.

Figure 5. Results of merging the adjacent point clusters.

(2) Remove the non-building point clusters using an area threshold. After merging, the area of
the building point clusters is large, in general, but the scattered non-building point clusters remain
almost the same as before merging.

Due to the restricted region growing parameters that were adopted before, building points cannot
be completely extracted. The missing building points are mainly located in two places: around roof
feature lines and roof attachments. For the former situation, a minimum bounding rectangle is used to
depict each point cluster, and these unclassified points that are located in the corresponding rectangle
and close to the adjacent building are also considered as building points. However, unfortunately, if
the points located in roof attachments are not detected during coarse building detection, and their
heights are much higher or lower than the adjacent buildings, those points are unable to be extracted
in region growing and remain missing, as shown in Figure 6, where the red points belong to buildings
and white points belong to the unclassified group.

Figure 6. The missing building points. The left figure (a) is the two-dimensional top view of several
buildings and the right figure (b) is the profile view of points within white rectangle in the left figure.
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4. Results

4.1. Data and Environment Desciption

Two test datasets were used to verify the efficiency of our proposed method, including:
(1) Airborne LiDAR data provided by the ISPRS [45], composed of three reference data sets,

as shown in Figure 7a–c, which are located in Vaihingen and obtained by Leica ALS50. The average
point density is approximately 4–7 points/m2.

(2) Two Chinese datasets. The average point density is approximately 5 points/m2, as shown in
Figure 7d,e.

Figure 7. Test datasets adopted in our proposed method (colored by height values).

Area 1: includes 37 buildings, mainly composed of dense and complex buildings and vegetation.
Area 2: includes 14 buildings, mainly composed of a few tall residence buildings that are

surrounded by vegetation.
Area 3: includes 56 buildings, mainly composed of several connected buildings and vegetation.
Area 4: includes two complex buildings with elliptical roof structures and

long-corridor attachments.
Area 5: includes 20 buildings, mainly composed of buildings and sparse vegetation.
All of the experiments were implemented in Matlab 2014b and the results were displayed in

LiDAR_suite (software developed by the authors).

4.2. Accuracy Evaluation and Disscussion

Figure 8 shows the filtering results of five test datasets using hill shading. According to the
visual results, the ground points have been extracted as much as possible, including low noise points.
In addition, the terrain relief has also been completely preserved.
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Figure 8. Filtering results of five test datasets (units: meter).

After filtering, the remaining points mainly include buildings, vegetation, and several tiny object
points, such as cars and pedestrians. Firstly, coarse building detection was implemented for those
remaining points. It should be noted that the membership degree threshold was set as 0.7, which
is helpful for not only extraction of building seed points, but also for the merging of adjacent point
clusters. In other words, when the maximum membership degree of one certain point is larger than
the threshold, it will be labelled as building (or vegetation); otherwise, it remains unclassified. Figure 9
shows the results of coarse building detection for five test datasets, where the yellow points are mainly
roof points, whilst the blue points are building boundary points and vegetation points. Note that the
subsequent refined building detection algorithm was only implemented for yellow points.

Figure 10 illustrates the results of restricted region growing for five test datasets. To depict
the comparison of building and non-building point clusters before and after the restricted region
clearly grows, two colors are shown in the figure according to their true labels, where yellow means
buildings and blue means non-buildings. As seen from the figure, the proposed restricted region
growing strategy simultaneously ensures the rapid growth of building point clusters and slow growth
of non-building point clusters. In addition, due to a few buildings and a big area difference between
buildings and non-buildings, building points have been almost correctly detected in Area 2.
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Figure 9. Results of coarse building detection for five test datasets.

Figure 10. Cont.
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Figure 10. Results of the restricted region growing strategy for five test datasets.

Besides, if the roof structure is relatively simple and consists of planes with low slope, the building
points can be almost detected after the restricted region growing. However, if the roof structure is
complex, for example, a dormer window on the roof, the points located in these attachments may
be omitted.

A two-stage strategy was subsequently adopted, as shown in Figure 11. The buffer distance
was set as twice the average point spacing. If the two-dimensional Euclidean distance between two
points is shorter than the threshold, the two points were considered as belonging to the same cluster.
Meanwhile, small grids were constructed to calculate the area of each point cluster. The remaining
points after the two-stage strategy were considered as the building seed points.

Figure 11. Results of the two-stage strategy for five test datasets.
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Non-building point clusters can be removed after the two-stage strategy. However, some tiny
buildings, such as the white circle in Figure 10b, were wrongly removed. Unfortunately, these points
were unable to be added during the subsequent process. Finally, MBR was used to refine the results of
building detection. Figure 12 shows the final results of the proposed building detection for five test
datasets, where red rectangles in (a) to (c) are reference building vectors that are provided by ISPRS.

Figure 12. Final results of the proposed building detection method for five test datasets.

As seen from Figure 12, most buildings can be correctly detected by our proposed method. It
should be noted that our method succeeded in the extraction of an elliptical roof and several attachment
structures, like long-corridors and railings, as shown in (d) Area 4 and (e) Area 5. However, white
circles in (d) and (e) present several wrongfully classified points. The reasons may include: (1) points
within the white circle in (d) are located in a large square, which have not been efficiently eliminated
during the proposed process; (2) points within the white circle in (e) are located on dense vegetation
with a similar height as the adjacent buildings.

For quantitative evaluation, three indicators: completeness (Comp), correctness (Corr), and
quality (Q), are adopted to evaluate the precision of the building detection results. The equations are
described, as follows:

Comp = ‖TP‖
‖TP‖+‖FN‖

Corr = ‖TP‖
‖TP‖+‖FP‖

Q = ‖TP‖
‖TP‖+‖FN‖+‖FP‖

(11)

where ‖TP‖ is the number of correctly classified building points, ‖FN‖ is the number of omitted
building points, and ‖FP‖ is the number of wrongly classified building points.
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Table 2 lists the precision of our building detection method. For the ISPRS datasets, we compare
our method with RANSAC [22], reference [46], reference [6], and reference [7].

Table 2. The precision of our building detection method (%).

Data Precision RANSAC Awrangjeb Du Huang Ours

Area 1
Comp 870.0 83.8 93.6 91.8 95.6
Corr 95.2 96.9 94.5 98.6 94.2

Q 83.3 81.6 88.8 90.6 90.2

Area 2
Comp 91.0 85.7 94.6 87.3 89.5
Corr 99.2 84.6 95.4 99.0 97.3

Q 90.4 74.2 90.5 86.5 87.3

Area 3
Comp 94.7 78.6 93.9 90.2 95.1
Corr 98.4 97.8 94.7 98.1 95.8

Q 93.3 77.2 89.2 88.7 91.3

Average
Comp 90.9 82.7 94.0 89.8 93.4
Corr 97.6 93.1 94.9 98.6 95.8

Q 89.0 77.7 89.5 88.6 89.6

Area 4
Comp / / / / 93.2
Corr / / / / 91.0

Q / / / / 85.2

Area 5
Comp / / / / 96.9
Corr / / / / 91.2

Q / / / / 88.6

Table 2 shows that our method had similar average values to other algorithms, except [46], as well
as a better quality. For Area 1, Area 3, and average values, our method achieved the best completeness
and the second-best quality. It should be noted that our method performed worse in the completeness
and quality of Area 2, due to the missing building in Figure 10b. However, based on the complete
extraction of other building points, the correctness of Area 2 remained satisfactory. For the two Chinese
datasets, our method was able to achieve both reliable and promising accuracy with correctness and
completeness for both better than 91%. Additionally, the quality of Area 4 was relatively low, due to
the many building attachments.

5. Conclusions

Building detection has been a hot topic in the airborne LiDAR field for at least two decades. Due
to varied types of buildings in the real world, although there are a lot of building-related methods,
fully automatic and high-accuracy building-related algorithms are still urgently required. It should
be noted that, from the view of a point cloud’s configuration, the building points are distinguishable
from vegetation and ground points. In this research, we proposed a coarse-to-fine building detection
method that is based on semi-suppressed fuzzy C-means and region growing. As the whole workflow
was implemented on the basis of filtering, we also improved the classical PTD algorithm to extract
the ground points as much as possible, also including low noise points. Based on filtering, the
proposed semi-suppressed FCM was adopted to coarsely detect building points. Eleven features
were generated from raw airborne LiDAR data to distinguish the building and non-building points in
coarse building detection. The proposed region growing method perfectly ensures the rapid growth
of building regions and slow growth of non-building regions, which enlarges the area differences
between building and non-building regions. Refined building detection was performed based on
restricted region growing. Furthermore, no sample points are herein required, which avoids probable
different classification precisions that are caused by sample selection. The experimental results verified
that our method could efficiently separate buildings from non-buildings in various scenes. In addition,
our method also succeeded in the extraction of an elliptical roof and several attachment structures,
such as long-corridors and railings, which would be beneficial to the subsequent three-dimensional
building’s modeling. In terms of precision, our method achieved promising results for the ISPRS
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datasets and the two Chinese datasets, with completeness better than 89.5%, correctness better than
91.0%, and quality better than 85.2%.

However, in the current research, we mainly focused on urban datasets for the filtering and
building detection process. Hence, how to detect buildings in mountainous regions with steep slopes
efficiently is our future work. In addition, there are several parameters that are adopted in our
method, which limited the full automation of building detection. We will also attempt to construct a
self-adaptive building detection algorithm in the next step.
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