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Abstract: The Global Flood Detection Systems (GFDS) currently operated at the European
Commission’s Joint Research Centre (JRC) is a satellite-based observation system that provides
daily stream flow measurements of global rivers. The system was initially established using NASA
Advanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E) Ka-band passive
microwave satellite data. Since its initiation in 2006, the methodology and the GFDS database have
been further adapted for data acquired by the Tropical Rainfall Measuring Mission (TRMM) GOES
Precipitation Index (GPI), the AMSR2 sensor onboard the Global Change Observation Mission – Water
satellite (GCOM-W1), and the Global Precipitation Measurement (GPM) GPM Microwave Imager
(GMI) sensor. This paper extends the same flow monitoring methodology to low frequency (L-band)
passive microwave observations obtained by the European Space Agency (ESA) Soil Moisture and
Ocean Salinity (SMOS) sensor that was launched in 2009. A primary focus is tropical climate
regions with dense rainforest vegetation (the Amazon, the Orinoco, and the Congo basins) where
high-frequency microwave observations from GFDS reveal a significant influence of vegetation cover
and atmospheric humidity. In contrast, SMOS passive microwave signatures at the much lower
L-band frequency exhibit deeper penetration through the dense vegetation and minimal atmospheric
effects, enabling more robust river stage retrievals in these regions. The SMOS satellite river gauging
observations are for 2010–2018 and are compared to single-sensor GFDS data over several river
sites. To reduce noise, different filtering techniques were tested to select the one most suitable for
analysis of the L-band time series information. In-situ water level (stage) measurements from the
French Observation Service SO Hybam database were used for validation to further evaluate the
performance of the SMOS data series. In addition to GFDS data, water stage information from Jason-2
and Jason-3 altimetry was compared to the microwave results. Correlation of SMOS gauging time
series with in-situ stage data revealed a good agreement (r = 0.8–0.94) during the analyzed period
of 2010–2018. Moderate correlation was found with both high frequency GFDS data series and
altimetry data series. With lower vegetation attenuation, SMOS signatures exhibited a robust linear
relationship with river stage without seasonal bias from the complex hysteresis effects that appeared
in the Ka-band observations, apparently due to different attenuation impacts through dense forests at
different seasonal vegetation stages.
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1. Introduction

Since the earliest Earth-orbiting satellites, remote sensing has been used as a tool to understand
and map inundation extent from space. Current satellite technology has successfully addressed the
crucial need for hydrological measurements over remote, inaccessible, and extensive locations across
the Earth. Hydrological observations from space deliver timely information over vast spatial extents
from combinations of satellite sensors and methodologies. Alsdorf and others provide a comprehensive
review about measuring hydraulic parameters and hydrology from space [1]. That paper summarizes
fundamental principles of in-land water observations from different satellite sensors, including the
existing (circa 2007) and planned space missions for water measurements.

Hydrological applications were among the first major uses of optical satellite sensors since the
launch of the first Landsat sensor [2]. Optical satellite data have been widely applied in operational
flood mapping for decades [3–7], with various algorithms developed to generate automated flood
maps from different data sources. Moreover, efforts have been made for automated near real-time
operational global flood mapping with the Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument on the Terra and Aqua satellites [8]. Yet, methods based on optical sensors are limited
by cloud obscurity, hindering systematic observations in tropical climates where cloud cover can be
persistent and pervasive.

Water extent mapping is achievable with synthetic aperture radar (SAR) images since water
surfaces are generally characterized by weak backscattering due to the specular reflection of incidence
microwave signals [9]. The imaging capability of SAR sensors and the weather independent and active
illumination capabilities enable SAR data to be extensively used for flood extent mapping [10–14].
Besides water extent monitoring, in-land water surface elevation can also be measured by profiling
radar altimetry and by SAR interferometry. SAR-based water level estimates are confounded, however,
by difficulties with the acquisition geometry (e.g., overlay effects), wind roughening of the water
surface, and vegetation cover, including perennial, seasonal, and transient floating vegetation [15].

Under favorable conditions, altimetry techniques provide a reliable source of water surface
elevation measurement comparable to in-situ stage measurements. For the past 20 years, nadir
altimetry satellite missions have been successfully used to monitor surface elevation of rivers and lakes.
Since the early 1990s, altimetry missions like TOPEX/Poseidon mission (1992–2006) and its successor
Jason-1, 2, 3 generations (from 2001 to ongoing), Environmental Satellite (ENVISAT) Radar Altimeter 2
(RA-2) (from 2002 to 2010), or CryoSat-2 (2010—ongoing) have been successfully monitoring in-land
water bodies [16–19]. The Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS)
in France and the United States Department of Agriculture, Foreign Agricultural Service (USDA-FAS)
are routinely monitoring lake and reservoir height variations of many large continental water bodies
around the world [20,21].

A limitation of satellite altimetry is that the repeat cycle of sensors ranges between 10 and 369 days.
For hydrological observations, the low temporal sampling frequency fails to detect flood extremes
or rapid changes in river flow conditions. Moreover, the acquisition geometry enables water level
measurements only at intersections of the satellite track with the river channel [19]. For this reason,
due to the ground track spacing of altimetry satellites, virtual stations for water level observations are
usually located kilometers apart with some much larger spatial gaps.

Passive microwave sensors can overcome these limitations for hydrological applications in
both repeat cycle and spatial sampling distances. The first pioneer study to estimate flooded area
was completed by Stippel [22] in the Amazon basin using the Scanning Multichannel Microwave
Radiometer (SMMR). Inundation extent was derived using linear mixing models of the microwave
emission from major landscape units and given the low spatial resolution of the SMMR data.
Observations by SMMR were only available at weekly intervals. Since then, new generation microwave
instruments have been launched with improved performance and more frequent revisit capability.
The Tropical Rainfall Measuring Mission (TRMM) satellite from 1997, which extended over 17 years,
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measured spatial and temporal variation of tropical rainfall and was used to support hydrologic
modeling but without a global coverage [23].

The Advanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E) launched
in 2002 was a passive microwave radiometer capable of global monitoring on a nearly daily basis.
Several researchers improved hydrological modelling using AMSR-E data [24–26], but none of them
attempted to directly monitor river flow on a systematic, global, daily basis [7]. The first systems
undertaken to monitor global river flow include the Dartmouth Flood Observatory (DFO) River Watch
and the European Commission’s Joint Research Center (JRC) Global Flood Detection System (GFDS).
Both are based on the methodology developed by Brakenridge and others [27] from the first principle
of Maxwell’s equations establishing the fundamental physics of electromagnetic emission and the
observed and modeled sensitivity of certain frequencies of emitted microwave emission over the
areal coverage of water versus land. In particular, the JRC’s GFDS offers a unique passive microwave
satellite gauging database with long-term, systematic, and operational observations of rivers across
the world [28].

Microwave observations of river discharge changes have been successfully calibrated to river
discharge units using a global flood hydrology model [29]. Such observations have served as a basis
for further scientific investigations, such as the analysis of reoccurring events or the effects of global
climate change around the world [30]. The GFDS database has also been extensively applied in
independent studies [31–35]. The gauging time series have been used for a range of applications, such
as estimating stream flow [27,36], river discharge nowcasting and forecasting [37], model calibration,
and validation of flood events. Case studies [38–40] demonstrate its relevance to filling the missing gap
in hydrological observations around the globe. Since its launch in 2006, the GFDS database has been
extended with data from successive passive microwave satellites: The Tropical Rainfall Measuring
Mission (TRMM), the AMSR2, and the Global Precipitation Measurement (GPM) Microwave Imager
sensors [41,42]. Furthermore, GFDS observations have been combined with optical data to monitor
and improve discharge estimations [40,43].

In 1995, Mertes [44] recognized that water surface observations from a remote sensing perspective
of the Amazon River beneath flooded vegetation is difficult. Other tropical basins such as the Congo
or the Mekong have similar dense vegetation cover. High-frequency passive microwave sensors used
in the GFDS model generally show low performance in detecting flow variations occurring in densely
vegetated areas. This might become a critical issue over tropical rainforests, where high-frequency
microwave radiation can be obscured by dense vegetation canopy characterized by highest leaf area
index (LAI) 5–7 values compared to other climate regions [45]. In this regard, we investigate here
the use of passive microwave data from the European Space Agency (ESA) Soil Moisture and Ocean
Salinity (SMOS) mission operated at a lower frequency in the L band. The primary focus is the tropical
climate zone and densely vegetated regions.

Launched in 2009, SMOS is an ESA satellite carrying a two-dimensional (2D) coherent passive
radiometer operated at the L-band frequency of 1.4 GHz, much lower than the Ka-band frequency of
36.5 GHz used in the GFDS. SMOS uses a coherent interferometric processing method, whereas the
Ka-band passive data are from a traditional passive microwave acquisition method using intensity
measurements. Over land, SMOS enables measuring the Earth surface emissivity related to soil
moisture in the top few centimeters of the soil [46]. SMOS data are broadly used in studies for soil
moisture retrieval over land and sea salinity mapping over oceans [47,48]. Yet, only limited case
studies apply SMOS data directly to flood mapping or river flow observations. Vittucci et al. [49] uses
SMOS data as input to hydrological forecasting but not for systematic river flow monitoring. Parrens
et al. [50] map water surface fraction over the Amazon basin by SMOS in a spatial context but not on
a pixel-based single-observation methodology. We now compare the performance of low and high
frequency passive microwave data to observe changing flow conditions over rivers in the tropical
climate on a systematic basis and to provide physical insights into the behavior of different passive
microwave sensors in the selected study areas.
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2. Methods

2.1. GFDS Single Sensor Method

The GFDS single sensor methodology was initially developed for Ka-band AMSR-E passive
microwave senor data. The observations of the descending orbit, H polarization, and 36 GHz frequency,
were found to be sensitive to water surface changes. Brightness temperature (Tb) measured by a
passive microwave radiometer is related to the physical temperature (T) and the emissivity (ε) of the
surface given by:

Tb = ε T (1)

In general, a lower Tb(m) occurs over a footprint containing water bodies compared to a higher
Tb(c) over a footprint on land without surface water. Under a constant physical temperature T,
Tb(m) decreases over locations along river channel, where rising water level (river stage) causes a
corresponding increase in water surface extent. However, microwave radiation is also influenced
by many factors including physical temperature (T), permittivity (P), surface roughness (R), and soil
moisture (θ):

Tb = f (T, P, R, θ) (2)

Information related to surface water change is primarily conveyed in the emissivity controlled by
the effective permittivity over the targeted area, while other factors such as roughness, soil moisture,
vegetation cover, and atmospheric conditions may affect the brightness temperature as measured by
an orbiting satellite radiometer above the atmosphere. According to (1), the physical temperature T
must be cancelled out in order to get at the emissivity ε. This is achieved approximately by dividing
the measurement Tb(m) value received over a river channel (measurement pixel) by a calibration
observation Tb(c) not influenced by water change (calibration pixel), which is chosen in the vicinity of
the measurement pixel, thus the physical temperature T is similar thanks to the long correlation length
of regional temperature variability [27]. In this method, the signal ratio is defined by the relationship:

C/M Ratio = Tb(c)/Tb(m) (3)

where Tb(c) and Tb(m) are the brightness temperature of the calibration and measurement
pixel, respectively.

The time series of the extracted C/M ratio results in systematic satellite based hydrograph
measurements for selected river sites with a daily or near-daily temporal resolution. With this satellite
method, the detection of flow condition changes over ungauged and inaccessible remote river channels
is, in principle, feasible from space on a frequent temporal sampling basis in the tropics and higher
latitudes. The single source GFDS database includes hydrological time series of more than 3000 satellite
gauging sites over various river basins around the world (Figure 1). The data include time series from
1997 to present. As new satellites were launched, the initial data series based on AMSR-E satellite
data was extended to AMSR2, backwards (using TRMM, to 1997), and GPM high frequency passive
microwave sensor data (all at ~37 GHz).

Several studies have shown good correlation values between these Ka-band satellite-retrieved
river hydrographs and in-situ gauging measurements [27,28]. The best-performing sites were found in
arid and semi-arid climates such as in North Africa, where the low influence of vegetation and low
atmospheric humidity conditions provide high signal-to-noise ratios, and the changes in the C/M
signal ratio are mostly dependent on water surface area changes and discharge variations. A worse
uncertainty occurs in the tropics, where dense vegetation and humid weather conditions may cause
inconsistent signal time series [28].
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2.2. SMOS Data Processing

Satellite based river gauging time series were obtained from the SMOS data record covering the
period from January 2010 to December 2018. For a particular point on Earth, the SMOS acquisition
revisit time is between 1 and 3 days, and the complete surface is covered by the sensor in 3 days.
For this study, data were downloaded from the French Centre Aval de Traitement des Données SMOS
(CATDS) ground segment of the Centre National d’Etudes Spatiales (CNES). It provided SMOS daily
gridded data indicated as Level 3 (L3) and Level 4 (L4), which were global products generated from
swath data for each day stored in the SMOS Products Dissemination Service (SIPAD) database. Daily
gridded data included all brightness temperatures transformed from antenna frame to ground reference
frame. The products were bin-averaged in 14 angle classes reaching from 2.5◦ to 67.5◦. Ascending and
descending orbits were processed separately [51]. SMOS L3 daily grid products contained brightness
temperature (Tb) provided as the top of the atmosphere radiation in both vertical (V) and horizontal
(H) polarizations. L3 brightness temperature products were delivered using an open license and free
of charge basis [52].

To retrieve satellite hydrographs following the GFDS single sensor methodology [28], the SMOS
H-polarization, single inclination 10 (47.5◦), and descending orbit variables were extracted from L3
products with a pixel size of 25 × 25 km. Downloaded and compressed grid files were processed
in a MATLAB environment, and time series were extracted for the selected river locations. Daily
SMOS observations were provided in the Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0)
global grid (EPGS: 6933). The latitude-longitude locations of the predefined satellite gauging sites
were transformed into the gridded image coordinates to enable data extraction. The Geo2easeGrid
converter was used to transform latitude and longitude locations to corresponding row and column
values in the EASE2 grid [53].

To compare the Ka-band GFDS and the L-band SMOS based observations, the same methodology
and acquisition parameters were chosen for both. Thus, we used H polarization and inclination 47.5◦

to derive the gauging observations from SMOS data. Inclination 10 (47.5◦) was selected due to its
highest spatial coverage on a global scale. When using inclination 8 (37.5◦) on lower latitudes of the
study area, 20% more data gap appeared, and the time series were less complete.

The performance of inundation detection in the tropics is dependent on the capability to penetrate
dense vegetation to receive microwave emission from the ground beneath the canopy. With smaller
vegetation attenuation effects, lower frequency microwave radiation is less influenced by forest canopy
in these regions [49,50]. Thereby, we expected that SMOS brightness temperature results might exhibit
a better performance in monitoring river flow conditions or detecting flood events in tropical regions.
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The single-sensor GFDS method described in Section 2.1 was used to obtain satellite-based
gauging data for selected sites over the world. About 3000 gauging hydrographs were derived for the
period covering 2010 to 2018 globally on a nearly daily basis (Figure 1). Satellite gauging time series
(C/M signal) were calculated using the calibration and measurement observations in the same day.

To understand the behavior of L-band radiation in densely vegetated rainforests, study areas
were selected in the Amazon basin, the Orinoco catchment (both in South America), and the Congo
watershed in Africa. All the studied catchments revealed strong seasonal variations in their SMOS
C/M signals. In the Amazon region, observations with low noise were found over locations with wide
river cross-sections where large lakes are formed nearby the main channel. This can be explained by
the fact that the percentage of water surface coverage in the pixel is relatively high. Moreover, over
those locations, rising water level causes a significant increase in water extent on the level floodplain
without pronounced mountainous topography. Thus, not only the river width or water fraction but
also the floodplain morphology plays key roles in the performance of SMOS hydrographs in the
study area.

From dozens of potential observation sites, the locations selected for this study were where
significant C/M signal variations occurred in the SMOS time series during seasonal flow variations in
the tropics. As a result, around 20 sites were included for detailed study to assess the performance of
low-frequency SMOS flow observations in regions with dense tropical vegetation (Figure 2). Due to
the large pixel size of SMOS data (25 × 25 km) with the inherently low resolution at low frequency
(this is a trade-off compared to the finer resolution of high-frequency data), the selection of calibration
pixels was limited. In the Amazon, very few pixels were not influenced by water presence on the
ground. The annual periodical variations in microwave radiation of many calibration pixels are not
only influenced by land surface temperature and other terrestrial and vegetation factors but also by
small changes in water area fraction of each pixel.
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Figure 2. Location of analyzed SMOS-satellite gauging observations in the Orinoco and the Amazon
basins are shown on the left figure. Upper right figure shows the monthly average precipitation for
the Amazon River at Parintins, Brazil (near Site ID 1109), and lower right figure shows the monthly
average precipitation for the Orinoco River at Puerto Carreno, Colombia (near Site ID 1076) source:
allmetsat.com.

Locations of the observation/measurement pixels over the river channel were selected based on
previous remote sensing optical observations of the Dartmouth Flood Observatory. Satellite gauging
sites were selected where significant water area variations occurred during flood events between 1999
and 2005 [27]. The choice of calibration pixel can also influence the resulting C/M signal and change

allmetsat.com
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the amount of noise in the C/M time series. The GFDS processor attempts to address this issue by
automatically selecting the “driest” (brightest) pixel in a surrounding 9 × 9 pixel grid [54]. However,
this approach changes the location of the actual comparison pixel used, and all of the nearby “dry”
pixels vary somewhat in their microwave emission values. While both approaches introduce noise,
there are advantages to each. Thus: (1) a single, carefully selected comparison pixel (land parcel) will
drain input rainwater through discrete and relatively small channels, thus surface water area effects
on emission remain small. This provides a good “dry” comparison to the river measurement pixel
through the seasons; (2) the GFDS selection approach can be automatically implemented and thus
focuses attention on selection of robust river measurement pixels, where changing river discharge
correspondingly produces the most easily measured change in water surface areas.

In this study, a manual supervision of the location of the calibration pixels was essential to remove
calibration pixels showing signs of significant water presence. Then, to reduce noise of the satellite
hydrographs, the extracted time series were smoothed with different filtering techniques described in
Section 2.3.

A comprehensive analysis was carried out to evaluate the performance of SMOS-based
hydrological observations in the tropics. First, low frequency L-band datasets were compared to
high frequency GFDS data series. After that, SMOS-derived gauging measurements were compared
with in-situ river stage (water level) data to estimate uncertainty of flow observations and to validate
results in the study area of the Amazon, the Orinoco, and the Congo basins. The accuracy estimates
were based on water level (elevation) measurements obtained while SMOS datasets were observing
water extend variations on the floodplain. This was possible because water stage and water extent
are actually dependent variables over most natural flood plains. In a next step, nearby river altimetry
observations were compared to in situ-water level observations in order to compare the performance of
passive microwave satellite observations and satellite altimetry in the study area. Results are discussed
in Section 3.

2.3. SMOS Time Series Filtering

The SMOS C/M (signal ratio) time series revealed varying amounts of noise. To smoothen
time series and reduce noise, the initial GFDS methodology applied a 4-day (forward running mean)
temporal filter to its data series. However, this caused a slight shift of the measurement values in time
and resulted in a temporal delay during any sudden surface water change. To reduce this time delay,
different types of filtering methods were tested on the SMOS data to find the one most useful for this
specific application. The following types of filtering methods were applied and tested using MATLAB
functions:

• mean filter: moving average over given time window,
• median filter: moving median over given time window,
• peak envelope filter: smoothly varying estimate of highs and lows of a signal averaged in a given

time window [55],
• spline smoothening: cubic smoothing curve fitted to the data applying a parameter that controls

the degree of fit [55],
• local regression: locally weighted linear regression where smoothed value is determined by

neighboring data points defined within a given span [55].

All time series smoothing calculations showed similar temporal trends in general (Figure 3).
Opposite trends were only found in short time intervals of 10–20 days, which were considered
insignificant within the complete time series of 9 years. However, most of the filtering methods were
sensitive to outliers or extreme values except for the median filter, which appeared to form a stable
basis to produce smoothed satellite flow hydrographs. In the median filter, no temporal delay was
present in the calculation, and results were not sensitive to outliers. Thus, no data pre-processing was
required to eliminate extreme values in advance. The same filtering techniques were used in altimetry
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in-land water elevation measurements to filter elevation time series [19]. This indicated smoother
results could be achieved by using the spline filter in case of outliers with larger amplitude variations
and as compared to local regression or mean filter.

To evaluate the performance of different smoothing techniques, each filtered time series was
compared to river stage (water level) data from in-situ measurements in the selected study areas.
The best correlation was found when using the median filter. However, no significant variation of
the correlation values (δr = 0.1–0.02) of different filtering techniques was found during data analysis.
Whereas the uncertainty could be reduced by different filtering techniques, a major influence was
attributable to the location of the observation pixel as described in the previous section.
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3. Results

3.1. Performance of SMOS-Based River Gauging

The satellite signal time series of the Amazon River at the town of Parintins, Brazil (Site ID 1109)
shown in Figure 4 is characteristic of the SMOS-based Tb(c) and Tb(m) time series. The river site is
located in the tropical monsoon climate zone according to Köppen’s classification with dense tropical
rainforest vegetation. The dry season is from July to September with the hottest month being October.
Precipitation starts to increase at the end of the year with the highest amount of rain in February,
March, and April (Figure 2, top right). The climate is clearly reflected in the seasonal variation of the
hydrographic signal, a ratio of calibration (“dry” land) pixel Tb(c) over measurement pixel Tb(m) for
the selected river section and its floodplain. The maximum Tb(m) values during the driest month are
observed near the end of the year. In December, when the rainy season starts, the annual maximum
Tb(m) values around 250 K drop until the maximum floodplain water extent is reached with the
minimum Tb(m) values around 180 K in June and July. Due to the fact that inundation stays for several
months on the floodplain, minimum values only start rising in August and September, indicating the
start of the dry season. There can be a time delay in the timing between seasonal change of precipitation
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in the region compared to the water level or water extent in the river measurement pixel because it
takes time for increased surface water over the extensive landscape to reach the river [56].
Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 24 

 

 

Figure 4. SMOS based river gauging time series of the Tb(m) and Tb(c) pixel at the town Parintins, 
Amazon River, Brazil (Site ID 1109). The series show a strong seasonal variation of the wet signal and 
a relatively constant value of the dry signal not influenced by water coverage. 

The calculated C/M ratio after normalizing the calibration pixel value by the wet pixel value 
mostly removed the landscape-wide seasonal temperature trends. The ratio of the dry and wet pixel 
resulted in a more stable signal for hydrological observation from space, as shown in Figure 5. 

 
Figure 5. SMOS based time series of C/M satellite gauging signal at the town Parintins, Amazon River, 
Brazil (Site ID 1109). C/M signal is in proportional monotonic relationship with water level variations. 
Low C/M values (~1.2) refer to low river flow conditions, while high values (~1.5) indicate high flow 
conditions. 

Similar periodical fluctuations of the satellite signal were revealed along the Amazon River 
tributaries with a slight shift in the duration of the rainy season. For example, SMOS gauging 
observations along the Ucayali River in Peru (Site ID 1095), an upstream tributary of the Amazon 
River (shown in Figure 6) conveyed that high flow periods indicated by high C/M signal values 
around 1.12 generally appeared in May and June. In contrast, along downstream regions of the 
Amazon River (Figure 5, Site ID 1109), the peak shifted towards earlier months of March, April, and 
May. The SMOS signal clearly revealed local variations of the hydrographic conditions in the 
upstream and downstream region of the Amazon River and its tributaries. 

Figure 4. SMOS based river gauging time series of the Tb(m) and Tb(c) pixel at the town Parintins,
Amazon River, Brazil (Site ID 1109). The series show a strong seasonal variation of the wet signal and a
relatively constant value of the dry signal not influenced by water coverage.

The calculated C/M ratio after normalizing the calibration pixel value by the wet pixel value
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resulted in a more stable signal for hydrological observation from space, as shown in Figure 5.
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Figure 5. SMOS based time series of C/M satellite gauging signal at the town Parintins, Amazon
River, Brazil (Site ID 1109). C/M signal is in proportional monotonic relationship with water level
variations. Low C/M values (~1.2) refer to low river flow conditions, while high values (~1.5) indicate
high flow conditions.

Similar periodical fluctuations of the satellite signal were revealed along the Amazon River
tributaries with a slight shift in the duration of the rainy season. For example, SMOS gauging
observations along the Ucayali River in Peru (Site ID 1095), an upstream tributary of the Amazon River
(shown in Figure 6) conveyed that high flow periods indicated by high C/M signal values around
1.12 generally appeared in May and June. In contrast, along downstream regions of the Amazon
River (Figure 5, Site ID 1109), the peak shifted towards earlier months of March, April, and May.
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The SMOS signal clearly revealed local variations of the hydrographic conditions in the upstream and
downstream region of the Amazon River and its tributaries.

Regarding the GFDS dataset, time series were extracted starting from 2002 until the sensor stopped
operating in 2011. Its replacement, AMSR2, was launched in May 2012. Due to this discontinuity
between September 2011 and March 2013, the only satellite source of GFDS flow monitoring was the
TRMM 37 GHz signal.

Some of the studied SMOS satellite gauging sites showed similar trends compared to GFDS
observations. At other locations, a much stronger response of the SMOS C/M signal to water surface
change was found when compared to high frequency data (Figure 6).
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Figure 6. SMOS based river time series of C/M river gauging signal near the town Requena, along the
Ucayali River, Peru (Site ID 1095). Slight variation of the high flow periods arises from the regional
differences in the rainy season in the Amazon catchment. GFDS Ka-band gauging time series show
higher noise and less dynamic range than those of L-band SMOS satellite gauging. The figure illustrates
the more robust response of the SMOS data to river discharge changes.

The second largest river by discharge volume is the Orinoco River in South America. Similar
to the Amazon watershed, the Orinoco basin is situated in the tropical climate zone. The studied
gauging locations are located in the tropical monsoon and savannah climate zone, where most of
the precipitation falls from May to October, and dry season is from November until April. On the
upstream section of the river, the satellite gauging location near Puerto Carreno in Columbia (Site ID
1076) revealed a strong seasonal variation of the river extent (Figure 7). High flow periods were clearly
identifiable from the time series. The SMOS hydrograph showed the highest C/M values related
to the summer peak of the channel flow from July to September in the rainy season. The channel
exhibited a one to two month of delay between the peak flow and the highest watershed precipitation
(Figures 3 and 7). This agreed with the results of in-situ flow measurements. The satellite time series
also demonstrated that inundation could stay on the floodplain for at least two months at the observed
locations along the Orinoco and its tributaries, consistent with prior results found in the Mississippi
River [56].
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Figure 7. Performance of SMOS gauging signal downstream from Puerto Carenno (Colombia) along
the Orinoco River in Colombia (Site ID 1076). The site presents a strong response to water extent
changes in time.

Similar results were obtained by SMOS observations in Central Africa, where the Congo River
and its tributaries were studied. The wet season, which runs from October to May, is longer than
the dry season, which covers the remaining months. Precipitation is the lowest in July and August,
when almost no rain falls. Most precipitation is in November with an average of 253 mm. Due to the
low availability of in situ gauging stations as a consequence of the difficult economic and political
situations in the region, only three SMOS satellite gauging sites could be investigated in comparison to
ground-based data.

SMOS data performed well on sites upstream of Brazzaville, Republic of Congo, where one of
the three existing in-situ stage water level stations is located. In comparison with the high-frequency
GFDS data, SMOS signal data exhibited a stronger seasonal signal dynamic range, again indicating the
relevance of low frequency microwave radiometers for sensing rivers in densely vegetated forest areas.
An example is Site ID 1492 on the Congo River near Lucolela upstream Brazzaville. Figure 8 shows its
time series (Figure 8, left side) and its comparison with GFDS data series (Figure 8, right side). Tb(m)
pixel values revealed the annual change in dry and wet season with the lowest values from October
and November around 200 K related to high flow conditions. At the same time, the calibration or dry
pixel stayed relatively constant in time. Signals in the Congo watershed were noisier when compared
to tropical regions in South America. However, again, the low frequency data sensitivity to surface
water extent was higher when compared with high-frequency GFDS data of the same time period.
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Figure 8. Strong seasonal periodicity is found in Central African tropical region from SMOS gauging
data at Site ID 1492, Congo River near Lucolela upstream Brazzaville. Lower left graph shows Tb(m)
and Tb(c) pixel time series, upper left graph illustrates derived C/M signal. Upper right graph shows
the difference between the signal from L-band SMOS and GFDS Ka-band data. Lower right graph
shows monthly averaged precipitation measured nearby (source: allmetsat).

The performance of the three different microwave sensors used in GFDS during the period
2010–2018 was also studied. In the case of Site ID 152 on the Amazon River near Tefe, AMSR-E
(January 2010–September 2011) and TRMM (September 2011–March 2013) sensor data better reflected
the seasonal periodicity than AMSR2 (March 2013–ongoing) (Figure 9, upper panel). In other cases,
the time series were featuring a steadier source of water surface changes for AMSR2 coverage (from
September 2013 to present) when compared with AMSR-E and TRMM period; for example, at the
station Site ID 147 on the River Orinoco near Ciudad Bolivar (Figure 9, lower panel).
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smoothing spline method showed a relatively rapid increase and decrease in the seasonal water 
extent compared to Site 153 downstream on the Amazon River near the town of Itaquariara (Figure 
10 upper and lower panel). The first is on a narrower upstream section of the Amazon River with a 
less meandering river channel, while the second is located on the downstream region of the Amazon 
River with more lakes and wetlands around the main channel. In the latter case, water stayed longer 
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Figure 9. Comparison between SMOS and GFDS data series from Advanced Microwave Scanning
Radiometer—Earth Observing System (AMSR-E) (January 2010–September 2011) and Tropical Rainfall
Measuring Mission (TRMM) (September 2011–March 2013) and AMSR2 (from September 2013 to
present) sensors. Upper satellite hydrograph is observed on the Amazon River near Tefe, and lower
hydrograph is obtained along the Orinoco River near Ciudad Bolivar.

In both of the above cases, SMOS provided a more stable signal with lower noise and a larger
dynamic range due to a stronger response to water extent changes on the floodplain. The two SMOS
time series cases (Site 152 and Site 147) also revealed a discernable change in the dry and the wet
season. Whereas the observations on the Amazon River generally reflected a tropical monsoon climate
where higher water levels were observed from the beginning of the year until late June (Figure 9
upper), on the Orinoco River, the maximum water levels were observed in July, August, and September.
Furthermore, SMOS data strongly reflected the duration of inundation on the floodplains on different
river sections. Site 152 along the Amazon River near Tefe filtered by smoothing spline method showed
a relatively rapid increase and decrease in the seasonal water extent compared to Site 153 downstream
on the Amazon River near the town of Itaquariara (Figure 10 upper and lower panel). The first is
on a narrower upstream section of the Amazon River with a less meandering river channel, while
the second is located on the downstream region of the Amazon River with more lakes and wetlands
around the main channel. In the latter case, water stayed longer on the floodplain after precipitation
declined, as shown in Figure 10.
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Figure 10. Comparison between SMOS based time series in the Amazon Basin. Upper figure shows
upstream water extent variations of Site ID 152 on the Amazon River near Tefe. Lower figure shows
downstream Site ID 153 on the Amazon River near the town Itaquariara. Low C/M signal values
filtered with smoothing spline method in the downstream case reveals that inundation stays longer on
the floodplain after precipitation declines.

3.2. Validation of SMOS Gauging Results

To assess the quality of the SMOS-based gauging time series and to estimate uncertainty in
the method, a validation procedure was devised. In several steps, different sources of hydrological
observations and measures were compared (Table 1). Here, the objective was to investigate the
relevance of SMOS data for flow monitoring in the densely vegetated tropics.

First, a comparison was carried out between low-frequency SMOS passive microwave radiation
and high-frequency AMSR sensors and TRMM data in the study area, as described in Section 3.1. In the
next step, in situ stage data were obtained from SO HYBAM database (http://www.ore-hybam.org).
The network covers 15 in situ water level stations in the Amazon catchment, three stations on the
Orinoco River, and three stations on the Congo River. Data were downloaded for the nearby satellite
gauging stations, and correlation analyses were carried out using ground and satellite data. It was
assumed that the most accurate source of information was the in-situ stage water level measurement.
Thus, the correlation was determined between both SMOS and stage, and moreover, between GFDS
and stage datasets, respectively.

To estimate goodness of fit, both the correlation coefficient and the Nash–Sutcliffe model efficiency
coefficient (NSE) were calculated for all studied sites [57]. NSE is used to assess the predictive power of
hydrological models and can range from −∞ to one. An efficiency of one (NSE = one) corresponds to
a perfect match of modeled (satellite) data to the observed (in-situ) data. An efficiency of zero (NSE =
zero) indicates that the model predictions are as accurate as the mean of the observed data, whereas an
efficiency less than zero (NSE < zero) occurs when the observed mean and the model values disagree
more significantly when NSE becomes more negative.

Table 1. Data sources of validation procedure of different measurements and temporal coverage.

Source Sensor Measurement Temporal Coverage

CATDS SMOS water extent 2010/01–2018/12

GFDS
TRMM

water extent
2011/09–2013/03

AMSR-E 2010/01–2011/09
AMSR2 2013/04–2018/12

SO Hybam River Stage water level 2010/01–2018/12 inconstant for different stations
SO Hybam Altimetry Jason 2, Jason 3 water level 2010/01–2018/12 inconstant for different stations

http://www.ore-hybam.org
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The SMOS C/M signal and the in-situ stage measurements (cm) over the Amazon basin showed
a good agreement at most of the study sites. At some locations, there was very good agreement
(Figure 11; Amazon River upstream from Parintins). Both the timing and the duration of the low and
the high flow periods were well observed in the SMOS time series. The impact of vegetation cover
appeared to be reduced by using the low frequency data and was in agreement with other results in
the literature [50,56].
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Figure 11. Comparison of SMOS and in-situ stage data for the Amazon River upstream Parintins (Site
ID 1109) during 2010–2018.

The relation of the SMOS signal data to in-situ stage information was calculated by linear-regression
for each of the observed sites. The goodness of fit between the two measurements was quantified by the
correlation coefficient r (Figure 12). Both low and peak flow values showed good agreement throughout
the seasonal change for both dry and wet conditions. The correlation coefficient was found to be r = 0.97.
NSE calculation resulted in 0.94, the highest from all of the studied sites, which suggested a very near
match to in-situ stage water level. Both coefficients indicated that the water surface extent well replicated
the water surface level over this location. Similar analyses are described by Brakenridge and others [27]
for AMSR-E river watch in the USA when compared to in-situ measurements.
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The same calculation was performed to evaluate the relation between GFDS (AMSR and TRMM
sensors) and in-situ stage, and moreover between altimetry data and in situ stage. The three correlation
coefficients and NSE calculations were compared over the same river location (Site ID 1109) to identify
the best performing sensor type in each location. It was noted that the exact positions of the four
data sources were not exactly the same in a spatial manner. The spatial deviation in the locations for
each measurement was reduced as much as possible in order to represent the same or nearby area.
Nevertheless, a distance up to 100 km had to be tolerated due to low density of in-situ hydrological
observations, low resolution of microwave data, and the limited temporal sampling density of altimetry
(such as from the Jason sensors presented later). Most hydrological stations registered in the Hybam
database are operating in the Amazon catchment, and fewer stations are available in the Congo
basin. Therefore, a higher tolerance had to be accepted for the Congo basin, which may have caused
larger differences.

As examined earlier, the GFDS single-sensor time series was obtained for the same period and
compared to river stage near the town Parintins, Amazon River, Brazil (Site ID 1109). Both GFDS
and SMOS time series appeared to have similar trends in the study period (Figures 11 and 13).
However, due to higher noise in the C/M signal of the GFDS data, the correlation coefficient was
found to be r = 0.82, lower than the SMOS result of r = 0.97 when both were compared to in-situ
stage measurements. GFDS NSE calculation resulted in 0.63, which was also lower compared to the
SMOS result of NSE = 0.94. The scatterplot (Figure 13, left panel) revealed that the number of GFDS
observation points was higher. This was because the temporal resolution of AMSR and TRMM sensors
was one to two days and was three to four days in the case of SMOS sensor. Nevertheless, the fewer
SMOS observations seemed to reveal a generally higher match to in situ station data in the tropical
area, indicating the SMOS sampling capacity was sufficient for this application.
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Figure 13. Comparison between GFDS and in-situ stage data on the Amazon River upstream Parintins
(Site ID 1109) during 2010–2018. Correlation coefficient is r = 0.82, NSE = 0.63.

Moreover, in the last decades, many studies have been undertaken in the field of satellite altimetry
for in-land water level estimations, especially in the tropical region. Such a data source was utilized to
make a comparison with altimetry water levels in this study. Jason-2 and Jason-3 sensors cover the
time span of SMOS sensor data, thereby allowing the correlation analysis with altimetry water levels
from SO HYBAM database. For the Site ID 1109, there was good agreement with in-situ water level
data during high flow periods; however, low water appeared to be measured less accurately from
altimetry sensors (Figure 14). The scatterplot revealed both good agreement and overestimation of low
water levels of around 500 cm. This type of overestimation was found over different locations such
as Site 152 or Site 1098 in the Amazon basin as well. Therefore, linear regression resulted in a lower
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correlation r = 0.82 than SMOS r = 0.97 time series. Also, Jason NSE = 0.64 revealed a lower match to in
situ stage data.

Altimetry data were not available in the Hybam database for all the studied locations. Besides the
Jason-2 and Jason-3 datasets, Envisat water levels were included in the database; however, they did
not overlap with the analyzed time period of SMOS. For this reason, altimetry comparisons were only
possible in limited cases.
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Figure 14. Comparison between Jason-2 altimetry water levels and in-situ stage on the Amazon River
upstream Parintins (Site ID 1109) during 2010–2018. Correlation coefficient is r = 0.82, NSE = 0.64.

To present all results together in one place for the overall comparison, Figure 15 combines the
three satellite based gauging and water level observations of SMOS, GFDS, and Jason with respect to
in-situ stage at Parintins, Amazon River, Brazil (Site ID 1109). The graph illustrated a general good
fit of all satellite resources at this site, while SMOS results were the most consistent with in-situ river
stage in detail. For example, SMOS was the only one that could capture the low river stage in late 2016
to early 2017 compared to that measured by the in-situ river gauge, while AMSR2 had an apparent
time delay (with respect to the in-situ data) due to vegetation cover effects causing the hysteresis as
seen in the right panel of Figure 13.
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Correlation coefficients and NSE values were calculated for selected sites from each data source,
resulting in three different correlation values for each satellite gauging site in the tropics: SMOS, GFDS,
and one for altimetry. Figure 16 shows the correlation coefficient r when available for the selected
observation sites, where different sensors are represented with different color bar charts with r values
over/below the bars at the site. Table 2 summarizes the averaged correlation values by the three
investigated river basins. Table 3 summarizes the averaged Nash–Sutcliffe model efficiency coefficient
values by the three investigated river basins.
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Figure 16. Bar chart map of correlation coefficient r of three different satellite-based gauging measures
(SMOS, AMSR2, altimetry) compared to in-situ stage at the studied tropical river locations. Correlation
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Table 2. Correlation coefficient r between different satellite sensors and in-situ stage measurements
averaged over the three tropical river basins with calculated standard deviations.

SMOS AMSR2 Altimetry

River basin ave. std. ave. std. ave. std.
Amazon 0.92 0.04 0.69 0.12 0.91 0.07
Orinoco 0.92 0.01 0.61 0.29
Congo 0.80 0.01 0.36 0.08

Table 3. Nash–Sutcliffe model efficiency coefficient (NSE) between different satellite sensors and in-situ
stage data averaged over the three studied tropical river basins with calculated standard deviations.

SMOS AMSR2 Altimetry

River basin ave. std. ave. std. ave. std.
Amazon 0.84 0.08 −1.48 1.28 0.77 0.14
Orinoco 0.83 0.01 −2.23 0.59
Congo 0.38 0.33 −1.79 0.05
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Table 2 summarizes the results for r, indicating that low-frequency SMOS data presented a new
basis for improving satellite river discharge observations over densely vegetated areas in tropical
regions. Correlation between SMOS data and in-situ stage was high at these locations of South America
and Central Africa. GFDS data exhibited a lower correlation between 0.3 and 0.7. The altimetry data
agreed with the with the gauging data, with a correlation above 0.9 for the Amazon basin. Table 2 also
shows that the lowest standard deviations occurred for the SMOS data in all three catchments. These
results confirm that there was an excellent consistency between the SMOS remote sensing hydrological
measurements and in-situ gauging on all of the analyzed sites.

Table 3 summarizes the NSE values averaged on different tropical river basins. NSE values
measuring the goodness of fit between SMOS satellite gauge and in-situ stage were significantly higher
than zero in both the South America and the Central Africa study sites. The same results were found
on altimetry data, however, the lack of nearby observations on the Orinoco or the Congo basin limited
calculations to the Amazon basin only. GFDS appeared to be less accurate with NSE values below zero.
The standard deviations of the NSE values also suggested that the SMOS observations on the Amazon
and the Orinoco were the more stable sources of satellite gauging of tropical rivers.

4. Discussions

The low frequency L-band microwave data from SMOS sensor offered a much-improved capability
to observe river stage and thus accompanying discharge changes in the tropics, where dense and
extensive vegetation cover obscures the higher-frequency signals of other sensors. In particular,
we observed a strong linear relationship between SMOS and in-situ stage at site 1109 on the Amazon
River. In contrast, the higher-frequency GFDS data relation to river stage (Figure 13) exhibited
significant hysteresis, apparently due to vegetation cover changes, and the signal was less sensitive
to known water level changes. Similar hysteresis effects were observed in the relationship between
TRMM polarization ratio data versus soil moisture [58], see Figure 9, upper panel.

The hysteresis in the seasonal observations at high frequencies (including X-, K-, and Ka-band
data) was apparently caused by a greater attenuation of the microwaves leaving the ground surface
and propagating though tropical dense forest canopies. A difference in seasonal attenuations gave
rise to different C/M values for the same river stage observed in different seasonal vegetation
conditions. In the tropics with dense forests, the hysteresis effects were significant in high-frequency
data, consequently inducing large errors in river stage retrievals from the satellite high-frequency
data (Figure 13). In the case of SMOS data, however, the linear relationship had no notable
hysteresis (Figure 12). This was because the vegetation attenuation at the L-band frequency was
weak, and the signal was responding to surface water change without significant effects of the dense
vegetation canopy.

Although low-frequency SMOS data are sensitive to river change under a dense forest canopy, we
caution that there can be some remaining uncertainties caused by: (1) residual effects from physical
temperatures that are not fully cancelled out in the C/M ratio because the low resolution of SMOS
demands a large calibration area C; (2) trans-ionospheric effects such as amplitude scintillations and
polarization fluctuations can be larger for L-band SMOS compared to the Ka-band data used in GFDS;
and (3) residual error is present even after radio-frequency-interference reduction is applied in the
L-band passive data processing procedures. These effects may not be fully removable, and river
discharge status measured by SMOS must be used carefully depending on specific purposes with
different accuracy requirements.

An interesting signature separation in low and high flow conditions was found in the altimetry
data series as compared to in situ data (Figure 14, right panel). In this case, it could have been
that, during low flow conditions (e.g., <500 cm), surface area of the water became much smaller
than at high flow conditions. Thus for low flow, a high pointing accuracy of the altimetry sensor is
required to pinpoint the footprint on the open water surface and not on the river banks, sand bars,
or shallow channel bathymetry exposed at low flow, or the in-stream vegetation (trees and aquatic
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herbaceous plants [59]), which makes the river stage appear higher than it actually is. For high flow
(e.g., >500 cm), an intermittently large amount of humidity in the atmosphere during the wet rainy
season can induce some propagation delay, which may cause the altimeter-estimated water surface
elevation to be intermittently lower than the actual water level in the hydrological monomodal cycle
of the Amazon [59].

Lastly, the analysis and comparisons were carried out at selected locations where SMOS data
showed a strong response to water level changes. The validation of these sites was hindered by
restricted access to in-situ gauging data in the study areas. For the Congo basin, only three stage
locations were provided in the SO Hybam database, and stage measurements of the Amazon River
tributaries outside Brazil, such as on the Ucayali River in Peru, were not publicly available. Along the
Orinoco basin, only Venezuelan datasets were accessible. For Colombia, no data were available for
determining the relation to in-situ stage measurements. Regarding the comparison to altimetry data,
many locations in the dataset did not have a sufficient time series, or in other cases, only ENVISAT data
were available but without the necessary temporal match to the SMOS time series (2010–2018) [60].

5. Conclusions

The comparison of the satellite gauging observations to in-situ river stage shows strong agreement
despite the fact that SMOS and GFDS data are measuring water surface extent variations and
not directly measuring water levels, which are measured by in-situ stage and satellite altimetry
measurements. In particular, the low frequency microwave SMOS time series are strongly correlated
with in-situ gauge, even in densely vegetated areas. GFDS time series has a weaker correlation to
independently observed stages in tropical regions.

This analysis of SMOS data compared to these related satellite and ground-based data underlines
the relevance of low-frequency passive-microwave data for hydrological observations. Seasonal water
surface extent variations are well captured in the data series with a strong response to water area
changes in a river reach, even given the relatively large pixel areas. The quality of the observations is
dependent on the location of the pixel along the river. The low resolution of SMOS data may inflict
difficulties in locating the monitoring sites for both wet (river measurement) and dry (calibration)
pixels. This is also confirmed in the study by De Groeve [61] on GFDS applications to Namibian
floods. Nevertheless, the benefit of using passive microwave data at low microwave frequency in
tropical regions with a better penetration through dense vegetation and regardless of cloud cover has
clear advantages compared to optical sensors and high-frequency microwave radiometer. Filtering
the raw time series data also improves the performance of the methodology and the quality of the
output products.
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