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Abstract: Globally, the spatial distribution of vegetation is governed primarily by climatological
factors (rainfall and temperature, seasonality, and inter-annual variability). The local distribution of
vegetation, however, depends on local edaphic conditions (soils and topography) and disturbances
(fire, herbivory, and anthropogenic activities). Abrupt spatial or temporal changes in vegetation
distribution can occur if there are positive (i.e., amplifying) feedbacks favoring certain vegetation
states under otherwise similar climatic and edaphic conditions. Previous studies in the tropical
savannas of Africa and other continents using the MODerate Resolution Imaging Spectroradiometer
(MODIS) vegetation continuous fields (VCF) satellite data product have focused on discontinuities in
the distribution of tree cover at different rainfall levels, with bimodal distributions (e.g., concentrations
of high and low tree cover) interpreted as alternative vegetation states. Such observed bimodalities
over large spatial extents may not be evidence for alternate states, as they may include regions that
have different edaphic conditions and disturbance histories. In this study, we conduct a systematic
multi-scale analysis of diverse MODIS data streams to quantify the presence and spatial consistency
of alternative vegetation states in Sub-Saharan Africa. The analysis is based on the premise that major
discontinuities in vegetation structure should also manifest as consistent spatial patterns in a range
of remote sensing data streams, including, for example, albedo and land surface temperature (LST).
Our results confirm previous observations of bimodal and multimodal distributions of estimated
tree cover in the MODIS VCF. However, strong disagreements in the location of multimodality
between VCF and other data streams were observed at 1 km scale. Results suggest that the
observed distribution of VCF over vast spatial extents are multimodal, not because of local-scale
feedbacks and emergent bifurcations (the definition of alternative states), but likely because of other
factors including regional scale differences in woody dynamics associated with edaphic, disturbance,
and/or anthropogenic processes. These results suggest the need for more in-depth consideration of
bifurcation mechanisms and thus the likely spatial and temporal scales at which alternative states
driven by different positive feedback processes should manifest.

Keywords: Savanna; alternative stable states; MODIS VCF; land surface temperature; albedo

1. Introduction

Global distributions of vegetation structure, species composition, and functional composition
are governed primarily by climate and phylogenetic processes [1–5]. In the seasonal tropics,
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precipitation patterns and ecohydrological interactions are the principal drivers of large scale vegetation
patterns [6–8], with increasing precipitation generally corresponding to increasing tree density, canopy
cover, and tree height [8–10]. While continental-scale average tree density, cover, and height may
increase with precipitation, at fine spatial scales, local factors including soil type and hydrological
interactions, fire and herbivory, and agriculture and wood harvest lead to considerable spatial
heterogeneity in vegetation structure [3,7,11–15]). Thus, landscapes with similar climate are not
necessarily similar in vegetation structure (e.g., tree cover, density, and height), and patch mosaics
emerge at different spatial scales, reflecting different edaphic conditions and disturbance histories.

More interesting in the context of this paper, however, is the degree to which spatial variability in
a landscape is (a) proportional to the frequency, intensity, and time since disturbance (e.g., a harvest
event that removes a fraction of tree cover in a particular location) and subsequent regrowth (“linear
patch dynamics”), or is (b) amplified by positive feedbacks that lead to alternative state dynamics in
response to disturbance events (“bifurcating patch dynamics”). The classic example of an amplifying
feedback producing bifurcating patch dynamics (between forest and savannas in mesic systems, and
savanna and grasslands in drier savannas) is the so-called fire-trap, where an initial loss (or gain) of
tree cover promotes (or suppresses) grass growth, providing more (or less) fuel for fires and increased
(or decreased) tree mortality in a continuing cycle of tree loss (or gain) [16–23].

Numerous studies have examined satellite observations in search of empirical support for
the prevalence of alternative vegetation states [18,19,24–27] in spatial and temporal data [23,28].
The majority of studies that presented evidence for alternate states were based on interpretation of
frequency distributions of tree cover over large spatial regions with similar mean annual rainfall
(implicitly assuming similar local edaphic and ecological conditions). Regions following linear
patch dynamics would be expected to result in unimodal histograms while, in sharp contrast,
regions following bifurcating patch dynamics would result in bi-modal or multimodal histograms,
with each mode defining an alternative state caused by the presence of a positive feedback. The earlier
studies [18,19,24–27] used tree cover estimates from the MODIS vegetation continuous field product
(VCF) [29,30] and found that bimodal and multimodal tree cover distributions were common,
particularly in the semi-arid and mesic tropical savanna regions, suggesting the presence of alternative
states. In these studies, potential spatial variability in ecological, edaphic, and anthropogenic
factors within rainfall zones were mostly ignored. Further, the MODIS VCF retrieval was based
on classification and regression tree (CART) algorithms and trained using pre-averaged binning
techniques that have been linked to possible artifacts (artificial clumping of predictions) that could
be wrongly interpreted as alternative states not present in reality [31–33]. Thus, the true extent and
prevalence of bifurcating patch dynamics in the tropical savannas remains unknown.

Remote sensing data are invaluable for our understanding of savanna ecology and the importance
of positive feedbacks at landscape, continental, and global scales. However, to advance our
understanding of alternative vegetation states, it is critical that we identify not only the specific
processes potentially leading to alternative states but also the spatial scale at which the emergent
patterns should be detectable and thus the appropriate spatial resolution for data used in its detection.
We suggest that the controversy and uncertainty in the extent to which VCF-based analyses have proven
the existence of alternative states in tropical savannas can be resolved by systematic comparisons
among diverse remotely sensed data streams which, in theory, should also respond to changing tree
cover. We posit that bifurcations (i.e., discontinuities) in the frequency distributions of tree cover
should also logically be expressed in other remotely-sensed data streams, including albedo and
surface temperature. More particularly, not only should the bimodal distributions in the VCF tree
cover be detected in other physically based remote sensing variables, but those bifurcations should
exhibit spatial consistency (i.e., occur in the same geographic locations). Consistency among diverse
data-streams would provide strong evidence supporting earlier conclusions from analysis of the
VCF product and remove potential bias associated with any one product. Inconsistencies, on the
other hand, would require reevaluation of the earlier results and more in-depth consideration of the
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mechanisms of bifurcation and thus the likely spatial and temporal scales at which alternative states
driven by different positive feedback processes should manifest. In this work, we examine MODIS
derived satellite VCF, albedo, and land surface temperature to determine the degree of similarity in
the occurrence of multimodality and inference of alternative stable states across Sub-Saharan Africa
(Figure 1). For this analysis, the Sub-Saharan study area includes the African continent from 22◦

North to 35◦ South, including Madagascar but excluding the Arabian Peninsula (Figure 1). We ask the
following questions: (1) are the apparent forest-savanna and savanna-grassland bifurcations detected
in earlier VCF analysis also present in albedo and surface temperature data?; and (2) to what extent are
emergent bifurcations in VCF, albedo, and land surface temperature dependent on the spatial scale
of analysis?

We report results of three distinct multi-scale analyses (at the continental scale, based on zones
of similar rainfall, and at the landscape scale) designed to quantify the presence of bimodality
as a diagnostic of forest-savanna and savanna-grassland bifurcations. Further, we undertake a
comprehensive analysis to identify evidence of multiple vegetation states across different data
streams [VCF, near-infrared (NIR) albedo, and LST] at the same geographic locations, noting that
the independent (i.e., non-VCF) products are derived using fundamental physical principles with
relatively little empirical model fitting, while VCF estimates rely on an empirical CART approach.
For this analysis, the Sub-Saharan study area includes the African continent south of the Sahara Desert,
including Madagascar (Figure 1). The dominant (~66%) ecosystems in this region are tropical and
subtropical grassland, savanna, and shrublands.
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2. Data

2.1. Precipitation Data

We use the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) [35].
CHIRPS is a 30+ year (1981 onwards to current) quasi-global (50◦S–50◦N) rainfall dataset defined at
monthly time-steps for 0.05◦ × 0.05◦ spatial grids. CHIRPS combines satellite based precipitation
estimates with in-situ station data to create high quality reliable rainfall time series with reduced
systematic bias relative to other available global precipitation datasets [35–37], particularly over
Sub-Saharan Africa. The mean annual precipitation (MAP) used in this study is computed using
30 years of CHIRPS monthly precipitation data (1981 to 2011; Figure 2).
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2.2. MODIS Vegetation Continuous Fields

The most recent MOD44B collection 6 VCF data available at a spatial scale of 250 m are used
in this study [29,30]. VCF estimates are generated using a CART based algorithm and MODIS
optical bands spanning blue to shortwave infrared wavelengths. A suite of metrics derived using
annual multi-spectral reflectance observations and vegetation indices are used as predictor variables.
The CART is trained using estimates of tree cover, non-tree vegetation, and non-vegetated area
observations from field data that are up-scaled using Landsat data [29,30]. The VCF product also
includes standard deviation estimates for retrieved tree cover and non-vegetated percent cover along
with quality and cloud or water status information. In this study, a spatially explicit VCF map for the
study region is created using only the highest quality non-cloudy 2005 data over Sub-Saharan Africa
(Figure 3A). The 2005 MOD44B 250 m data are nearest neighbor resampled to a spatial resolution of
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1 km to match the resolution of other MODIS data streams (NIR albedo and LST) used in this study
using the nearest neighbor method. We use the nearest neighbor approach since averaging pixels tends
to reduce spatial heterogeneity and thus suppress identification of alternative vegetation modes.

2.3. MODIS NIR Albedo

The albedo defines the ratio of radiant energy scattered away from a surface in all directions to the
down-welling irradiance incident upon that surface. The albedo over vegetated regions is a function
of the local illumination conditions that includes solar geometry and atmospheric conditions, the
reflectance properties of the vegetation (leaf optical properties, leaf area index, and distribution of leaf
angles), and the underlying soil [38,39]. The MODIS albedo retrieval algorithm first characterizes the
surface anisotropy by combining multi-date multi-band atmospherically corrected surface reflectance
data to derive the albedo (MCD43B3 V5, 1 km spatial and 16 day temporal resolutions) defined in
three spectral regions: visible (VIS: 0.3–0.7 µm), near-infrared (NIR: 0.7–5.0 µm), and shortwave (SWIR:
0.3–5.0 µm) albedo. Changes in the VIS and NIR albedo have also been related to season and vegetation
growth [40], while the SWIR albedo is more influenced by non-vegetative components of the land
cover. The VIS and NIR albedo are highly correlated; we use the NIR albedo for this study [39], as it is
less affected by the atmosphere. The MCD43B3 albedo data include a solar angle specific black sky
albedo, solar angle independent diffuse white sky albedo, and associated quality flags. The median
NIR albedo map is computed using 45 eight day composites over Sub Saharan Africa for the year
2005. The median (instead of the mean) is used because it is less sensitive to outliers in the data sets
(Figure 3B).

2.4. MODIS Land Surface Temperature

Land surface temperature is a function of both net radiation and the fluxes of latent and sensible
heat that are mediated by vegetation cover [41–47]. Observations [46,47] suggest that land surface
temperatures depend on the abundance and type of vegetation, with regions with higher vegetation
density—such as forests—showing lower surface temperatures than sparsely vegetated surfaces.
Hence, surface temperature is expected to reflect underlying tree cover distributions. The observations
in the thermal infrared (TIR: 10–13 µm) bands in conjunction with observations in the middle infrared
(MIR: 3 µm) are used here to deduce both the land surface temperatures and emissivity using physically
based models. The MYD11A2 [48] V6 daytime LST (1 km spatial resolution and eight day composite)
includes LST observations and emissivity estimates. LST observations for Sub Saharan Africa in the
year 2005 are used to compute the median daytime LST for analysis in this study. The median (instead
of the mean) is preferred to reduce sensitivity to outliers (Figure 3C).

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 14 

 

tends to reduce spatial heterogeneity and thus suppress identification of alternative vegetation 
modes. 

2.3. MODIS NIR Albedo  

The albedo defines the ratio of radiant energy scattered away from a surface in all directions to 
the down-welling irradiance incident upon that surface. The albedo over vegetated regions is a 
function of the local illumination conditions that includes solar geometry and atmospheric 
conditions, the reflectance properties of the vegetation (leaf optical properties, leaf area index, and 
distribution of leaf angles), and the underlying soil [38,39]. The MODIS albedo retrieval algorithm 
first characterizes the surface anisotropy by combining multi-date multi-band atmospherically 
corrected surface reflectance data to derive the albedo (MCD43B3 V5, 1 km spatial and 16 day 
temporal resolutions) defined in three spectral regions: visible (VIS: 0.3–0.7µm), near-infrared (NIR: 
0.7–5.0µm), and shortwave (SWIR: 0.3–5.0µm) albedo. Changes in the VIS and NIR albedo have also 
been related to season and vegetation growth [40], while the SWIR albedo is more influenced by non-
vegetative components of the land cover. The VIS and NIR albedo are highly correlated; we use the 
NIR albedo for this study [39], as it is less affected by the atmosphere. The MCD43B3 albedo data 
include a solar angle specific black sky albedo, solar angle independent diffuse white sky albedo, and 
associated quality flags. The median NIR albedo map is computed using 45 eight day composites 
over Sub Saharan Africa for the year 2005. The median (instead of the mean) is used because it is less 
sensitive to outliers in the data sets (Figure 3B). 

2.4. MODIS Land Surface Temperature 

Land surface temperature is a function of both net radiation and the fluxes of latent and sensible 
heat that are mediated by vegetation cover [41–47]. Observations [46,47] suggest that land surface 
temperatures depend on the abundance and type of vegetation, with regions with higher vegetation 
density—such as forests—showing lower surface temperatures than sparsely vegetated surfaces. 
Hence, surface temperature is expected to reflect underlying tree cover distributions. The 
observations in the thermal infrared (TIR: 10–13µm) bands in conjunction with observations in the 
middle infrared (MIR: 3 µm) are used here to deduce both the land surface temperatures and 
emissivity using physically based models. The MYD11A2 [48] V6 daytime LST (1 km spatial 
resolution and eight day composite) includes LST observations and emissivity estimates. LST 
observations for Sub Saharan Africa in the year 2005 are used to compute the median daytime LST 
for analysis in this study. The median (instead of the mean) is preferred to reduce sensitivity to 
outliers (Figure 3C). 

 
Figure 3. Illustration of all data streams used in this study. Spatially explicit maps of: (A) tree cover 
estimates from MODerate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous 
fields  (VCF), (B) median 2005 near-infrared (NIR) white sky albedo, and (C) median 2005 land 
surface temperature (LST, K). 

3. Methods  
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fields (VCF), (B) median 2005 near-infrared (NIR) white sky albedo, and (C) median 2005 land surface
temperature (LST, K).
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3. Methods

Past studies that suggested empirical evidence of alternate vegetation states analyzed tree
cover distributions in rainfall zones defined using MAP intervals over large geographic areas
(see, for example, the rainfall intervals in Figure 2). Here, we report results of three distinct multi-scale
analyses designed to quantify the presence of bimodality as a diagnostic of savanna bifurcations: (1)
a non-spatially explicit continental-scale analysis, (2) a non-spatially explicit rainfall zone analysis,
and (3) a spatially explicit landscape-scale analysis. Further, we undertake a comprehensive analysis
to identify evidence of multiple states across different data streams (VCF, NIR albedo, and LST) at the
same geographic locations, noting that the independent (i.e., non-VCF) products are derived using
fundamental physical principles with relatively little empirical model fitting, while VCF estimates rely
on an empirical CART approach. We also note that while MODIS VCF is known to be unreliable for low
tree cover values, distinctions of high and low tree cover may be more reliable [31–33]. Quantitative
evidence for the presence or absence of unimodality (i.e., multimodality) can be inferred statistically
using Hartigan’s dip test [48] on a population of observations [49,50]. This work uses the Hartigan’s
dip test for populations of observations at multiple scales as evidence for or against unimodality.
Hartigan’s dip test is sensitive to skew [24,51], thus the VCF data are arcsine transformed to reduce
skew. Hartigan’s dip test p values of less than 0.05 and 0.01 are considered to be moderately and highly
significant indicators of multimodality, respectively. The following sections detail the multi-scale
analysis approach followed in this work.

3.1. Non-Spatially Explicit Continental Scale Analysis

For this initial analysis, observations over all of Sub-Saharan Africa are examined both
qualitatively and quantitatively. Histograms of each data set (VCF, albedo, and LST) are used to
quantitatively infer the presence or absence of multiple vegetation states using the Hartigan’s dip test.
Scatter plots of each data set with long-term MAP as the dependent variable are also visually inspected
for evidence of discontinuities indicative of multimodality.

3.2. Non-Spatially Explicit Rainfall Zone Analysis

Rainfall zones defined by ranges of MAP at continental scales are often spatially extended and, in
some cases, spatially disconnected across the African continent (Figure 1). We examine the histograms
of MODIS VCF, albedo, and LST in 200 mm rainfall zones (e.g., 0–200 mm/yr, 200–400 mm/yr, etc.)
for all of Sub-Saharan Africa, replicating earlier analyses that used VCF tree cover stratified by rainfall
to infer bifurcation dynamics [18,19,24–27]. We anticipate that bimodality detected in VCF data should
also be present in the albedo and LST measurements. Hartigan’s dip test p values are tabulated for
each precipitation zone, and similarities among data sets are used to identify consistent/inconsistent
signals of alternative vegetation states.

3.3. Spatially Explicit Landscape-Scale Analysis

We finally conduct a finer-scale, spatially explicit analysis to detect evidence for bimodality at the
landscape level (local spatial extents of 15 km × 15 km). The premise is that bimodality in savanna
structure (i.e., tree cover) detected at these local scales will provide more compelling evidence for
positive feedbacks and bifurcations occurring within the same local climate and broad edaphic, biotic,
and anthropogenic environments. This is in contrast to the continental scale rainfall zone analyses
(above) where observed bimodality might reflect much coarser scale differences in soils, topography,
and anthropogenic activity not reflected in coarse scale MAP stratifications. Strong evidence
for alternative states is inferred if landscapes with multimodality are spatially consistent among
independent data sets (i.e., occur in the same geographic locations). Conversely, the lack of spatial
consistency might be cause for caution in interpreting apparent bimodality as evidence for the existence
of alternative vegetation states in those locations. To test for spatial consistency at finer pixel level
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scales, spatially explicit signals of multimodality for each data product for each pixel are inferred using
the dip test over its surrounding n × n pixel window (n = 15 × 15 = 225, 1 km2 pixels), ignoring pixels
labeled as cloudy and pixels labeled as water in the VCF data. The number of locations that shows
evidence for multimodality for each product on its own and in conjunction with other products are
tabulated. Spatial consistency between two variables is inferred by generating a confusion matrix and
interpreting the Cohen’s kappa [52] agreement/disagreement metric.

4. Results

4.1. Non-Spatially Explicit Continental Scale Analysis

Figure 3 shows maps of MODIS VCF, NIR albedo, and LST analyzed in this study. All datasets
exhibit broadly similar spatial patterns at continental scales, with the drylands distinct from the mesic
savannas and forest zones. Spearman’s correlation between the MODIS VCF-NIR albedo is moderately
high at −0.43, while it is higher for MODIS VCF-LST at −0.71 and LST-NIR albedo at 0.64. However,
the histograms (Figure 4) are markedly different for each of the data streams. The MODIS VCF and
LST show at least two distinct modes, while NIR albedo appears unimodal visually. The MODIS VCF
shows distinct peaks in the frequency of tree cover at <20% and ~80%, while the MODIS LST shows
three distinct peaks between 300 K and 315 K. Hartigan’s dip test indicates that all histograms show
highly significant (p value << 0.001) statistical evidence for multimodality.
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Figure 4. Histograms showing data distributions for (A) tree cover, (B) NIR albedo, and (C) LST. A total
of 21,081,051 1 km2 locations with MAP ≥ 100 mm are used in the histogram analysis, with 20 equal
bins spanning the range of each dataset. The red line traces the density (>512 equal bins) for visual
identification of multiple modes not easily seen in the histogram. Multimodal distributions are visually
evident in the VCF and LST, but less so in the NIR albedo. Hartigan’s dip test results indicate highly
significant departure from unimodal distribution for all data streams.

Figure 5 shows scatter plots illustrating the relationships between the MODIS data streams and
MAP. MODIS VCF shows a distinct bimodality (disconnected islands of red, orange, and yellow at
a similar MAP in Figure 5A) between low (<20%) and high (~80%) tree cover, with bimodality for
MAP regions >1200 mm/yr. However, such bimodality is not visually evident in the NIR albedo,
which shows a broad exponential decline with MAP associated with increasing vegetation cover but
without visually distinct discontinuities (Figure 5B). LST shows a decreasing trend with increased MAP
(Figure 5C), as more trees tend to reduce the daytime land surface temperature, but the bimodality
observed in the tree cover data is not visually evident in the LST data. These observations corroborate
past researcher observations of bimodality in VCF, but they also suggest that the discontinuities seen
in the VCF tree cover are not readily apparent in other related MODIS data at the 1 km scale.
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To further understand the results in Table 1, we show the tree cover, albedo, LST histograms, 
and associated spatial maps for the regions of the continent with mean annual rainfall between 1600–
1800 mm MAP, where all three datasets show evidence for bifurcations (Figure 6). The histogram for 
the VCF clearly shows a marked bimodality between the highest (~80%) and lowest (< 20%) VCF 
values. However, the potential problems in using such MAP intervals and histograms to analyze for 
savanna bifurcations is evident from the spatially explicit map in Figure 6. In particular, when we 
examine these data spatially, it becomes evident that the apparent bifurcations in the VCF histogram 
occur in distinctly different regions. This suggests that histograms based on rainfall zones are 
multimodal not because of local-scale feedbacks and emergent bifurcations (the definition of 

Figure 5. Scatter plots of each data stream with respect to long term MAP. (A) VCF tree cover, (B) NIR
albedo, and (C) LST. The density of points is color-coded to show increasing point-density in warmer
(red) colors.4.2. Non-Spatially Explicit Rainfall Zone Analysis

Similar to past work [26], we analyze tree cover distributions in 200 mm MAP precipitation
intervals, providing 22 MAP zones between 0 and 4400 mm MAP. Hartigan’s dip test results applied
to all MODIS data over each zone are shown in Table 1. Individual histograms for each precipitation
interval are shown in supplemental Figures S1–S3 for reference. It can be inferred from Table 1 that the
VCF tree cover shows evidence for multimodality over the entire MAP range. Visual examination of
the tree cover data (Figure 5) shows distinct bifurcation between 1200 and 2000. However, the dip test
(Table 1) and Figure S1 suggest multimodality over almost the entire range of MAP. The dip test results
for LST also indicate the presence of multimodality over most of the range of MAP, while multimodality
in the albedo data is indicated in relatively fewer MAP ranges at low and intermediate rainfall.

Table 1. Hartigan’s dip test for multimodality in three independent remote sensing datasets assessed
within 200 mm MAP zones of Sub-Saharan Africa. Statistical significance is color coded, with red highly
significant (p < 0.01), yellow moderately significant (p < 0.05), and gray not significant. These data
organized by rainfall zones suggest multimodality is common, however, see text and Figure 4 for
analysis of the spatial organization of bifurcation in these datasets.

MAP Range
[mm]

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400
VCF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18

LST 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.15 0.49 0.51 1.00 0.33 0.11
Albedo 0.00 0.00 0.99 0.96 0.36 0.16 0.11 0.01 0.00 0.04 0.37 0.92 0.78 0.38 0.99 0.99 1.00 0.99 0.39 0.91 0.66 0.70

To further understand the results in Table 1, we show the tree cover, albedo, LST histograms,
and associated spatial maps for the regions of the continent with mean annual rainfall between
1600–1800 mm MAP, where all three datasets show evidence for bifurcations (Figure 6). The histogram
for the VCF clearly shows a marked bimodality between the highest (~80%) and lowest (<20%)
VCF values. However, the potential problems in using such MAP intervals and histograms to
analyze for savanna bifurcations is evident from the spatially explicit map in Figure 6. In particular,
when we examine these data spatially, it becomes evident that the apparent bifurcations in the VCF
histogram occur in distinctly different regions. This suggests that histograms based on rainfall zones
are multimodal not because of local-scale feedbacks and emergent bifurcations (the definition of
alternative states), but because of regional scale differences in woody dynamics associated with
edaphic, disturbance, and anthropogenic regimes.
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Figure 6. Histograms and maps of (A) tree cover (%), (B) NIR albedo, and (C) LST (K) in the
1600–1800 mm/yr mean annual precipitation zones of Africa, showing that bimodality seen in the tree
cover datasets occurs in spatially disconnected regions. While the histograms in this MAP interval
are visually and statistically bimodal, the apparent bifurcations occur in spatially distant locations
on the fringes of the moist tropical forests of West Africa (e.g., the low tree cover mode in red) and
the fringes of the Congo Basin (e.g., the high tree cover mode in green). Similar separation of low
and high tree cover modes is apparent between eastern and western Madagascar. The LST and NIR
albedo multimodality, while much less pronounced than in the tree cover data, is also geographically
separated between West Africa and Congo Basin locations.

4.2. Spatially Explicit Landscape-Scale Analysis

Figure 7 shows results of our analysis of multimodality within 15 × 15 km (i.e., 225 pixels)
moving windows across all of Africa, with red and yellow colors showing locations with statistical
evidence for multimodality assessed using the Dip test. The VCF data have the highest number of
locations across most of Sub-Saharan Africa, with evidence for bimodal or multimodal distributions
in most areas at this scale. At this scale, the occurrence of multimodality in the albedo and LST data
streams is much less common, with a general lack of spatial consistency between VCF, albedo, and
LST datasets (Table 2). Quantitatively, the percent agreement of multimodality among all three data
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streams (VCF, LST, and albedo) conveys that only 0.52% of the locations show multimodality in the
VCF data.

Analysis of Cohen’s kappa (Table 2) quantifies this apparent lack of spatial consistency in the
locations where multimodality is observed. The exclusion of VCF to examine the degree of spatial
coherence between LST and albedo marginally improves the spatial consistency (Table 2), but there is
still considerable disagreement between LST and albedo in the locations with multimodality.
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Figure 7. Spatially explicit signals of local bifurcations (non-unimodality) calculated within window
sizes of 15 × 15 km for data shown in Figure 3, (A) tree cover, (B) albedo, (C) LST. Red and yellow
colors show 15 × 15 km landscapes with high and moderate statistical evidence for local bifurcations
(i.e., Hartigan’s unimodality dip test is rejected in these locations).

Table 2. Tests for spatial consistency in detections of multimodality among three remote sensing
datasets, showing the number of 15 km × 15 km locations across Sub-Saharan Africa with evidence
for multimodality individually (columns 2–4) and in conjunction with other products (columns 5–8,
where, for example, VCF and LST quantify locations scored as multimodal in both VCF and LST).
Only locations that have a MAP ≥ 100 mm are considered. Statistical significance is based on Hartigan’s
dip test p value < 0.05. The Cohen’s kappa (κ), a measurement of agreement between data sets, is given
in parenthesis. Kappa values close to unity indicate strong agreement, while values close to zero imply
low or poor agreement, and negative values imply strong disagreement. The percent agreement of
multimodality among all data streams over the entire continent is also tabulated.

VCF LST Albedo VCF and
LST

VCF and
Albedo

LST and
Albedo

VCF and LST
and Albedo

Number of multimodal
locations and (Cohen’s

Kappa κ)
15,913,877 657,792 2,360,289 475,702

(−0.005)
1,774,261
(−0.117)

118,256
(0.026)

84,095
0.52%

5. Discussion

In this study, we examine the distributions of MODIS VCF tree cover estimates in Sub-Saharan
Africa alongside data on albedo and LST to determine the degree of similarity among datasets in the
occurrence of multimodality and inference of alternative stable states. While we argue that albedo and
LST should be closely correlated with tree cover, we also recognize that the darkening and cooling
effect of trees in a landscape may also occur with dense herbaceous vegetation, potentially reducing
the effectiveness of both NIR-albedo and LST as indices of tree cover.

The above caveat notwithstanding, our results (Figures 4–7) show clearly that bimodality is common
in MODIS VCF when visualized at a continental scale, when sorted into MAP bands (consistent with
past studies, [18,19,24–26]; Table 2), and when analyzed at landscape scales (15 × 15 km blocks; Table 2).
However, analysis of NIR albedo and LST datasets suggest multimodality is much less common in these
datasets. Examination of the spatial distribution of high and low tree cover within an example MAP
interval (Figure 6) highlights the potential dangers in the approach. In particular, while Figures 4 and 5
suggest strong bimodality in tree cover, examination of the spatial distribution of the data reveals that the
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high and low modes are geographically separated, indicating regional differences in tree cover related to
possible edaphic or anthropogenic impacts on mean tree cover rather than positive feedbacks giving rise
to bifurcations at local scales under similar edaphic conditions.

Past studies presenting empirical evidence for alternative states at different levels of MAP did not
examine independent data sets, nor did they consider the spatial organization of tree cover modes
within each MAP band. Based on the conclusion that detection of multimodality in spatially extensive
MAP intervals may not be appropriate for the diagnosis of bifurcations at regional scales, we carry out
spatially explicit analyses designed to detect bifurcations at landscape scales (15 × 15 km) in the three
independent data streams. Multimodality is suggested across most of Sub-Saharan Africa in the VCF
dataset but exists in much more constrained regions in the NIR albedo and LST datasets. Metrics of
spatial consistency in multimodality among data-streams based on Cohen’s kappa (Table 2) indicate
that VCF is distinct from LST and albedo (i.e., very little spatial consistency), with more agreement
(but still considerable differences) in the locations of bimodality in the albedo and LST data streams.
These results support concerns raised elsewhere [31–33] that the VCF product may not be appropriate
for the diagnosis of alternative states (i.e., bifurcations) because of the calibration approach utilized
and the discontinuities inherent in CART-based model-fitting approaches.

6. Conclusions

We posed the following two questions: (1) are the apparent forest-savanna and savanna-grassland
bifurcations detected in earlier VCF analysis also present in albedo and surface temperature data?;
and (2) to what extent are emergent bifurcations in VCF, albedo, and land surface temperature
dependent on the spatial scale of analysis? Our results show that apparent bifurcation in the VCF
data, diagnosed via statistical tests for multi-modality, far exceeds bifurcation detections in albedo
and land surface temperature data. Further, our multi-scale analysis highlights that the “rainfall
zone” analysis approach adopted by earlier authors (i.e., aggregating continental data using rainfall
bins; Section 4.2) tends to identify multimodality associated with regional differences in tree cover
rather than detecting landscape-scale bifurcations. Our explicit landscape scale analysis finds that,
while apparent bifurcations are ubiquitous in the VCF data, they are far less common in both the
albedo and the land surface temperature data.

The lack of consistent signatures of bimodality in satellite estimates of tree cover, land surface
temperature, and albedo highlights the need for caution in analyses suggesting that alternative states
are widespread in tropical savannas. A more considered review of the associated ecological theory
points to several explanations for this difference of opinion: (1) while positive feedbacks relating
to fire, tree-grass competition, and herbivory can—in theory—lead to the emergence of areas of
high and low tree cover under similar climate [12,18,53], in biologically and edaphically complex
landscapes, the processes potentially leading to bifurcations may be buffered by other interactions [54];
(2) in connected landscapes, spatial interactions may reduce the climate space where bifurcations
emerge, making bifurcations less common than expected based on simple non-spatial models [18,55];
and (3) the positive feedbacks potentially driving bifurcations in tree cover are processes that operate
at distinct spatial scales that may not be captured by the relatively coarse grain of many satellite tree
cover datasets. For example, while facilitation and competition among plants in arid and semi-arid
systems is a well-known cause of the patterned vegetation states known as tiger-bush (i.e., stripes
of dense vegetation separated by stripes of bare soil [56]), the processes involved (i.e., redistribution
of water and root competition) occur at relatively fine spatial scales (<~100 m). We should therefore
not anticipate being able to detect this type of alternative vegetation state in data with a spatial grain
>~50 m. While remote sensing data are invaluable for our understanding of savanna ecology at
landscape, continental, and global scales, to advance our understanding of alternative vegetation
states, it is critical that we identify not only the specific processes potentially leading to alternative
states but also the spatial scale at which the emergent patterns should be detectable.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/7/815/s1,
Figure S1: Histograms of MODIS tree cover (VCF) over regions stratified by mean annual precipitation (MAP in
mm/y). Each histogram was generated using 20 equally spaced bins spanning the range of the data in each region
Red lines trace the kernel density estimates to help visualize the shape of the histograms., Figure S2: Histograms
of MODIS NIR albedo over regions stratified by mean annual precipitation (MAP in mm/y). Each histogram
was generated using 20 equally spaced bins spanning the range of the data in each region Red lines trace the
kernel density estimates to help visualize the shape of the histograms, Figure S3: Histograms of MODIS Land
Surface Temperature over regions stratified by mean annual precipitation (MAP in mm/y). Each histogram was
generated using 20 equally spaced bins spanning the range of the data in each region Red lines trace the kernel
density estimates to help visualize the shape of the histograms.
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