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Abstract: Crop residue left in the field after harvest helps to protect against water and wind erosion,
increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of
crop residue is crucial to optimize tillage and for research into environmental effects. Although
remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools
for determining CRC, their application is limited by variations in the moisture of crop residue and
soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct
soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study
uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, n = 392); (ii) a wet
dataset (wet soils and crop residues, n = 822); (iii) a saturated dataset (saturated soils and crop
residues, n = 402); and (iv) all datasets (n = 1616)), which allows us to analysis the soil and crop
residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect
the moisture content in soil and crop residue. The first is the different reflectance of soil and crop
residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared
band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose,
and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on
the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption
index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected
broad-band spectral indices) were compared by using a laboratory-based dataset. The results show
that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices
investigated are less correlated with CRC when using all datasets than when using only the dry,
wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC
with the four soils and with varying SM/CRM. However, because the CRAI was only validated
by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite
hyperspectral remote-sensing images for different crops and ecological areas.
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1. Introduction

Crop residue left in the field after harvest helps protect against water and wind erosion, increase
soil organic matter, and improve soil quality [1–3]. Because tillage intensity is the main management
lever for controlling crop residue cover (CRC), a reduction in tillage is associated with increasing
soil organic matter and water retention [2,4]. The decomposition and burning of crop residue
produces carbon dioxide (CO2) and other gases, increasing atmospheric carbon [4,5]. Thus, the proper
management of crop residue is an integral part of many eco-friendly tillage systems and a major focus
of research into the environmental effects of agricultural practices [6–8].

Prior to the emergence of remote-sensing technology, large CRC surveys were limited by labor
and resources. To date, the two traditional methods of line-point transect and photography have been
used to measure the field CRC [9,10]. However, manual survey-based methods for quantifying CRC
are time- and labor-consuming and, more importantly, are difficult to apply over large areas. In recent
decades, spectral remote-sensing data acquired from ground platforms, unmanned aerial vehicles,
airborne platforms, and satellite platforms have been used to capture field spectra in narrow bands
and have provided information about the soil surface. As a result, tillage practices and estimating
CRC based on remote-sensing data has become a topic of significant interest to environmental and
agricultural researchers [11–17].

Crop-residue reflectance spectra depend on crop type, variety, moisture content, lignin and
cellulose content, and other factors [18–23]. Soil and crop residues have different spectral absorption
features and therefore different spectral reflectance features [5,23–26]. In recent years, a series of
methods to estimate CRC based on remote-sensing data has been proposed and applied on local and
regional scales to monitor crop residue. These methods may be divided into three types: (i) the linear
spectral unmixing technique, (ii) the spectral index (SI) technique, and (iii) the triangle space technique.
Linear spectral unmixing is a physical model that determines the relative contribution or abundance
of each endmember relative to the total reflectance recorded for each pixel [27]. The output of
spectral unmixing is a series of fraction maps that indicates the proportion (range 0 to 1) of each
endmember present in each pixel [28]. Linear spectral unmixing can be applied to multispectral
remote-sensing data only if reflectance is determined by a limited number of endmembers, such
as soil and crop residue [29]. The SI technique has achieved great success in remote-sensing-based
farmland monitoring. An SI is a combination of two or more remotely detected reflectance bands.
Estimates of CRC based on remote-sensing data are quantified by using SIs, such as the dead fuel index
(DFI) [30], the normalized difference index (NDI, NDI5, and NDI7) [31], the normalized difference
tillage index [32], the normalized difference senescent vegetation index (NDSVI) [33], the short-wave
near-infrared normalized difference residue index (SRNDI) [34], the cellulose absorption index
(CAI) [35], the shortwave infrared normalized difference residue index (SINDRI) [36], and lignin
cellulose absorption [37]. A linear or exponential empirical CRC-estimation equation can be constructed
and applied to remote-sensing data by using SI methods. The triangle-space technique uses two SIs or
bands to create a two-dimensional scatter map, as done in the methods involving the multiband
crop-residue index [38] or the CAI normalized difference vegetation index [39]. This approach
determines the proportions of crop residue, soil, and vegetation on the soil surface based on their
spatial locations in a triangular space.

However, the use of remote-sensing-based techniques to estimate CRC has been limited by the
variations in the field of moisture in the crop residue and soil [18,20,23]. Variations in the distribution
of crop residue moisture (CRM) and of soil moisture (SM) in the field lead to variations in each pixel
of the endmember spectra of crop residue and soil [24,40]. For example, in practice, linear spectral
unmixing techniques that use fixed crop residue and soil endmember spectra can lead to inaccurate
estimates of the spectral constituents that indicate the abundance of pure crop residue [41]. In addition,
the cellulose and lignin absorption features are attenuated as moisture content increases, thereby
reducing the accuracy of estimates of CRC based on existing SIs [20,24]. Thus, an accurate estimate of
CRC requires consideration of the moisture distribution in the field.
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A laboratory-based hyperspectral analysis that takes into account SM/CRM effects is very
meaningful to estimation of CRC accurately. The current study uses laboratory-based tests ((i) a dry
dataset (air-dried soils and crop residues, n = 392); (ii) a wet dataset (wet soils and crop residues,
n = 822); (iii) a saturated dataset (saturated soils and crop residues, n = 402); and (iv) all datasets
(n = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying
SM/CRM. The present study proposes a crop residue angle index (CRAI) to estimate the CRC for four
distinct soils, various SM/CRM. The CRAI combines two features that reflect the moisture content of
soils and crop residue (Section 2.2). The first is the that the moisture content of soil and crop residue
causes differing reflectance in the near-infrared band (833 nm) and the short-wave near-infrared band
(SWIR, 1670 nm), and the second is that the lignin, cellulose, and moisture content of soil and crop
residue causes differing reflectance in the bands at 2101, 2031, and 2201 nm. Laboratory study suggests
that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. (Note
that the CRAI has yet to be verified in the field). The method involves the following three steps:

(1) Spectral data from laboratory measurements (dry, wet, and saturated samples) are used to
analyze the soils/crop residues hyperspectral response to SM/CRM (Section 2.1), and crop residue
angle index to combine two hyperspectral angle features (Section 2.2).

(2) Spectral data from laboratory measurements are used to analyze the correlation coefficients
between CRC and (i) nine broad-band SIs, (ii) the SINDRI, and (iii) the CAI (Section 4.1).

(3) Spectral data from laboratory measurements are used to analyze the response of SIs to
SM/CRM and soil background. Laboratory-based (i) dry, (ii) wet, (iii) saturated, and (iv) all datasets
are used to compare how moisture content and soil background affect the selected SIs ((i) the proposed
CRAI, (ii) the CAI, (iii) the SINDRI, and (iv) selected broad-band-based Sis) (Section 4.2).

(4) Random sampling validation is used to evaluate the accuracy of estimates of CRC based on
these SIs (Section 4.3). We also discuss the accuracy of CRC estimates based on SIs (Section 5).

2. Background and Proposed Crop Residue Angle Index

2.1. Response to Moisture of Crop Residue and Soil Reflectance

Soil reflectance is affected by intrinsic soil factors: SM, amount of organic matter, particle-size
distribution, mineral composition, and color of soil elements [42–44]. Soil reflectance decreases as the
SM increases, primarily because changing the medium surrounding soil particles from air to water
decreases their relative refractive index, thus increasing the average degree of forward scattering as
determined by the asymmetry parameter (i.e., the mean cosine of the scattering angle) [45]. Figure 1
shows the mean reflectance spectra of four soils (dry and wet).
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Figure 2 shows the mean reflectance spectra of maize and winter-wheat residue (dry and wet).
Hyperspectral data in this work was collected by using an ASD (Analytical Spectral Devices, Boulder,
USA) FieldSpec 3 spectrometer. Moisture more strongly affects crop residue reflectance in the SWIR
region (1100–2500 nm) than in the visible region (350–800 nm) because of the strong water absorption
bands in the SWIR [46]. As CRM increases, the mean crop residue reflectance spectra remain nearly
constant in the visible range. However, the reflectance spectra are significantly attenuated in the
near-infrared (NIR) and SWIR. As CRM increases, two water absorption bands (one centered at
1450 nm and one centered at 1950 nm) become dominant in the SWIR (Figure 2), which is consistent
with the findings of Wang [23] and Daughtry [22].
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Daughtry et al. [20,22] suggested that the absorption features near 2100 nm are probably associated
with lignin and cellulose in crop residue and these features are also evident in the reflectance spectra
of all dry crop residue. However, the features indicative of lignin and cellulose (absorption features
near 2100 nm) gradually disappear (see Figure 2) as the relative water content increases [21,29].
The hyperspectral reflectance for wet and dry crop residue (maize and winter wheat) in Figure 2
indicate that the sensitivity of the absorption features (bands from 2000 to 2200 nm) could be weakened
by water absorption [22,23,47]. Therefore, the use of remote-sensing-based techniques to estimate CRC
are limited by variations in the field of moisture in crop residue and soil.

2.2. Proposed Crop Residue Angle Index and Its Response to Moisture

In this study, we propose a CRAI to estimate CRC from four types of soil with varying SM/CRM.
The CRAI combines two features that reflect the moisture of the soil and crop residue. The first is that
variations in moisture content in soil and crop residue causes differing reflectance in the near-infrared
band (833 nm) and in the SWIR band (1670 nm; expressed in terms of the angle α in Figure 3a,c),
and the second is that the lignin, cellulose, and moisture content of soil and crop residue causes
differing reflectance in the bands at 2101, 2031, and 2201 nm (expressed in terms of the angle β in
Figure 3b,d). The angles α and β are defined in Figure 3. The angle α is the included angle between
the vertical direction and the line from the near-infrared reflectance (833 nm in this work) to the SWIR
reflectance (1670 nm in this work). The angle β is the included angle between (i) the line from the
reflectance at 2101 nm to the reflectance at 2031 nm and (ii) the line from the reflectance at 2101 nm to
the reflectance at 2201 nm. As shown in Figure 3, both the soil and the crop residue reflectance decrease
as SM increases, and the two water-absorption bands centered at 1450 and 1950 nm become dominant
in the SWIR bands. The reflectance in the SWIR bands of both the soil and crop (wheat) residue
reflectance decrease faster than in the NIR region because the water absorption more strongly affects
the SWIR bands (1670 nm) than the NIR bands (833 nm). The results shown in Figure 3a,c,e indicate
that the angle α both for soil and for wheat residue increases with SM and CRM. Figure 3a,c also show
that the variations in reflectance decrease in the NIR band as the SM/CRM increase. The different
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reflectance for soil and crop residue as a function of moisture is reflected in the rapidly increase in the
angle α for wheat residue as a function of CRM than for the angle α for soil (Figure 3e). In addition,
the lignin and cellulose absorption features of crop residue (bands at 2031, 2101, and 2201 nm; see
Daughtry et al. [20,22]) gradually disappear with increasing CRM (Figure 3d), so that the angle β for
wheat residue increases with CRM (Figure 3e). Conversely, the angle β for soil is relatively constant as
a function of SM (Figure 3e).

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 22 

 

CRM. Figures 3a and 3c also show that the variations in reflectance decrease in the NIR band as the 
SM/CRM increase. The different reflectance for soil and crop residue as a function of moisture is 
reflected in the rapidly increase in the angle α for wheat residue as a function of CRM than for the 
angle α for soil (Figure 3e). In addition, the lignin and cellulose absorption features of crop residue 
(bands at 2031, 2101, and 2201 nm; see Daughtry et al. [20,22]) gradually disappear with increasing 
CRM (Figure 3d), so that the angle β for wheat residue increases with CRM (Figure 3e). Conversely, 
the angle β for soil is relatively constant as a function of SM (Figure 3e). 

 
Figure 3. Angles α and β as a function of crop residue moisture and soil moisture content (same 

hyperspectral data as shown in Figures 1 and 2). 

Thus, as shown in Figure 3e, the reflectance as a function of moisture content of the soil and crop 
residue can be described by the angles α and β, which in turn may be used to construct the CRAI 
(Figure 3f) as follows: 

     / /100,   = 4.5CRAI angle angle f f   . (1) 

Note that the factor f = 4.5 is an empirical parameter used to combine two angles. Based on 100 
cycles of rough modeling and verification (with f = 0.1 to 10 in steps of 0.1), we find that f = 4.5 gives 
the largest correlation coefficient between CRC and CRAI. In this work, the angles α and β are 
calculated as follows (see Figures 3c and 3d): 

  

1  (1670 833)

atan( / ), 

 , 1 1670 833

Angle

x w

x1 y1

Ref fa Rev y

 
   

, (2) 
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hyperspectral data as shown in Figures 1 and 2).

Figure 3a,c,e show the angle α response to the increase SM/CRM, Figure 3b,d,e show the angle β

response to increase SM/CRM. Thus, as shown in Figure 3e, the reflectance as a function of moisture
content of the soil and crop residue can be described by the angles α and β, which in turn may be used
to construct the CRAI (Figure 3f) as follows:

CRAI = (angle α − angle β/ f )/100, f= 4.5. (1)

Note that the factor f = 4.5 is an empirical parameter used to combine two angles. Based on
100 cycles of rough modeling and verification (with f = 0.1 to 10 in steps of 0.1), we find that f = 4.5
gives the largest correlation coefficient between CRC and CRAI. In this work, the angles α and β are
calculated as follows (see Figure 3c,d):

Angle α = atan(x1/y1),
x1 = wav(1670 − 833), y1 = Re f1670 − Re f833

(2)
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Angle β = 180− atan(x2/y2)−atan(x3/y3)
x2 = wav(2101 − 2031), y2 = Re f2031 − Re f2101

x3 = wav(2201 − 2101), y3 = Re f2201 − Re f2101

(3)

wav(b1− b2) = (b1− b2)/2500, (4)

where Ref 833, Ref 1670, Ref 2031, Ref 2101, and Ref 2201 are the reflectance at 833, 1670, 2031, 2101, and
2201 nm, respectively, and wav (1670–833), wav (2101–2031), and wav (2201–2101) are the normalized
distance from (i) 1670 to 833 nm, (ii) 2101 to 2301 nm, and (iii) 2201 to 2101 nm (calculated by using
Equation (4)).

2.3. Traditional Crop Residue Cover Spectral Indices

Previous studies have proposed numerous indices to estimate CRC. Table 1 lists several
promising spectral-based indices for CRC, such as the simple tillage index (STI) [32], the SRNDI [34],
the NDSVI [33], DFI [30], the normalized difference tillage index (NDTI) [32], and the hyperspectral
CAI [20]. The hyperspectral SINDRI is calculated from the: (i) hyperspectral bands 2210 and 2260
nm [36], (ii) ASTER SWIR bands 6 and 7 [36], and (iii) from the currently functional Worldview-3
SWIR bands 6 and 7 [14]. In addition, the shortwave green normalized difference index (SGNDI)
combines Landsat-TM/OLI7 and OLI3 in this study. Table 1 shows the traditional CRC SIs from
previous research.

Table 1. Spectral indices used in previous research for estimating crop residue cover.

Type Spectral Indices Equation Reference

Broad-band

SGNDI (OLI3 - OLI7)/ (OLI3 + OLI7), This paper
STI OLI6/OLI7, [32]

MCRC (OLI6 - OLI3)/ (OLI6 + OLI3), [48]
SRNDI (OLI7 - OLI4)/ (OLI7 + OLI4), [34]

DFI 100 × (1 - OLI7/OLI6)/ (OLI4/OLI5), [30]
NDI5 (OLI5 - OLI6)/ (OLI5 + OLI6), [31]
NDI7 (OLI5 - OLI7)/ (OLI5 + OLI7), [31]
NDTI (OLI6 - OLI7)/ (OLI6 + OLI7), [32]

NDSVI (OLI6 - OLI4)/ (OLI6 + OLI4), [33]

Hyperspectral
SINDRI 100 × (R2210 − R2260)/(R2210 + R2260)

100 × (A6 − A7)/(A6 + A7), [36]

CAI 100 × ((R2031+R2201)/2-R2101), [35]

Note: OLI2 (0.450–0.515 µm), OLI3 (0.525–0.600 µm), OLI4 (0.630–0.680 µm), OLI5 (0.845–0.885 µm), OLI6
(1.560–1.660 µm), and OLI7 (2.100–2.300 µm) represents broad-band multispectral of blue, green, red, near-infrared,
SWIR1, and SWIR2 (e.g., Landsat-8 OLI bands 2–7, and corresponding Landsat TM and ETM+ bands 1–5 and 7).
A6 (2.185–2.225 µm) and A7 (2.235–2.285 µm) represents ASTER/Worldview-3 SWIR band6 and SWIR band7.
R2031, R2101, R2201, R2210, and R2260 represents bands at 2031, 2101, 2201, 2210, and 2260 nm of hyperspectral
reflectance, respectively.

3. Laboratory Data Collection

Two crop residues (winter wheat and maize) and four spectrally distinct soils (paddy soil, black
soil, meadow soil, and brown soil; see details in Table A1) were collected from fields (soil reflectance
spectra are shown in Figure 1, crop residue reflectance spectra are shown in Figure 2) in Jining City
and Nanjing City (Table A1). Jining City has a medium-latitude monsoon climate, an average rainfall
of 751 mm, and an average temperature of 13.6 ◦C. (Meteorological data were acquired from the
China Meteorological Data Service, http://data.cma.cn/). Winter wheat, maize and soya bean are
the main crops in Jining. Winter-wheat residue was collected in Jining City (harvested in early June,
2018). Nanjing City has an average altitude of 20 m, a subtropical humid monsoon climate, an average
rainfall of 1106 mm, and an average temperature of 15.4 ◦C. Maize, winter wheat, and rice are the main
crops in Nanjing. Maize residue was collected in Nanjing City (harvested at the end of October, 2018).

http://data.cma.cn/
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The soil texture was analyzed, and the percentage of clay, silt, and sand in soil samples was calculated.
Table A1 summarizes the characteristics of the field soil and shows that the soils texture is clay.

3.1. Laboratory Measurements

3.1.1. Hyperspectral Measurements

In a spectral laboratory, we measured the dry, wet, and saturated soils and the crop residue mixed
hyperspectral reflectance by using an ASD FieldSpec 3 spectrometer (see Figure 4). The ASD FieldSpec
3 spectrometer offers full-range detection (350–2500 nm with a spectral resolution of 3 nm at 700 nm,
8.5 nm at 1400 nm, and 6.5 nm at 2100 nm) and acquires visible/NIR/SWIR data over the entire solar
spectrum. In addition, the data were automatically resampled for 1 nm spacing. As shown in Figure 4,
all samples were illuminated by a halogen lamp mounted on the arm of a camera stand and held
50 cm above the workbench to create a 45◦ illumination zenith angle. The bench was covered with
a black tablecloth. The field spectrometer was calibrated by using the reflectance from a 40 × 40 cm
BaSO4 reference panel, and the hyperspectral reflectance of each sample was acquired with the ASD
FieldSpec 3 spectrometer fore-optic at 40 cm above the sample at a 0◦ zenith angle, resulting in a
0.177 m diameter field of view. Five reflectance spectra were acquired from each sample, the average
of which was recorded as the reflectance spectrum for the sample.
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Figure 4. Experimental apparatus for measuring hyperspectral reflectance in the laboratory.

The experimental process was as follows: (i) The four soils (Table A1) were air-dried, crushed,
and passed through a 2 mm screen, and then deposited to a depth of 1 cm in a round 23-cm-radius tray.
The crop residue samples (air-dried) were then cut into 10 cm sections; (ii) Beginning with the bare
dry soils, dry crop residue segments were gradually added onto the soil surface in the round trays.
We then measured the mixed hyperspectral reflectance of the soils and crop residue and took digital
photographs. When the soils were all covered by crop residue, we started to remove the crop residue
sections until bare soil was reached; (iii) The crop residue samples were then placed in a round black
plastic bowl and sprayed with water, and the soils were sprayed with water until saturated. As in step
(ii), we then measured the mixed hyperspectral reflectance of the soils and crop residue and took digital
photographs; and (iv) The saturated soil and crop residue samples were then placed in a dark room
at about 24 ◦C for 6 and 12 hours, following which we again measured the hyperspectral reflectance
of the (wet) soil and (wet) crop residue. Because crop residue was added manually, the number of
samples in the various groups ranged from 43 to 56 (see Table 2).

The hyperspectral reflectance acquired in the spectroscopy laboratory was resampled to generate
broad-band multispectral remote-sensing data (see Table 1) by using the corresponding spectral
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response functions, which were obtained from the spectral laboratory tools available in the ENVI
image-processing and analysis software (ITT Visual Information Solutions, Boulder, CO, USA).

3.1.2. Crop Residue Cover and Moisture Measurements

We used a digital camera (Canon SX710 HS, Canon Inc., Tokyo, Japan) to take top-view
photographs of each sampling position. The crop residue and soil fractions in the field of view
of the spectrometer were visually analyzed by using a 125 dot overlay [22] on the digital image
(Figure 5). Next, the CRC was calculated by using:

CRC =
SUMresidue

125
× 100%, (5)

where SUMresidue is the total number of crop residue dots obtained by manual counting.
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In this study, the relative SM/CRM were calculated by using:

SM/CRM =
m0 −mdry

msat −mdry
, (6)

where msat (mdry) is the mass of saturated (air-dried) soil or crop residue sample, and m0 is the mass of
the soil or crop residue sample.

3.2. Estimate of Crop Residue Cover and Statistical Analysis

3.2.1. Estimate of Crop Residue Cover

Triangle-space techniques (e.g., DFI-NDVI [16], CAI-NDVI [39].) are widely used to estimate
cropland CRC because crops and vegetation both appear in remote-sensing images. Thus, linear
spectral unmixing is used to estimate the proportions of crop residue, soil, and vegetation, which
makes it essential to evaluate the linear-equation-based CRC performance. In this study, we used
a linear model (formula: CRC = a × Index + b) to estimate the wheat and maize CRC. From the
laboratory measurements, we acquired a total of 1616 (835 for wheat, 781 for maize) sets of residues,
soil hyperspectral reflectance measurements, and CRCs. Table 2 gives the descriptive statistics for the
measurements of SM/CRM content.
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Table 2. Descriptive statistics of average relative soil moisture (SM, %) and crop residue moisture
(CRM, %) in this study.

Soils Groups
Maize Wheat

Samples SM CRM Samples SM CRM

Brown soil

Dry 44 0 0 43 0 0

Wet
Wet2 48 12.1 20.0 54 12.1 50.0
Wet1 52 34.3 35.0 54 34.3 86.1

Saturated 46 100 100 46 100 100

Black Soil

Dry 53 0 0 53 0 0

Wet
Wet2 53 20.3 18.5 56 20.3 13.7
Wet1 48 66.6 52.2 54 66.6 40.2

Saturated 52 100 100 58 100 100

Meadow Soil

Dry 52 0 0 53 0 0

Wet
Wet2 53 17.9 18.5 50 17.9 13.7
Wet1 46 45.5 52.2 53 45.5 40.2

Saturated 46 100 100 55 100 100

Paddy Soil

Dry 46 0 0 48 0 0

Wet
Wet2 47 13.2 20.0 55 13.2 50.0
Wet1 49 54.3 35.0 50 54.3 86.1

Saturated 46 100 100 53 100 100

Total 781 835

Note: Dry represent air-dry soils and air-dry crop residue samples; Saturated represent saturated samples; Wet
represent wet soils and wet crop residue samples, Wet1, and Wet2 represent data measured after 6, and 12 hours
after saturated samples measurement. SM represent soil moisture; CRM represent crop residue moisture.

We used random sampling from all 1616 samples to evaluate the performance of the proposed
CRAI and other SIs. Of these random samples, one third of the dataset (279 wheat and 261 maize)
were used to analyze the relationship between the spectral indices, and the CRC. The equations for
estimating the CRC from the indices were then established, and the remaining two thirds of the
datasets (556 wheat and 520 maize) were used for validation.

3.2.2. Statistical Analysis

The coefficient of determination (R2), root mean square error (RMSE), normalized root mean
square error (nRMSE), and mean absolute error (MAE) were used to evaluate the performance of each
model. Mathematically, a higher R2 corresponds to a smaller RMSE and MAE, and thus indicates a
more accurate model. The following equations were used to calculate R2, RMSE, nRMSE, and MAE:

R2 = 1− ∑n
i=1 (yi − xi)

2

∑n
i=1 (yi − y)2 , (7)

RMSE =

√√√√√ n
∑

i=1
(xi − yi)

2

n
, (8)

nRMSE =
RMSE

ymax − ymin
, (9)

MAE =

n
∑

i=1
|xi − yi|

n
, (10)

where xi and yi are the estimated and measured values, respectively, x and y are the average estimated
and measured values, respectively, n is the sample number, and ymax and ymin are the measured
maximum and minimum CRC, respectively.
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4. Results

4.1. Selection of Traditional Broad-Band Spectral Indices

Table 3 shows the correlation coefficients r between the CRC and the eleven investigated crop
residue indices from laboratory hyperspectral. The results show that all the measured indices
are correlated to varying degrees with the CRC. Table 3 ranks the traditional broad-band indices
according to the absolute value of the correlation coefficient. Of the nine traditional broad-band indices
investigated, the SGNDI leads to the most accurate estimates of CRC for both the (i) dry (r = 0.842) and
(ii) wet (r = 0.787) datasets, whereas the NDSVI leads to the most accurate estimates of CRC (r = 0.757)
for the saturated dataset. However, the traditional broad-band indices all have a lower correlation
coefficient when using all datasets (Table 3), which means that the SM/CRM content strongly affects
the traditional broad-band indices (analyzed in Section 4.2).

Table 3. Analysis of correlation between crop residue cover and crop residue indices (all dataset).

Ranking

Samples and Dataset

Dry (n = 392) Wet (n = 822) Saturated (n = 402) All (n = 1616)

Indices |r| Indices |r| Indices |r| Indices |r|

1 SGNDI 0.842** SGNDI 0.787** NDSVI 0.856** NDSVI 0.685**

2 SRNDI 0.833** SRNDI 0.787** SRNDI 0.827** MCRC 0.658**

3 DFI 0.775** NDSVI 0.786** SGNDI 0.81** SGNDI 0.653**

4 NDSVI 0.768** MCRC 0.704** MCRC 0.741** SRNDI 0.629**

5 NDI7 0.744** NDI5 0.677** NDI5 0.698** NDI5 0.587**

6 MCRC 0.733** DFI 0.656** NDI7 0.671** NDI7 0.546**

7 NDI5 0.726** NDI7 0.656** DFI 0.552** DFI 0.498**

8 NDTI 0.716** NDTI 0.558** STI 0.498** NDTI 0.444**

9 STI 0.709** STI 0.557** NDTI 0.495** STI 0.434**

- SINDRI 0.815** SINDRI 0.790** SINDRI 0.737** SINDRI 0.776**

- CAI 0.869** CAI 0.780** CAI 0.777** CAI 0.580**

Note: |r| represent the absolute value of correlation coefficient. **. Correlation is significant at the 0.01 level
(two-tailed).

Of the eleven indices investigated, the SINDRI leads to the most accurate estimates of CRC
(r = 0.790) with the wet dataset, whereas the CAI leads to the most accurate estimates of CRC (r = 0.869)
with the dry dataset. In addition, the SINDRI has an advantage for estimating CRC with various
moisture contents because it is significantly more correlated with CRC than are the other broad-band
indices or the CAI. Moisture in crop residue impacts the traditional remote-sensing SI-based estimates
of CRC except for SINDRI.

Based on the above statistics and analysis of the traditional spectral indices, (i) the hyperspectral
CAI, (2) the hyperspectral SINDRI, and (iii) the three best broad-band crop residue SIs (SGNDI, SRNDI,
and NDSVI) are chosen for comparison with the proposed CRAI.

4.2. Response of Spectral Indices to Moisture and Soil Background

4.2.1. Response of Spectral Indices to Moisture

Figure 6 shows the six investigated SIs as a function of wheat and maize residue cover (calibration
dataset: n = 279 for wheat and n = 261 for maize) and with various moisture contents. The CRAI
increases linearly with wheat residue cover (dry, wet, saturated, and all datasets), whereas the SINDRI
is logarithmic in wheat residue cover (Figure 6, wheat). The CAI, SRNDI, NDSVI, and SGNDI are
all linearly related to wheat residue cover when using the dry, wet, or saturated datasets. However,
this relationship becomes less obvious when using all datasets. The effect of water absorption on the
SIs (CAI, SRNDI, NDSVI, and SGNDI) becomes clear as the moisture content of the wheat residue
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increases from dry to water saturated. These indices give significantly different results for the dry, wet,
and saturated soil and crop residue samples. For example, the SGNDI gives a value of about −0.45
for dry soil, whereas it gives −0.3 and −0.2 for wet and saturated soil, respectively. In addition, it
increases from −0.1 to 0 and then to 0.1 for dry, wet, and saturated crop residue. In some extreme
cases, the SRNDI, NDSVI, and SGNDI give values for saturated soil that are similar to those for dry
wheat residue (Figure 6). The relationship between SIs and CRC for wheat and maize are similar (see
Figures 6 and 7, wheat and maize). The correlation coefficients for all datasets (Figure 7, saturated, wet,
dry, and all datasets) show that, for strongly varying moisture content, the proposed CRAI may leads
to more accurate estimates of the CRC. Thus, the proposed CRAI may help to provide more accurate
estimates of CRC.
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Figure 6. Correlation between spectral indices and crop residue cover for various crop residue moisture
contents (laboratory-based calibration dataset: n = 279 for wheat and n = 261 for maize). Note: All
laboratory-based calibration datasets were divided into three moisture groups (dry, wet, and saturated),
and each groups includes four soils (paddy soil, black soil, meadow soil, and brown soil).

4.2.2. Response of Spectral Indices to Soil Background

Figure 8 shows the correlation of the six SIs investigated in this work with winter-wheat CRC
for various soil backgrounds and with a single SM content (dry and saturated samples of calibration
dataset: n = 137 for wheat). For the four soil backgrounds, the spectral indices and maize residue cover
are similarly related (see Figure 8). The CRAI increases linearly with wheat residue cover (brown soil,
black soil, meadow soil, paddy soil, and all soils), whereas the SINDRI is logarithmic in wheat residue
cover (see Figure 8).
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Figure 8. Correlation between spectral indices and winter-wheat CRC for four soil backgrounds at
single moisture contents. Note: For visualization, the ordinate of the six SIs may differ. Only dry and
saturated samples of the calibration dataset were used (n = 137), and the data were divided into four
soil groups (paddy soil, black soil, meadow soil, and brown soil).
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Figure 8 shows the effect of soil background by comparing SIs with CRCs at single moisture
contents. Figure 9 gives the absolute value (|r|) of the correlation coefficients between: (i) CRC and (ii)
CRAI, CAI, SINDRI, NDSVI, SGNDI, and SRNDI for the different datasets. Figure 9 shows that the soil
background (see Figure 9, four soil datasets) has a less-detrimental effect on the remote-sensing-based
estimates of CRC than does the moisture content (see Figure 7, all datasets). Overall, both soil
background and moisture content have an uncertain effect on the broad-band SIs and the resulting
CAI-based estimates of CRC. In other words, it is difficult to estimate CRC from different soils, various
SM/CRM using broad-band SIs and CAI (see Figure 7).Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 22 
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Because the samples in fact contain a variety of samples (dry, wet, and saturated), SIs from a
given soil background (see CAI, NDSVI, SGNDI, SRNDI in Figure 7) are less correlated with CRC
than are SIs from a given moisture category (see CAI, NDSVI, SGNDI, SRNDI in Figure 9). Mitigating
the uncertain effect caused by moisture is of significant importance to properly estimate CRC using
remote-sensing techniques.

4.3. Estimation of Crop Residue Cover

We use a linear model (CRC = a × Index + b) in this study to estimate the wheat and maize CRC
(see Section 3.2.1. Estimate of Crop Residue Cover). Figures 6 and 8 show the calibration dataset
(calibration dataset: n = 279 for wheat and n = 261 for maize) and Table A4 lists the corresponding
estimates of CRC from the linear model. The scatter plots in Figure 9 show the relationships (see linear
fits) between the estimated and measured wheat and maize CRC. Table A4 lists the accuracy of the
estimates of CRC [MAE (%), RMSE (%), nRMSE (%), and R2] based on linear models of: (i) the proposed
CRAI (ii) the CAI, (iii) SINDRI, and (iv) selected broad-band SIs. Note that, when using different
equations (linear versus exponential equations; see Table A4 in the Appendix A), the performance of
the SINDRI varies for estimating the CRC. The exponential equation for estimating winter-wheat CRC
provides better results than the linear equation, but the opposite holds for estimating the maize CRC.

As shown in Figure 10, CRM affects the estimation of broad-band CRC. For example, with wheat
CRC, the lower saturated and wet CRCs are overestimated when using the SRNDI (see Figure 10),
whereas the higher wet and dry CRCs are underestimated (Figure 10). The response of the NSDVI and
SGNDI to CRM is similar with SRNDI (Figure 10). In this study, dry CRC is overestimated when using
the CAI, whereas saturated CRC is underestimated because the CAI decreases with increasing CRM
(Figure 6; [20,23]). In addition, the SINDRI may also lead to underestimating the higher wheat CRC
(Figure 10). In this work, estimates of CRC based on the CRAI and laboratory-based validation dataset
gives the best linear fit for wheat: y = 0.864x + 7.113 (MAE = 7.80%, RMSE = 9.54%, nRMSE = 10.46%,
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and R2 = 0.872) and for maize y = 0.743x + 13.174 (MAE = 11.14%, RMSE = 13.90%, nRMSE = 14.85%,
and R2 = 0.730).Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 22 
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5. Analysis and Discussion

5.1. Analysis of Spectral Indices for Crop Residue Cover Using Laboratory Dataset

In this study, the CRC estimation performance of CRAI and 11 selected indices was validate
by using a laboratory-based dataset ((i) a dry dataset (air-dried soils and crop residues, n = 392),
(ii) a wet dataset (wet soils and crop residues, n = 822), (iii) a saturated dataset (saturated soils and
crop residues, n = 402), and (iv) all datasets (n = 1616)). The correlation coefficients between the
11 selected indices and CRC from the laboratory-based dry dataset range from 0.709 to 0.869, so all
SIs are strong candidates for estimating CRC (Table 3) from dry samples of soil and crop residue.
However, moisture produces an uncertain effect on estimates of CRC based on remote sensing of the
selected indices, which significantly reduces the correlation coefficient between the broad-band SIs and
CRC from all (dry, wet, saturated) samples (Figures 6, 7 and 10). The laboratory-based results indicate
that broad-band SIs do not provide accurate estimates of CRC (see SRNDI, SGNDI, and NDSVI in
Figures 10 and 11) when SM/CRM varies significantly.
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Figures 10 and 11 show that, compared with the three investigated broad-band indices and
the CAI, the SINDRI offers an advantage for estimating CRC with various soil backgrounds and
moisture contents. However, previous studies indicate that the water and soil background affects the
SINDRI [24]. Quemada et al. [24,40] suggest that the use of a water index to correct the reflectance of
each spectral band substantially mitigates the uncertain effects of moisture on CRC estimates. However,
correcting for moisture by using a water index requires prior field knowledge (e.g., SM/CRM response
to water index, see [24,40]). More importantly, the moisture-correction parameters may differ for the
different soils and crop residues. Therefore, applying a water index to correct for moisture may be
of limited use in practice. According to our preceding analysis (Section 4.1, Table 3), the CAI gives
the best estimate of CRC (r = 0.869) for the dry dataset. However, the CAI leads to poor estimates
for samples with greater water content (Table 3, Figures 6–11). The main problem is that the CAI for
pure crop residue diminishes rapidly with increasing moisture (Figure 6), which indicates that CRM
reduces the accuracy of CRC estimates based on the CAI. A more detailed analysis of the CAI of crop
residues and soils as a function of CRM is available in the literature [20,23,24].

In practice, the water content of soil and crop residue often varies spatially due to minor changes
in local topography, rainfall, and irrigation. In addition, different soils often have significantly different
spectra (Figure 1). In this study, the proposed CRAI uses two angles to estimate CRC, with the angle
β involving the same three bands as the CAI (2031, 2011, and 2201 nm), and the angle α (involving
bands at 833 and 1670 nm) correcting for moisture. The proposed CRAI accurately estimates the CRC
regardless of soil, soil moisture, or crop residue moisture. Of course, the results (Figures 10 and 11)
and corresponding analysis comes from a laboratory-based dataset.

5.2. Limitations and Future Application of Laboratory-Based CRAI

This work uses four spectrally distinct soils (paddy soil, black soil, meadow soil, and brown
soil; see Figure 1), two crop residues (winter wheat and maize; see Figure 2), and four levels of
SM/CRM to produce a reliable representation of the actual conditions in the field (Table 2). The use of
laboratory-based mixed hyperspectral data with varying moisture content allows us to focus on how
the soil and crop residue hyperspectral bands at 833, 1670, 2031, 2101, and 2201 nm respond to moisture
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and soil background, and thereby to propose the CRAI. Laboratory-based mixed hyperspectral data
from a total of 1616 sets of residue and soil (wheat: 835 for wheat and 781 for maize) with varying
moisture content were used to verify the proposed CRAI. However, CRAI is confined by only a
laboratory-based dataset. For the moment, CRAI was limited because it has yet to be verified in the
field, and require additional real satellite-based hyperspectral remote sensing testing. Eventually,
the usefulness of this study is its future application of the new proposed index to satellites and other
remote sensors.

Furthermore, despite the simple calculation and the high accuracy of the CRC estimate,
the proposed method may have limited applicability for the moment. The main problem is the difficulty
of obtaining hyperspectral images, which makes it difficult to use the proposed CRAI for estimating
large-scale CRC. In recent years, hyperspectral remote-sensing data acquired from the ground
(field and laboratory) [5,18,36,41,49,50], unmanned aerial vehicles and airborne platforms (Airborne
Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) [51], Headwall Photonics
Hyper-spec VNIR-SWIR Dual-sensor), and satellite platforms (EO-1 Hyperion [17,52], Compact High
Resolution Imaging Spectrometer (CHRIS) proba-1 [53]) have been able to capture field spectra in
narrow bands, thereby, the method can be applied. Of course, numerous other hyperspectral-based
CRC estimation methods exist, and many fruitful results have been achieved [17,39,52]. Note, that the
number of satellite-based hyperspectral sensors is rising due to this growing demand, examples
include: the Advanced Hyper-Spectral Imager (AHSI) mounted on GF-5 of China [launched on May 9,
2018; spectral resolution: 0.4~0.9 µm (5 nm), 0.9~2.5 µm (10 nm); ground spatial resolution: 30 m [54]]
and the German Environmental Mapping and Analysis Program (EnMAP) mission (EnMAP, 2019).
In addition, the feasibility of estimating CRC in the field by using the CRAI from hyperspectral images
should be determined by additional field tests. However, field validation can only be perform when
GF-5 AHSI is ready for providing hyperspectral images of harvested farmland and currently, it has
not yet been undertaken. Thus, further studies are required to verify the use of satellite hyperspectral
remote-sensing images for different crops and ecological areas. In addition, because numerous
broadband remote-sensing data are free and available, a multispectral crop residue angle index will be
more valuable than the hyperspectral version presented herein. Thus, the response to moisture and soil
background of broadband remote-sensing multispectral imaging requires additional analysis, which
means that further studies are also required to develop a multispectral version of the CRC angle index.

6. Conclusions

Based on the large quantities of laboratory-based hyperspectral dataset, this study proposes a crop
residue angle index (CRAI) for estimating CRC based on five bands (833, 1670, 2031, 2101, and 2201
nm). We measured laboratory-based mixed hyperspectral reflectance from two crop residues (wheat
and maize) and from four spectrally distinct soils (paddy soil, black soil, meadow soil, and brown soil)
and included dry, wet, and saturated samples (Table 2). We compared how moisture content and soil
background affected the selected spectral indices (SIs) ((i) the proposed CRAI, (ii) the CAI, (iii) the
SINDRI, and (iv) selected broad-band Sis) by using laboratory-based datasets containing: (i) air-dried
soils and crop residues, (ii) wet soils and crop residues, (iii) saturated soils and crop residues, and (iv)
all datasets ((i)–(iii)). The main conclusions of this work are as follows:

(i) Mitigating the uncertain effect caused by moisture is of significant importance to properly
estimate CRC using remote-sensing techniques. Crop residue moisture content significantly
affects the traditional SIs (Table 3, Figure 6) except for SINDRI. All broad-band indices are less
correlated with CRC when using all datasets than when using only the dry, wet, or saturated
dataset (Table 3). Although the CAI provides the best estimate of CRC (r = 0.869) when using
the dry dataset, it leads to a poor estimate of CRC (r = 0.580) when crop residue samples have
varying moisture content (Table 3).

(ii) In this work, the proposed CRAI accurately estimates the CRC regardless of soil, soil moisture,
or crop residue moisture by using a laboratory-based dataset (Table 2). The CRAI combines



Remote Sens. 2019, 11, 807 17 of 21

two features that reflect the moisture content in soil and crop residue. The first is the different
reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm)
and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and
crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. However,
note that the CRAI has yet to be verified in the field. Thus, above-mentioned advantages of new
proposed index require additional real satellite-based hyperspectral remote sensing testing.

(iii) The current study uses laboratory-based tests, which allows us to compare samples with different
moisture content ((i) dry, (ii) wet, (iii) saturated, and (iv) all datasets). To confirm that the findings
apply to a broader range of crops and ecological areas, additional field-based experiments
are planned.

(iv) Because numerous broadband remote-sensing data are free and available, a multispectral crop
residue angle index will be more valuable than the hyperspectral version presented herein.
Therefore, broad-band multi-spectral reflectance respond to SM/CRM should be analyzed in
future works.

Author Contributions: J.Y. propose the index, analyzed the data, and wrote the manuscript. X.D. and C.Z.
collected winter-wheat and maize residue samples. J.Y. collected the hyperspectral data. K.X. and Q.T. provided
comments and suggestions for the manuscript and checked the writing.

Funding: This study was supported by the Natural Science Foundation of China (41771370), the National Key
Research and Development Program of China (2017YFD0600903), and the High-resolution Earth Observation
Project of China (03-Y20A04-9001-17/18 & 30-Y20A07- 9003-17/18).

Acknowledgments: Thanks to Peiyan Wang for providing the soils and the soil texture measurement.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The summary of field soil characteristics is presented in Table A1. The details numbers in
Figures 7, 9 and 11 are shown in Tables A2–A4. The performance of SINDRI-based CRC estimates
made with an exponential equation are also shown in Table A4 of the Appendix A.

Table A1. Summary of characteristics four soils.

Soil Name City Color Soil Order Clay a Silt b Sand c Soil Type PH

Paddy Soil Nanjing 10YR4/3 Anthrosols 99.95% 0.05% 0.00% Clay 6.46
Black Soil Jining 10YR4/3 Vertisols 87.00% 6.83% 6.17% Clay 7.36

Meadow Soil Jining 2.5YR7/4 Histosols 76.7% 20.4% 2.90% Clay 7.74
Brown Soil Jining 2.5YR6/3 Alfisols 71.10% 11.70% 17.20% Clay 6.54

a Particle size (< 0.002 mm), b Particle size (0.002-0.05 mm), c Particle size (0.05-2 mm).

Table A2. Absolute value of correlation coefficient.

Types Indices Saturated Wet Dry All

Wheat

CRAI 0.981 0.947 0.943 0.932
CAI 0.920 0.850 0.919 0.628

SINDRI 0.914 0.922 0.936 0.910
NDSVI 0.893 0.764 0.839 0.665
SGNDI 0.913 0.823 0.930 0.692
SRNDI 0.911 0.816 0.941 0.666

Maize

CRAI 0.922 0.911 0.927 0.859
CAI 0.817 0.678 0.892 0.502

SINDRI 0.836 0.868 0.804 0.793
NDSVI 0.857 0.797 0.754 0.657
SGNDI 0.776 0.750 0.788 0.576
SRNDI 0.761 0.737 0.763 0.552
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Table A3. Absolute value of correlation coefficient.

Types Indices Paddy Soil Black Soil Meadow Soil Brown Soil Four Soils

Dry

CRAI 0.979 0.992 0.989 0.957 0.943
CAI 0.971 0.973 0.970 0.957 0.919

SINDRI 0.958 0.968 0.975 0.953 0.936
NDSVI 0.877 0.976 0.953 0.838 0.839
SGNDI 0.953 0.986 0.984 0.943 0.930
SRNDI 0.959 0.986 0.985 0.932 0.941

Saturated

CRAI 0.995 0.980 0.995 0.996 0.981
CAI 0.965 0.852 0.965 0.977 0.920

SINDRI 0.928 0.840 0.928 0.978 0.914
NDSVI 0.980 0.920 0.980 0.937 0.893
SGNDI 0.978 0.868 0.978 0.940 0.913
SRNDI 0.967 0.927 0.967 0.948 0.911

Table A4. Descriptive statistics of regression accuracy [MAE (%), RMSE (%), nRMSE (%), and R2].

Crops Indices
Calibration (279 Wheat and 261 Maize) Validation (556 Wheat and 520 Maize)

Regression Model MAE RMSE nRMSE R2 MAE RMSE nRMSE R2

Wheat

CRAI y = 159.52 x − 43.67 7.99 9.64 10.28 0.870 7.80 9.54 10.46 0.872
CAI y = 11.98 x + 43.14 16.30 19.80 21.11 0.451 17.13 20.49 22.47 0.411

SINDRI (l) y = 12.74 x + 4.54 9.15 11.22 11.97 0.824 8.95 11.03 12.10 0.830
SINDRI (e) y = 11.57 exp (0.35 x) 8.59 10.86 11.50 0.842 8.53 10.64 11.10 0.846

NDSVI y = −223.99 x + 81.10 17.02 20.43 21.78 0.416 15.85 19.56 21.45 0.462
SGNDI y = 152.47 x + 72.55 16.20 19.70 21.00 0.457 15.19 18.87 20.69 0.500
SRNDI y = −131.65 x + 48.31 16.81 20.32 21.66 0.422 15.57 19.35 21.22 0.474

Maize

CRAI y = 271.1 x - 78.63 11.21 13.48 13.93 0.738 11.14 13.90 14.85 0.730
CAI y = 10.53 x + 49.65 19.10 22.96 23.72 0.252 19.36 22.93 24.49 0.260

SINDRI (l) y = 21.60 x − 3.69 13.09 16.13 16.66 0.629 12.99 15.73 16.81 0.654
SINDRI (e) y = 11.73 exp (0.51 x) 14.79 20.38 21.10 0.498 14.43 19.97 21.30 0.526

NDSVI y = −208.59 x + 78.12 16.75 19.92 20.58 0.432 16.43 19.65 21.00 0.461
SGNDI y = 112.82 x + 65.70 18.26 21.65 22.37 0.331 17.96 21.27 22.73 0.368
SRNDI y = −115.69 x + 53.40 18.61 22.08 22.81 0.305 18.36 21.71 23.20 0.341

Note: SINDRI (l) and SINDRI (e) represent SINDRI-based estimates of CRC made by using the linear and
exponential equations.
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