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Abstract: Global navigation satellite system (GNSS) integer ambiguity acceptance test is one of
the open problems in GNSS data processing. A number of ambiguity acceptance tests have been
proposed from different perspectives and then unified into the integer aperture estimation framework.
The existing comparative studies indicate that the impact of test statistics form on the test performance
is less critical, while how to construct an efficient, practical test threshold is still challenging. Based on
the likelihood ratio test theory, a new computationally efficient ambiguity acceptance test with
controllable success fix rate, namely the fixed likelihood ratio (FL-) approach is proposed, which does
not require Monte Carlo simulation. The study indicates that the fixed failure rate (FF-) approach can
only control the overall failure rate of the acceptance region, but the local failure rate is not controllable.
The proposed FL-approach only accepts the fixed solution meeting the likelihood ratio requirement.
With properly chosen likelihood ratio threshold, the FL-approach achieves comparable success rate
as the FF-approach and even lower failure rate than the FF-approach for the strong underlying model
cases. The fixed success fix rate of the FL-approach is verified with both simulation data and real
GNSS data. The numerical results indicate that the success fix rate of the FL-approach achieves
>98% while the failure rate is <1.5%. The real-time kinematic (RTK) positioning with ambiguities
tested by the FL-approach achieved 1–2cm horizontal precision and 2–4 cm vertical precision for all
tested baselines, which confirms that the FL-approach can serve as a reliable and efficient threshold
determination method for the GNSS ambiguity acceptance test problem.

Keywords: likelihood ratio test; fixed failure rate approach; success fix rate; ambiguity acceptance
test; ambiguity resolution

1. Introduction

Global navigation satellite system (GNSS) integer ambiguity resolution is the key issue for carrier
phase-based fast precise positioning, while the ambiguity acceptance test problem is considered as one
of the remaining open problems in GNSS data processing [1]. The mathematical model for the carrier
phase-based GNSS positioning model can be expressed as:

E(y) = Aa + Bb, D(y) = Qyy, a ∈ Zn, b ∈ Rp (1)
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where a and b are the integer and real-valued parameters respectively. The real-valued parameters
b can be the position, the tropospheric delay, the ionospheric delay and possibly hardware biases.
The integer parameters a normally refer to the undifferenced or double-differenced carrier phase
integer ambiguity parameter. A and B are corresponding design matrices. The observation vector y
follows m-dimensional multivariate normal distribution with its variance-covariance (vc-) matrix Qyy.
E(·) and D(·) are the mathematical expectation and variance operator, respectively.

The mixed integer model can be solved by a four-step procedure:

• Estimating a and b with the standard least-squares or Kalman filter. The integer nature of a is not
considered and its real-value estimates are treated as ‘float solution’. The real-valued estimates of
a and b, and their variance-covariance matrix are denoted as:(

â
b̂

)
,

(
Qââ Qâb̂
Qb̂â Qb̂b̂

)
(2)

• Mapping the real-valued ambiguity vector to an integer vector with an integer estimator.
The integer estimation procedure can be described as ă = I(â), with I : Rn → Zn .

• Validating the fixed integer ă with the ambiguity acceptance tests. If ă is rejected by the acceptance
test, it means that the fixed integer ă is not considered as a correct integer solution

• Updating the real-valued parameters by b̆ = b̂− Qb̂âQ−1
ââ (â− ă) if ă is accepted by ambiguity

acceptance test. If ă is rejected by the test, the float solution â is used as the final solution.

The ambiguity acceptance test can be treated as either a hypothesis test problem or an estimation
problem. A standard hypothesis test problem includes three aspects: the probability basis, the test
statistic, and the threshold. The ambiguity acceptance test problem can be formulated as:

H0 : ă = a versus Ha : ă 6= a (3)

where a is the true ambiguity vector. The ambiguity acceptance test is a composite hypotheses test
since the float solution can be mapped to arbitrary integer vectors, while only one of them is correct.
Generally, a hypothesis test has four types of potential outcomes, which are outlined in Table 1.
The table is often referred to as the decision matrix [2]. In the decision matrix, the false alarm and
miss detection cases are unwanted outcomes. The miss detection can cause incorrect ambiguity fix,
which introduces unexpected bias in the final positioning results. The hypothesis test theory expressed
in the Equation (3) has been well established, but the ambiguity acceptance test is not a standard
hypothesis test. The true ambiguity vector is normally unknown in reality, so the ambiguity acceptance
test can only use the float solution â and the fixed solution ă for test statistics construction.

Table 1. The decision matrix of the general hypothesis test.

Truth

H0 Ha

Decision
Accept Correctly Accept Miss detection
Reject False Alarm Correctly Reject

Normally, the test statistics of ambiguity acceptance test are constructed based on the ambiguity
residual distribution. The ambiguity residual is defined as [3,4]:

ε̆ = â− ă, ă ∈ Zn, â ∈ Rn (4)

The float solution â follows the normal distribution, while the fixed solution ă is not deterministic.
As a result, the probability density distribution of ambiguity residuals becomes non-standard.
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Considering the stochastic property of ă, the probability density function (PDF) the ambiguity residual
ε̆ is defined as [4]:

f ε̆(x) = ∑
z∈Zn

f â(x + z)s0(x), sz(x) =

{
1 if x ∈ Sz

0 otherwise
(5)

where Sz is the pull-in region of integer estimation centered at z. f â(x) is the PDF of float ambiguity â.
According to the integer aperture (IA) estimation theory, the probability of the ambiguity acceptance
test outcomes can be calculated by [5,6]:

Ps = P(a = a) =
∫

Ωa
f â(x)dx

Pf = P(a 6= a) =
∫

Ω\Ωa
f â(x)dx = ∑

z 6=a

∫
Ωz

f â(x)dx =
∫

Ω0
( f^

ε
(x)− f â(x− a))dx

Pu = P(a = â) = 1− Ps − Pf

(6)

where Ps, Pf and Pu are the success rate, the failure rate, and the undecided rate respectively. a is
the output of integer aperture estimator. Ω and Ωa are the acceptance region space and a specific
acceptance region centered at a. According to the probability foundation and the integer aperture
framework, the hypothesis test model for the ambiguity acceptance test model can be illustrated in
Figure 1. The area of the red region, the green region, and the grey region corresponds to Ps, Pf and Pu.
A detailed description of the ambiguity acceptance test model can be found in [7,8].
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Figure 1. One dimensional example of the ambiguity acceptance test model.

A number of test statistics have been constructed to solve the ambiguity acceptance test problem.
In early studies, many ambiguity acceptance tests were derived from different perspectives, such as
the F-ratio test [9,10], the ratio test [11], the difference test [12], the projector test [13,14], etc. These test
statistics are empirically efficient, although some of them are not theoretical rigorous [15]. Within the
framework of the integer aperture estimation, the ellipsoidal integer aperture [5], the integer aperture
bootstrapping [16], the integer aperture least-squares [17], the penalized integer aperture [18], and the
optimal integer aperture [19] have been proposed. An extensive comparison between different integer
aperture estimators has been made and the results indicate that the ratio and the difference tests are
suboptimal estimators in terms of fixed failure rate [3,20]. The reason for sub-optimality has been
analyzed in [21]. The numerical results indicate that the success rate discrepancy between the optimal
solution (OIA) and the suboptimal solution is not very significant [3], so the test statistics should not
be the key issue in ambiguity acceptance test.
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The remaining challenge is how to reasonably determine the threshold of the ambiguity acceptance
test. In the early stage, the empirical threshold is adopted. Then, the theoretical rigorous threshold
determination method namely the fixed failure rate (FF-) approach is proposed. The FF-approach
is considered a promising threshold determination test, but is not computationally efficient enough.
In order to overcome this problem, we propose the look-up table method [22,23] and the threshold
function method [8,24,25].

The FF-approach can only control the overall failure rate of the acceptance region. To overcome this
weakness, a fixed likelihood ratio (FL-) approach is proposed to derive the reliable integer ambiguities
by only accepting the integer vector with high likelihood ratio.

2. The Fixed Likelihood Ratio Threshold Determination Approach

In this section, the related work on threshold determination methods in GNSS ambiguity
acceptance test is briefly reviewed. The weakness of the FF-approach is then identified accordingly.
Next, we proposed the fixed likelihood ratio (FL-) threshold for threshold determination.

2.1. Related Threshold Determination Methods

There are several threshold determination methods related to the ambiguity acceptance test.
They can be classified into three types: empirical method, significance test method, and fixed failure
rate (FF-) approach [20].

The empirical approach is to determine the threshold according to individual experience.
This approach has no sound theoretical basis, but it empirically makes sense. This is a simple
and straightforward method, which has been widely used in discrimination tests [9–12,26,27].
The drawback of the empirical approach is its poor adaptive capacity. One empirical threshold only fits
one particular underlying model, a different underlying model and different observation scenario may
require different thresholds, which is why the optimal empirical threshold is always controversial.

The significance test approach determines its threshold according to a given significance level
α, which corresponds to the false alarm probability (type I error probability) in the decision matrix
(Table 1). In the early stage, the ambiguity acceptance test problem is attempted to be solved like the
other general hypothesis test problems, and their threshold is often determined with the significance
test approach [13,14]. In GNSS ambiguity resolution, the price of making type II errors is far higher
than making type I errors. Hence controlling the significance level makes it difficult to achieve a reliable
solution, although it is popular in the statistics field.

The fixed failure rate (FF-) approach is considered as a promising method and it comes with
a rigorous theoretical basis. It determines the threshold according to failure rate tolerance, so it becomes
increasingly popular. The objective function of the FF-approach is given as [19,22,23]:

maxΩ0⊂S0 Pssubject to : Pf ≤ Pf (7)

where P f is the user-specified failure rate tolerance.
The failure rate corresponds to the Type II error in the decision matrix, so the FF-approach

is essentially different from the significance test in that the FF-approach controls the type II error,
while the significance test controls type I error. Controlling type II error means controlling the failure
acceptance risk, which meets the requirement of reliability control in ambiguity resolution.

The FF-approach is theoretically rigorous, but the challenges come from implementation aspects.
Calculating the FF-threshold requires an explicit relationship between the failure rate Pf and threshold
µ. According to the definition of IA estimation, the failure rate can be calculated by integrating PDF
over different acceptance regions. The PDF is the underlying model specified, and the acceptance
region is determined by the underlying model, IA estimator, and the threshold. For a particular model
and IA estimator, there is no explicit relationship between threshold µ and failure rate tolerance Pf .
In order to address the relationship, the Monte-Carlo method is used. A large number of samples is
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used to approximate the distribution of â in multi-dimensional space, then the failure rate is computed
by testing the fixed solution of each â sample. The Monte-Carlo simulation is computation extensive,
so a number of algorithms have been proposed to improve the computation efficiency, such as the
look-up table method [22,23], the threshold function method [8,24], etc.

2.2. The Likelihood Ratio Integer Aperture Estimation

We now address problems of the FF-approach before offering a solution. A question about the
FF-approach is whether it ensures that the accepted ambiguities are reliable. Recalling Equation (6), the failure
rate is the integral of the PDF fε̆(x)− fâ(x− a) over the acceptance region, which corresponds to the area
of the green region in Figure 1. However, the PDF f ε̆(x)− f â(x− a) is not evenly distributed, meaning
that the failure risk is not homogeneously distributed in the acceptance region. The FF-approach can
only control the overall failure rate of the acceptance region and the distribution of fε̆(x)− fâ(x− a) is not
considered by the failure rate indicator. Considering the inhomogeneous distribution of fε̆(x)− fâ(x− a),
it is possible to find a subset of the acceptance region Ωs ⊂ ΩFF having

∫
Ωs

f ε̆(x)− f â(x− a) < P f ,
where ΩFF is the acceptance region of the FF-approach. For convenience, we define the local failure
rate as: .

P f =
∫

Ωs
f ε̆(x)− f â(x− a), Ωs ⊂ ΩFF (8)

where
.
P f is the local failure rate in the subset Ωs. The local failure rate refers to the failure probability

if the samples fall in a subset region Ωs. In contrast, the FF-approach controls the overall acceptance
region, which can be expressed as

∫
ΩFF

f ε̆(x)− f â(x− a). In practice, if the overall failure rate is
controlled, this does not mean that the local failure rate is controllable.

From this perspective, we propose the fixed likelihood ratio approach to control the local failure
risk within the acceptance region. The distribution specified failure risk can be measured by the
likelihood ratio. According to the hypothesis model (3), the likelihood function for the ambiguity
acceptance test can be expressed as [28]:

ψ(x) =
f â|H0

(x)
f â|Ha(x)

=
f â(x− a)

f ε̆(x)− f â(x− a)
(9)

The likelihood function is the ratio of the PDF subject to the null and alternative hypotheses. If the
ratio is large enough, H0 is considered to be reliable. A corresponding likelihood ratio test can be
expressed as:

ψ(x) =
f â(x− a)

f ε̆(x)− f â(x− a)
≥ λ (10)

where λ is the likelihood ratio threshold. The float solution â with likelihood ratio smaller than λ is
considered not being sufficiently reliable and thus being rejected. In this test, the likelihood threshold
is fixed, which is denoted as the fixed likelihood ratio (FL-) approach. Based on the FL-approach, a new
integer aperture estimator can be constructed, which is denoted as the likelihood ratio integer aperture
(LRIA). The corresponding acceptance region can be given as:

ΩLRIA,0 = {x ∈ S0| f â(x− a) ≥ λ( f ε̆(x)− f â(x− a))}
⇔ ΩLRIA,0 =

{
x ∈ S0

∣∣∣η(x) ≥ µ, η(x) = f â(x−a)
f ε̆(x) , µ = λ

1+λ

} (11)

where µ is the normalized likelihood ratio threshold, which varies in the interval [0, 1]. η(x) is the ratio
of float ambiguity PDF and ambiguity residual PDF, which is denoted as the normalized likelihood
ratio (NLR) in this context. Larger η(x) means higher reliability.

A two-dimensional example of the LRIA acceptance region is illustrated in Figure 2. The figure
gives two underlying models with different integer bootstrapping (IB) success rate. The integer
bootstrapping success rate is an easy-to-evaluate, tight lower bound of ILS success rate, and often used
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as the underlying model strength indicator [29], which is denoted as Ps,IB The model with higher IB
success rate is considered having a stronger underlying model. The figure indicates that the LRIA
acceptance region’s shape depends on the underlying model and threshold. The acceptance region
would appear as a hexagon shape for the stronger model and appear as an ellipse shape for the weaker
model. Since LRIA and OIA use the same test statistics, the acceptance region’s shape for LRIA was
also the same as that for OIA. Therefore, LRIA inherits the optimal acceptance region shape from OIA
test statistics.
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Figure 2. Illustration of two-dimensional examples of the acceptance region of the likelihood ratio integer
aperture (LRIA) with different thresholds and different underlying models. (a): weaker underlying
model (b): stronger underlying model.

In the context of underlying principles, a comparison of the FF-approach and FL-approach is
demonstrated in Figure 3. In the figure, the red solid line and blue solid lines are the failure rate Pf (x)
and normalized likelihood ratio η(x) respectively. η and P f are the NLR tolerance and failure rate
tolerance, respectively. Two extreme cases, namely a strong underlying model (left panel) and a weak
underlying model (right panel) model were examined. In this example, the same threshold P f = 0.5%
and η = 0.9 were applied to both examples. For the strong model case, the FF-approach accepts all ă
given by the integer least-squares (ILS) estimator since Pf ,ILS < P f . However, the figure also indicates
that min{η(x)} = 0.5. In this example the region η(x) < 0.9 will be rejected by the FL-approach since
they cannot meet the reliability indicator, while they are accepted by the FF-approach since there is
an abundant failure rate budget. Actually, when â is fairly close to the ILS pull-in region boundary,
it is often unreliable regardless of strong or weak models. The right panel shows the weak underlying
model case. In this case, the FF-approach uses up its failure rate budget to earn a small acceptance
region since the failure rate rises rapidly. However, the figure also indicates max{η(x)} < µLRIA, so the
FL-approach gives an empty acceptance region. In fact, the FF-approach will never give an empty
acceptance region even in the poor underlying model case, but the reliability will not be guaranteed.
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with different underlying model in the one-dimensional case. (a) stronger underlying model (b) weaker
underlying model.

2.3. Properties of LRIA

The likelihood ratio value can reflect the likelihood of the null hypothesis to be true, so it can be
used as a threshold of the ambiguity acceptance test. The integer aperture (LRIA) estimation determines
the threshold according to the likelihood ratio criterion, which can be equivalently expressed as:

η(x) ≥ µ (12)

where µ is the user specified likelihood ratio threshold. The likelihood ratio approach is firstly used to
validate the integer bootstrapping estimation with a threshold of 0.99 [30]. The likelihood ratio approach
can adjust the acceptance region size automatically according to model strength. The properties of the
LRIA are discussed.

2.3.1. The Success Fix Rate Property

The first good property of LRIA is its success fix rate property. According to the definition of
LRIA, ∀x ∈ Ω0,LRIA, f â(x− a) ≥ µ f ε̆(x), so the integration form can be given as:

Ps f =

∫
Ω0,LRIA

f â(x− a)dx∫
Ω0,LRIA

f ε̆(x)dx
=

Ps

Ps + Pf
≥ µ (13)

The detailed proof of Equation (13) is given in Appendix A. The equation indicates µ can be
viewed as a lower bound of success fix rate, so success fix rate can be guaranteed with the likelihood
ratio approach. The relationship between µ and Ps f in the one-dimensional case is illustrated in
Figure 4. The figure indicates that Ps f is always higher than µ. The discrepancy between Ps f and µ

depends on both the underlying model and the threshold itself. µ is a tight lower bound of the success
fix rate in the strong underlying model scenario. When the acceptance region is small, the discrepancy
between µ and Ps f is small. However, µ was reduced to 0.5 at the boundary of the acceptance region,
while the decrease of Ps f slowed down.
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2.3.2. The Local Failure Rate Property

The second property of LRIA is its local failure rate property. According to Equation (12), the local
failure rate can be expressed as:

.
P f ≤

1− µ

µ

.
Ps,

.
Ps =

∫
Ωs

f â(x) (14)

where
.
Ps is the local success rate, Ωs ⊂ ΩFF. The detailed proof procedure of Equation (14) is given

in Appendix B. The equation indicates that the upper bound of the local failure rate is not a constant
value for the FL-approach—it is defined by the local success rate. The smaller local success rate also
indicates a smaller failure rate upper bound. Although the FL-approach does not have a constant local
failure rate, it gives stricter failure rate upper bound in a small local success rate scenario; however,
it is still promising for GNSS ambiguity reliability control.

2.3.3. Computational Complexity

The FL-approach employs a user-specified reliability indicator, which does not require
Monte-Carlo simulation to determine the threshold, it is therefore more efficient than the FF-approach.
The FF-approach requires a Monte-Carlo simulation procedure to address the relationship between the
failure rate and the threshold. In contrast, the threshold of the FL-approach can be directly specified
according to its success fix rate requirement. It is impossible to compute the exact value of η(x),
so an approximation method must be employed. With a fixed numerical error tolerance, the number
of integers involved in the computation of η(x) depends on the underlying model [31]. A weaker
underlying model involves more integers and thus more extensive computation. The relationship
between the underlying model’s strength and integer number has been examined in [32]. It can
guarantee that the success fix rate is always higher than µ, but it is only applicable to the IA
estimator employing the likelihood ratio test form, such as the LRIA and the difference test integer
aperture (DTIA).
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2.4. The Relationship between the FL-Threshold and the Model Strength

The underlying model’s strength is the dominant factor for region size acceptance, but different
threshold determination methods have different behaviors. For the one-dimensional ambiguity
acceptance test, the thresholds given by the FL-approach and FF-approach for the different underlying
models are presented in Figure 5. In the figure, the vertical axis shows the different standard deviation
of float ambiguity â. The horizontal axis shows the size of the acceptance region. The two panels show
the threshold given by the FL-approach (left panel) and the FF-approach (right panels). For the strong
underlying model, the FF-approach simply accept all ă given by the integer estimator if σ ≥ 0.25 cycles.
While considering the likelihood ratio, the acceptance region should be much more conservative.
The float ambiguity near the boundary of the acceptance region is rarely reliable due to its low
discriminability. However, the FF-approach disregards this reliability risk and simply accepts all ă.
For the weak underlying model, saying σ > 0.32 cycles, the acceptance region for the FL-approach
becomes empty set since the maximum likelihood ratio fails to meet the threshold. In contrast,
the FF-approach still has a small acceptance region to meet the failure rate tolerance. In this case,
the success fix rate of the FF-approach decreases as the underlying model becomes weaker.
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3. Numerical Analysis

Performance of the fixed likelihood ratio approach is assessed with both simulation study and
real data set processing.

3.1. Failure Fate Assessment of the FL-approach

In order to assess the performance of FL-approach, we generated an example set with different IB
success rates. These examples are selected from a large scale of different underlying model and satellite
geometry configurations. The selected samples have their IB success rates evenly distributed in the
interval [0.9995, 0.8], so that we can reveal the impact of the underlying model. The examples with IB
success rate lower than 0.8 cases were considered too weak for ambiguity resolution in this study.

The failure rate of the ambiguity acceptance test reflects the total failure risk of the acceptance
region, which is considered as the prime reliability indicator. In this study, the failure rate of LRIA was
assessed first. The left panel of Figure 6 shows the failure rate statistic of the FL-approach obtained from
the Monte-Carlo method. The figure indicates that the actual failure rate depends on the likelihood
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ratio threshold. The failure rate of the FL-approach remained within 1.5% for the weak underlying
model, and decreased for the strong underlying model. The figure illustrates a rough relationship
between the failure rate and the likelihood ratio. Although the FL-approach cannot explicitly control
the failure rate, the statistical failure rate obtained by the FL-approach remained low.

The right panel of Figure 6 shows the distribution of η(x) obtained with the FF-approach.
The figure shows that the FF-approach’s likelihood ratio remains between 0.9 and 1.0 for the weak
underlying model case. However, this trend changed when the underlying model was stronger
than 0.9. The minimum likelihood ratio was much lower for a stronger model and lower FF rate.
This phenomenon is explained in Figure 5. If the underlying model is strong enough, it is easy for the
FF-approach to fill the failure rate tolerance. In this case, the FF-approach will accept samples with low
likelihood ratio as long as the overall failure rate is lower than the tolerance.
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3.2. Success Rate Assessment of the FL-Approach

Another question on the FL-approach performance was whether it achieves fairly high success
rates. In this section, the success rate of the FL-approach was evaluated and the results are presented
in Figure 7.

The left panel of Figure 7 shows the success rate obtained by the FL-approach with different
η. The figure indicates that the success rate of the FL-approach depends on the underlying model’s
strength. The success rate is dramatically when the underlying model was weaker. For the model
with IB success rate lower than 0.8, the success rate of LRIA was generally lower than 0.4, which is
considered too low for ambiguity fixing, thus we only considered scenarios where IB success rates
were higher than 0.9. The right panel of Figure 7 shows the relationship between the success rate
Ps given by the FF-approach and the model strength indicated by the IB success rate Ps,IB. The two
panels in the figure appear very similar indicating that there is no substantial difference between the
success rate obtained by both approaches. The simulation results indicate that the FL-approach and
FF-approach achieve similar success and failure rates with proper threshold selection. The difference
is that the FL-approach can also efficiently reject the samples with low likelihood ratio.
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3.3. Success Fix Rate Assessment of the FL-Approach.

According to Equation (13), the user-specified likelihood ratio tolerance can be used as a lower
bound for the success fix rate of the FL-approach, which can be further confirmed using numerical
computation. The simulation results of the success fix rate are presented in Figure 8. The figure
shows the success fix rate’s dependence on both the underlying model’s strength and the likelihood
ratio threshold. The success rate monotonically decreased as the underlying model became weaker.
The dashed line shows the success fix rate tolerance of the likelihood ratio threshold with the same dot
color. The figure confirms that the actual success fix rate is always higher than tolerance, although they
are not tight enough sometimes. No explicit relationship exists between the likelihood ratio and the
success fix rate, therefore, we cannot give an exact likelihood threshold according to the success fix rate
requirement. However, determining the lower bound of the likelihood ratio according to the success
fix rate requirement is possible. RTK algorithms may set the likelihood ratio threshold according to
the relationship presented in Figures 6 and 8. How these relationships could be adopted in real data
analysis is shown in the next subsections.
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3.4. Performance Assessment with the Real GNSS Data

We further assessed the performance of the FL-approach by real GPS data analysis. We selected
five stations from the National Geodetic Survey (NGS) network and formed a small network with
10 baselines. The data set can be freely retrieved from NGS FTP server (ftp://geodesy.noaa.gov/cors).
The GPS data collected on DOY 001-007, 2017 at 30-second intervals were used in this study, and the
network of the five stations is illustrated in Figure 9.
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The data sets are processed with the ionosphere-weighted RTK model epoch by epoch. The prior
variances of the ionosphere parameters are baseline length- and elevation-dependent. A detailed
description of the stochastic modeling in single epoch RTK is referred to in [33,34]. The least squares
ambiguity decorrelation adjustment (LAMBDA) method was used for ambiguity estimation and the FL-
approach was used for ambiguity acceptance test. The true ambiguity was derived from reprocessing
the baselines with position fixed model.

The success fix rates, the failure rates, the success rate of 10 baselines with different likelihood
thresholds are presented in Figure 10. The figure indicates that the success fix rates were all higher than
the threshold, thus meeting the success fix rates requirement. The failure rates of the baselines with
the fixed likelihood ratio approach were fairly low. For instance, is the values were lower than 1.5% for
the µ = 0.9 case and lower than 1% for the µ = 0.99 case. During real data processing, the failure rate
could be affected by the remaining small biases and other factors. It is therefore difficult to precisely
agree with the theoretical value, but the actual failure rate is relatively small and controllable. The fixed
likelihood achieves a fairly high success rate. Even when the likelihood ratio threshold was set as
0.99, most baselines achieved fairly high success rated with single epoch data. The figure also reveals
that a higher likelihood threshold means higher success fix rate, lower failure rate and success rate.
The computation results indicate that the FL-approach offers an efficient mechanism for reducing
failure rates and controlling the reliability of ambiguity resolution.

ftp://geodesy.noaa.gov/cors
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GPS baseline data.

3.5. The Likelihood Ratio Analysis in Real Data Processing

The simulation analysis indicates that the likelihood ratio given by the FF-approach may not
be high enough under a strong underlying model scenario, but what happens in the real GNSS
data processing scenario? In this section, the minimum likelihood ratio of the FF-approach was
examined, baseline by baseline, and the results are presented in Figure 11. The figure presents the
relationship between the baseline length and the minimum likelihood ratio subject to three failure
rate tolerance scenarios, given as 1, 0.01, and 0.001, respectively. The P f = 1 case means that no
ambiguity acceptance test was applied. The figure indicates that the minimum likelihood ratio without
an ambiguity acceptance test varied between 0.2 and 0.6, which was not high enough, hence they
were not reliable enough, and an ambiguity acceptance test was necessary. Generally, the minimum
likelihood decreases as the baseline length increases. With the FF-approach applied, the minimum
likelihood ratio also increased, but this was not guaranteed. The minimum likelihood ratio improved
(>0.9) for some baselines, but the rest were not high enough, varying between 0.5 and 0.9. Hence the
low likelihood ratio issue presented in Figure 6 is also present in real data processing. The figure also
indicates that applying stricter failure rates can further improve reliability, but the magnitude was
baseline dependent. The red dashed line in the figure is an example of the likelihood ratio threshold in
the FL-approach. After applying the FL-approach, the minimum likelihood ratio will improve, >0.9,
for all baseline instances.
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3.6. Computational Efficiency of the FL-Approach

Another benefit of the FL-approach is its computational efficiency. The mean time for processing
one epoch data is listed in Table 2. The time reflected in the table includes the total processing
time for one epoch. The table indicates that the mean time consumption is 25–30 ms on a desktop,
which is acceptable for real-time data processing. For the FF-approach, the Monte-Carlo procedure
with 100,000 samples typically takes tens of seconds to a few hundreds of seconds, so the FL-approach
is much more efficient compared to the FF-approach. Both time consumption and mean IB success rate
are positively correlated with baseline length. A weak underlying model requires longer processing
time since more incorrect integer candidates contribute to f ε̆(x). However, the impact of the underlying
model on time consumption is not significant. A poorer underlying model only introduces a few
milliseconds extra time consumption, so it is still considered acceptable.

Table 2. The mean time consumption of the real-time kinematic (RTK) processing with the FL-approach.

Baseline Length (km) Mean Ps,IB Mean Time Consumption (ms)

p295–p526 7.2 99.97 27.53
p278–p576 9.4 99.80 25.39
p526–p576 9.8 99.74 25.27
p295–p576 11.9 99.26 25.07
p067–p576 13.4 98.64 25.17
p067–p526 15.3 97.83 27.04
p067–p278 18.5 94.73 27.79
p278–p526 19.2 93.67 27.84
p278–p295 19.8 92.91 28.19
p067–p295 21.7 90.01 29.29

3.7. Positioning Precision with the LRIA Estimator

The ultimate goal of ambiguity acceptance tests is achieving high precision, reliable positioning
results. If all ambiguity parameters are successfully fixed to correct integers, the positioning results
should achieve fairly good precision. However, it is difficult to avoid failure ambiguity fixing in practice.
Incorrectly fixed ambiguity may introduce biases in positioning result and degrade positioning results.
Therefore, the performance of FL-approach is evaluated by validating the positioning precision. In this
evaluation, the fixed ambiguity was validated with the LRIA and the likelihood ratio threshold was
0.99. All the epochs with integer ambiguity accepted by the LRIA were involved in the precision
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computation. The standard deviation of positioning errors on east, north, and upward directions are
presented in Figure 12. The figure indicates that the final precision of each baseline was different,
but generally, they remained in a reasonable interval. The east direction achieved the best precision,
which varied between 0.6–1.5 cm. The north direction achieved 1–2 cm precision. The precision of the
upward direction achieved 2–4 cm precision. The results indicate that RTK positioning with the LRIA
estimator achieves reasonable positioning precision, concluding that LRIA is a valid integer aperture
estimator in real GNSS data processing.
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4. Conclusions

The threshold determination method is one of the most important topics in GNSS ambiguity
acceptance test research. In this study, we propose a new threshold determination method derived
from the likelihood ratio test, the fixed likelihood ratio (FL-) approach. The likelihood ratio approach
has a few properties, including the success fix rate is controllable, the local failure rate is bound
by the local success rate and computationally efficient. Compared to the fixed failure rate (FF-)
approach, the FL-approach is exempt from the time-consuming Monte-Carlo procedure. The simulation
study reveals that the FF-approach also accepts examples with low likelihood ratio when there is
abundant ‘failure rate budget’. In contrast, the FL-approach only accepts the examples with high
likelihood ratio regardless of the underlying model’s strength. It achieves an even lower failure rate
for the strong underlying model, but its success rate is still comparable to that of the FF-approach.
The performance of the FL-approach is verified with both simulation data and real GNSS observations.
The numerical results indicate that the FL-approach can also control for the failure rate within a low
level, but there is no explicit relationship between the likelihood ratio threshold and failure rate.
Both approaches achieve comparable success rates with proper threshold selection. The fixed success
fix rate property of the FL-approach is verified by both simulative and real data. The computation
with the FL-approach requires ~25–30 ms (all RTK computing for single epoch), which can cope
with most real-time applications, and time consumption slightly varies along the underlying model’s
strength. Finally, we examined the positioning precision with the FL-approach. The results indicate
that the FL-approach can reduce the adverse impact of incorrect ambiguity fixing and achieves 1–2 cm
horizontal precision and 2–4 cm vertical precision for all baselines, which is reasonable and acceptable
for single epoch RTK. Hence the FL-approach is a valid, practical and efficient threshold determination
method for GNSS ambiguity acceptance test.
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Appendix A. Proof of Equation Success Fix Rate Property

According to Equations (11) and (12), η(x) = f â(x−a)
f ε̆(x) and η(x) ≥ µ.

Then
f â(x− a)

f ε̆(x)
> µ (A1)

Since f ε̆(x) ≥ 0, we have
f â(x− a) ≥ µ f ε̆(x) (A2)

Applying the integral operation on both sides of Equation (A2), then we have:∫
Ω0,LRIA

f â(x− a)dx ≥ µ
∫

Ω0,LRIA

f ε̆(x)dx (A3)

According to Equation (6), the Equation (A3) can be re-expressed as:

Ps ≥ µ(Ps + Pf ) (A4)

Then we have:

Ps f =

∫
Ω0,LRIA

f â(x− a)dx∫
Ω0,LRIA

f ε̆(x)dx
=

Ps

Ps + Pf
≥ µ (A5)

End of proof.

Appendix B. Proof of Local Failure Rate Property

According to Equation (A2), we have:

f â(x)− µ f â(x) ≥ µ( f ε̆(x)− f â(x)) (A6)

Given a small local set Ωs ⊂ ΩFF, then:

(1− µ)
∫

Ωs
f â(x) ≥ µ

∫
Ωs

f ε̆(x)− f â(x) (A7)

According to Equation (8), we have

(1− µ)
.
Ps ≥ µ

.
P f (A8)

.
P f ≤

1− µ

µ

.
Ps (A9)

End of proof.
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