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Abstract: Although a detailed analysis of land use and land cover (LULC) change is essential in 

providing a greater understanding of increased human-environment interactions across the coastal 

region of Bangladesh, substantial challenges still exist for accurately classifying coastal LULC. This 

is due to the existence of high-level landscape heterogeneity and unavailability of good quality 

remotely sensed data. This study, the first of a kind, implemented a unique methodological 

approach to this challenge. Using freely available Landsat imagery, eXtreme Gradient Boosting 

(XGBoost)-based informative feature selection and Random Forest classification is used to elucidate 

spatio-temporal patterns of LULC across coastal areas over a 28-year period (1990-2017). We show 

that the XGBoost feature selection approach effectively addresses the issue of high landscape 

heterogeneity and spectral complexities in the image data, successfully augmenting the RF model 

performance (providing a mean user’s accuracy > 0.82). Multi-temporal LULC maps reveal that 

Bangladesh’s coastal areas experienced a net increase in agricultural land (5.44%), built-up (4.91%) 

and river (4.52%) areas over the past 28 years. While vegetation cover experienced a net decrease 

(8.26%), an increasing vegetation trend was observed in the years since 2000, primarily due to the 

Bangladesh government’s afforestation initiatives across the southern coastal belts. These findings 

provide a comprehensive picture of coastal LULC patterns, which will be useful for policy makers 

and resource managers to incorporate into coastal land use and environmental management 

practices. This work also provides useful methodological insights for future research to effectively 

address the spatial and spectral complexities of remotely sensed data used in classifying the LULC 

of a heterogeneous landscape.  

Keywords: land use/land cover mapping; coastal land use; Landsat; feature selection; XGBoost; 

random forest  

 

1. Introduction 
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An accurate estimation of land use/land cover change (LULCC) is essential for improved 

understanding of its impacts on climatic and environmental systems, to enable the implementation 

of appropriate environmental management practices [1]. The changing climate and its multifaceted, 

multi-scaled ramifications (e.g., sea-level rise, frequent storm surges) pose tremendous challenges to 

the coastal regions of Bangladesh, which include salinity intrusion, loss of vegetation, and loss of 

agricultural productivity. In addition to frequent natural disturbances, these regions have been 

subjected to rapid urbanization and economic development. An estimated 35 million people 

currently live in the coastal belt of Bangladesh [2,3], with associated activities causing significant 

alteration to the coastal land cover features at various spatial and temporal scales [4]. These changes, 

for the most part driven by anthropogenic activities, contribute to the loss of ecosystem services to 

an increased risk of natural hazards. Therefore, to identify effective strategies for dealing with the 

existing challenges, a detailed investigation of coastal LULCC dynamics has become indispensable 

for resource managers and planners. Although the LULCC research goes back decades, it is 

surprising that a comprehensive picture regarding such changes in coastal Bangladesh is still lacking, 

primarily due to the poor quality of accessible remotely sensed data over what is a highly complex, 

heterogeneous coastal landscape. This, in turn, poses unique challenges for large-scale data 

processing and analyses. 

The coastal region of Bangladesh constitutes a large area (~ 710 km coastline) with a high degree 

of landscape diversity with the presence of human settlements, flat and hilly topography, forests, 

numerous tidal flats and creeks, natural levees, estuaries, mangrove swamps, muddy flats and sandy 

beaches [3,5,6]. The challenges involved in the accurate classification of LULC across such a complex, 

heterogeneous biophysical landscape (e.g., coastal region of Bangladesh) arise from three major 

factors. First, the classification of LULC is highly susceptible to generalization and information loss 

due to the spatial and spectral limitations of available image data. Existing medium to low-resolution 

imageries provided by Landsat (30 m) are perhaps a perfect example. Mixed pixels in these images 

can lead to spectral confusion and problems in differentiating various land use categories. Studies 

suggest that even sub-meter spatial resolution images are not capable of explaining inter- and intra-

class variability in a heterogeneous landscape [7]. Second, images with coarse temporal granularity 

are not ideal for a detailed understanding of LULCC dynamics in regions that are under rapid and 

indiscriminate or unsystematic manipulation. Third, spectral complexities of the image objects are 

introduced due to various unfavorable local environmental and weather conditions (e.g., presence of 

thick dust, haze, and clouds), and large-scale biophysical changes, resulting from environmental 

disturbances (e.g., tropical cyclones) [8,9]. These systematic and non-systematic factors introduce 

substantial challenges in reliably depicting spatio-temporal (space-time) patterns of LULCC in large 

geo-spaces when applying an algorithmic image classification process. 

Thematic mapping of LULC is commonly based on a number of image classification techniques 

[10]. To date, the most widely used classification methods and associated algorithms fall into a 

number of categories - supervised and unsupervised, parametric and nonparametric, hard and soft 

(fuzzy) classification, or per-pixel, subpixel and per field categories (for a comprehensive review, see 

Lu and Weng, 2007). Among those, the most heavily used image classification methods are maximum 

likelihood classifier (MLC), K-Means, and ISODATA. However, MLC is a parametric approach and 

therefore performs accurately when spectral data are normally distributed. This tends not to be the 

case for image data for the coastal region of Bangladesh, which exhibit a non-linear distribution of 

landscape features. Due to the fact that these are unsupervised techniques, K-Means and ISODATA 

are often undesirable because they do not allow expert knowledge input (e.g., labeling of clusters) 

into the LULC map generation process. To tackle these challenges, previous research has adopted 

advanced classification algorithms including artificial neural networks (ANN), Support Vector 

Machines (SVM), Random Forest (RF), and Classification and Regression Trees (CART) [11,12]. RF 

and SVM algorithms are the most popular in the RS community [13,14] and are widely used for 

multispectral and hyperspectral image classification tasks. These classifiers outperform traditional 

parametric approaches with their ability to deal with noise, discrete/continuous as well as unbalanced 

datasets [15]. RF’s LULC classification accuracy is comparable to other ensemble learning techniques 
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- namely, bagging and boosting [16,17]. Besides high accuracy, RF has robustness against overfitting 

on the training data and requires considerably less tuning of the parameters than boosting ensembles, 

and provides measure of variable importance that can be used for the final model development. 

Despite these positive features, RF’s performance can be limited when classifying the LULC of a 

heterogeneous landscape, since RF’s randomized bagging-based feature selection and classification 

approach can be biased towards the majority class and therefore, can misclassify the minority class 

within the data [18,19]. Another point to note is that, for coastal areas comprised of sandy beaches, 

rivers, patchy inland swamps and forest canopy layer, an image pixel of moderate spatial resolution 

can encompass multiple features on the ground. This can lead to a similarity in spectral reflectance 

among multiple features, especially in urban/built-up areas. RF’s important feature selection 

approach is less reliable when predictor features are correlated with each other, and therefore can 

perform poorly in identifying most informative features - i.e., spectral bands that are most 

discriminative among LULC classes [20]. In such cases, a separate stage of feature selection prior to 

the model building process can be used for achieving improved predictive performance of the RF 

classifier.  

For reliable LULC mapping, selection of appropriate remotely sensed datasets and choice of a 

suitable classification system are considered the two most important factors [10]. Yet, the use of 30-

m resolution Landsat images is the only viable option for LULC classification for coastal region in 

Bangladesh. Therefore, landscape heterogeneity and complexities inherent within existing image 

data, in regards to spatial, radiometric, spectral, and temporal properties, warrant careful selection 

of procedures to be used in a typical LULC mapping workflow: image processing, training sample 

generation, feature extraction and selection, choice of appropriate classification method, post-

classification processing, and accuracy assessment. 

Feature extraction/selection is a critical step in the image classification task, as often only a few 

features (e.g., spectral bands) in a multispectral or hyperspectral image contain meaningful 

information necessary for separating individual LULC classes (e.g., pond vs. mangrove swamps). 

The most common feature extraction method is principal component analysis (PCA), which 

transforms the data into a new set of principle components that best describe the underlying structure 

of the original dataset [21]. Other feature extraction methods are minimum noise fraction transform, 

discriminant analysis, decision boundary feature extraction, non-parametric weighted feature 

extraction, wavelet transform, and spectral mixture analysis [10]. Feature selection involves finding 

a subset of features in the dataset that contribute most to the accuracy of a classification model. 

Common feature selection approaches include wrappers, embedded methods, semantic groupings, 

and filters. The wrappers approach makes use of the learning algorithm itself to evaluate various 

subsets of features during the classification process, but it has a high risk of overfitting and is also 

computationally intensive [22]. Although inherently similar to the wrappers, the embedded feature 

selection techniques (e.g., LASSO regularization and Decision Trees) utilize an intrinsic model-

building metric to determine (learn) which features contribute the most to the classification accuracy. 

While the LASSO feature selection algorithm performs well in modeling linear correlations between 

features, it cannot determine non-linear feature dependencies [23]. Semantic groupings involve 

selection of features (e.g., spectral or texture features) based on their type or by expert opinion. Filter 

feature selection methods use a pre-processing step, which is independent of the learning algorithm; 

they apply a statistical measure (e.g., Chi square test, information gain, and correlation coefficient 

scores) to rank each feature by the determined score. Classification and Regression Trees (CART) and 

Random Forest (RF) are two of the popular filter methods that are commonly used in most of the 

remote sensing applications. CART is a decision tree (DT)-based learning algorithm that uses binary 

recursive partitioning to grow DTs, using Gini and Twoing methods that search for important 

relationships and patterns in the data. CART feature selection was successfully used for vegetation 

and crop classification in moderate to high spatial resolution imageries (e.g., multi-temporal MODIS) 

[24,25].  

A Random Forest constructs an ensemble model of decision trees from random subsets of 

features and bagged samples of the training data [15]. Like CART, RFs were used for feature selection 
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leading to improved classification accuracy in mapping land-cover [8,9] and crops [26]. However, 

both CART and RF can perform poorly for high-dimensional and unbalanced data; recursive binary 

splitting and the bagging randomization process involved in these algorithms can be biased toward 

uninformative features [27,28]. Extreme gradient boosting (XGBoost) - another filter-based feature 

selection algorithm started gaining popularity recently [29–31]. XGBoost is a new implementation of 

boosting CART algorithms that improves the accuracy of classification through iterative computation 

of weak (basic) classifiers. It usually outperforms benchmark classifiers such as support vector 

machines (SVM) or RF, and thus has gained much popularity in the Machine Learning community - 

particularly in Kaggle competitions, and most recently in image classification [32–35]. In identifying 

important features, the XGBoost algorithm uses boosted trees to obtain feature scores. The more a 

feature is used for devising key decisions with boosted trees, the greater the score assigned to that 

feature. This approach can thus reduce class bias. XGBoost also utilizes the “sparsity-aware split 

finding” approach that can be highly advantageous for data with heterogeneously distributed 

features space, as usually manifested in the remotely sensed data of complex and heterogeneous 

coastal landscapes of Bangladesh. Moreover, the XGBoost algorithm employs measures of gain, 

frequency, and cover, that can deal with correlation among features while searching for the most 

important or discriminative features [30].  

A few studies exist that shed light on LULC change in the coastal areas of Bangladesh. While 

these studies highlight the space-time dynamic of coastal land-use, they are limited in geographic 

scope - i.e., focused on a relatively small coastal area comprising a few districts [4,12,36] or specific 

agro-ecological regions [3]. As such, the existing literature does not provide a detailed, 

comprehensive understanding on the changing pattern of LULC across the entire coastal region. To 

overcome this identified research gap, this study took up the challenge to produce detailed, multi-

year LULC maps of the entire coastal region of Bangladesh, with an aim to provide insight into the 

varied level of interplays that exist between human and the physical environment in this region. In 

doing so, this study employed a unique methodological approach compared to those found in 

existing studies - that is, it quantified multi-year coastal LULC classes using two state-of-the-art 

machine learning algorithms - XGBoost and Random Forest. Specifically, using these advanced 

algorithms, this study evaluated the performance of an integrated feature selection and classification 

modeling approach for LULC classification in a large and heterogeneous coastal landscape. 

Consequently, this study sought to answer two specific contextual and methodological questions, as 

follows:  

1. What are the multi-year spatial and temporal patterns of LULC in the heterogeneous coastal 

region of Bangladesh?  

2. Does the XGBoost feature selection contribute to an improved performance of the RF algorithm 

for LULC classification in a highly heterogeneous landscape?  

2. Materials and Methods  

2.1. Description of the study area 

The study area covers the entire coastal region of Bangladesh (Figure 1), an area of 4,625,334 

hectares of coastal floodplains [5,37]. The region is comprised of nineteen districts and is 

characterized by an extremely hydrologically active geomorphic setting, with elevation ranging from 

0 to 986 m above the mean sea-level. There are numerous tidal rivers that infrequently inundate the 

inlands and cause waterlogging. Furthermore, the conical shape of the study area and the lower 

elevation compared to that of the sea cause a backwater effect and contribute heavily to waterlogging 

issues [38]. Due to the region’s close proximity to the Bay of Bengal, salinity levels in the soil and 

river systems are also considerably higher than in any part of the country [37,39,40]. The 

southwestern part of the region is covered by a dense mangrove forest, known as the Sundarbans, 

which offers a natural protection to most of the natural disasters, particularly from cyclones 

developed in the sea [41]. The flora and fauna of the Sundarbans are considered to be a part of the 
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World Heritage sites and are critical for maintaining the ecological well-being of the coastal area [42]. 

The Sundarbans is one of the most unique mangrove forests in the world and can be highly 

susceptible to any unplanned land use and land cover changes [43,44].  

The mean annual temperature in the area is 33.74o C with a precipitation of 177.21 cm/year [45]. 

The people inhabiting this area are mainly involved in the primary activities (e.g., farming, fishing) 

for sustenance, which make them vulnerable to any adverse environmental processes [5]. In the past, 

people have migrated away from this region due to cyclones, storm surges and other natural disasters 

[46] that account for the stunted development of the region [47,48]. The high population density in 

this region has also led to the exploitation of the newly formed islands (locally known as Chars), an 

issue which also strongly contributes to LULC changes along the coastal areas of Bangladesh [39].  

 

Figure 1. Location of the study area showing the coastal districts of Bangladesh.  

2.1. Data acquisition and preparation  

Figure 2 shows the overall workflow of this study. The data preparation phase started with the 

acquisition of eight Landsat TM and OLI-TIRS scenes (at 30 x 30m resolution), covering the entire 

coastal regions of Bangladesh for individual years including 1990, 1995, 2000, 2005, 2010, and 2017. 

As a result, a total of forty-eight images between 1990 and 2017 were used. To minimize atmospheric 

disturbances in the datasets, only dry season images with less than 5% cloud cover were obtained. 

Radiometric corrections were performed through the conversion of raw digital numbers to top-of-

atmosphere (TOA) reflectance [49]. Atmospheric corrections were performed to remove the 

remaining atmospheric disturbances (e.g., haze) through identification of the darkest pixel value in 

each band and the subsequent subtraction of this value from every pixel [50].  
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Figure 2. Flowchart showing overall methodology of this work 

Multi-temporal Google Earth aerial imageries were used to select suitable training sites from the 

acquired Landsat images and to collect training pixels/areas related to six LULC types (Table 1) using 

photo-interpretation techniques. On average, 850 training samples were collected for use in the LULC 

classification. Data for model training and LULC classification were selected while maintaining a 

uniform distribution among the feature classes and a homogeneous distribution over the study area 

(i.e., maintaining an equal number of training points for each class spread homogenously over the 

study area). However, it should be noted that dry season (e.g., November and December) rice (locally 

called “Boro” paddy) cultivation and associated waterlogging via irrigation in many coastal areas 

offered substantial challenges in isolating agricultural and wetland areas, even via geolinked Google 

Earth imageries. Moreover, existing Google Earth imageries corresponding to the study area in 1990, 

1995 and 2000 are not as clear as the recent years (i.e., 2005, 2010 and 2017). This is noticeable when 

attempting the accurate identification of areas related to small urban patches, agricultural lands, and 

inland water bodies. Hence, multi-year normalized differential vegetation index (NDVI), normalized 

difference water index (NDWI), and normalized difference built-up index (NDBI) were produced to 

assist in the training data generation process. Training data showing an agreement with these three 

indices and the imagery available in Google Earth, were finally retained for mapping LULC.  

Table 1. Land cover classification scheme used in this study. 

LULC Class Description 

Built-up Residential, commercial and services, 

industrial, transportation, roads, mixed 

urban, and other urban 

Bare soil Exposed soils, construction sites 

Agricultural land 
Cultivated land, crop fields, fallow lands, 

and vegetable fields 
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Vegetation 
Deciduous forest, mixed forest lands, palms, 

conifer, scrub, and others 

Wetland 

Permanent and seasonal wetlands, inland 

water bodies, low-lying areas, marshy land, 

rills and gully, swamps 

River 
River networks, canals and active 

hydrological features  

2.3. Feature selection process 

It is important to use only image features (i.e., spectral bands) that are most useful for accurately 

separating different LULC classes. Table 2 shows the outcome of an exploratory analysis; the Pearson 

correlation statistic was employed to reveal the statistically significant pairwise associations between 

spectral bands corresponding to multi-temporal images used in this study. Hence, the XGBoost 

algorithm was used to select important features (i.e., spectral bands) that were used later for LULC 

classification using the RF algorithm. We implemented the XGBoost feature selection process using 

the ‘xgboost’ package in R. The XGBoost algorithm was built as an enhanced version of the gradient 

boosting decision tree algorithm (GBDTA) [30,31]. GBDTA is a regression and classification technique 

that develops prediction models based on weak prediction models - the decision trees. The term 

‘weak’ or ‘strong’ refers to the measure of how weakly or strongly the classification learners are 

correlated in relation to the actual target variable. Based on errors, the process progressively assigns 

weights to the classifiers in each iteration (i.e., iterative additive modeling) and consequently corrects 

previous models using the present model. This process continues until an accurate prediction or 

reproduction of the training data is possible by the final model. XGBoost has revolutionized the 

performance of GBDTA because instead of adopting the conventional weight assignment process, 

the algorithm adopts a step size shrinkage process that directly computes weights of the new features 

and shrinks these newly-computed feature weights when assigning these to the current model. The 

entire process helps to prevent overfitting, minimize training loss and reduce classification errors 

while developing the final model [31,51–54].  

Table 2. Correlation matrices showing Pearson correlation coefficients between image features (i.e., 

spectral bands) for individual years. Values in bold face show the correlation between the bands used 

for the final RF classification. 

Year Band B1 B2 B3 B4 B5 B6 B7 

1990 

TM 1 1       

TM 2 0.922** 1      

TM 3 0.845** 0.952** 1     

TM 4 −0.029 0.018 0.001 1    

TM 5 0.089* 0.155** 0.245** 0.782** 1   

TM 6 0.181** 0.241** 0.359** 0.591** 0.951** 1  

1995 

TM 1 1       

TM 2 0.953** 1      

TM 3 0.887** 0.947** 1     

TM 4 −0.284** −0.250** −0.232** 1    

TM 5 −0.031 0.032 0.189** 0.708** 1   

TM 6 0.112* 0.181** 0.362** 0.506** 0.954** 1  

2000 
TM 1 1       

TM 2 0.969** 1      
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TM 3 0.961** 0.984** 1     

TM 4 −0.268** −0.255** −0.312** 1    

TM 5 −0.037 −0.049 −0.073 0.825** 1   

TM 6 0.241** 0.209** 0.210** 0.573** 0.913** 1  

2005 

TM 1 1       

TM 2 0.957** 1      

TM 3 0.841** 0.938** 1     

TM 4 0.366** 0.361** 0.380** 1    

TM 5 0.268** 0.348** 0.513** 0.794** 1   

TM 6 0.273** 0.382** 0.575** 0.652** 0.963** 1  

2010 

TM 1 1       

TM 2 0.922** 1      

TM 3 0.799** 0.919** 1     

TM 4 0.047 0.102** 0.160** 1    

TM 5 0.156** 0.292** 0.503** 0.741** 1   

TM 6 0.202** 0.347** 0.574** 0.524** 0.941** 1  

2017 

OLI 1 1       

OLI 2 0.981** 1      

OLI 3 0.896** 0.951** 1     

OLI 4 0.761** 0.856** 0.930** 1    

OLI 5 0.075* −0.023 −0.011 −0.089** 1   

OLI 6 0.221** 0.202** 0.247** 0.355** 0.730** 1  

OLI 7  0.290** 0.312** 0.362** 0.527** 0.474** 0.936** 1 

** Correlation is significant at the 0.01 level 

* Correlation is significant at the 0.05 level 

Since XGBoost only works with numeric vectors, One-Hot Encoding was used to convert the six 

land-cover categorical classes in Table 1 into a sparse matrix with numeric binary categories (1, 0). 

This allowed building individual XGBoost models for each LULC class and to generate ‘gain’ scores 

for each of the features. The gain scores show the improvement in model classification accuracy after 

a particular feature was added into the model. Although the process is generally used for categorical 

predictor variables, we have used this to rapidly and accurately transform dependent variables (the 

feature classes) to binary categories. Before fitting the XGBoost model, we split the entire coastal 

dataset into a training dataset (75%) and a test dataset (25%) using seed. To ensure that only models 

having a high classification accuracy were used for the identification of important variables, we 

tracked each individual model based on the Area Under the Curve (AUC) value and the classification 

accuracy rate. We retained models with AUC > 0.75 and accuracy rate > 80%, as these rates indicate 

a model’s high usefulness [55,56]. For model that failed to meet these criteria, parameters (e.g., 

maximum iterations, maximum depth, gamma) were retuned and this process was repeated until the 

desired model accuracy was obtained. Some features in the dataset were highly correlated as found 

by Pearson correlation coefficients (see Table 2). Therefore, several trial runs were conducted to 

confirm that the following parameter settings resulted in obtaining the best models: maximum 

number iterations = 250, booster type = gradient boosting decision tree, maximum depth = 3, gamma 

= 0, subsample = 1, column sample by tree = 1 and evaluation metrics = misclassification rate. Finally, 

the gain scores for each individual spectral band were recorded for each of the LULC classes. The 
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mean scores were computed and the top three spectral bands with the highest mean scores across all 

the classes were considered as “important features” and selected for use by the RF classifier. 

2.4. LULC classification 

We used the ‘randomForest’ package in R to produce multi-year (i.e., 1990, 1995, 2000, 2005, 

2010, and 2017) LULC maps for the coastal region of Bangladesh. Similar to the XGBoost feature 

selection stage (i.e., using the same seed), the multi-temporal image data were split into training (75%) 

and test (25%) datasets. However, only three XGboost-selected important features were included in 

these datasets for each LULC classification year. We fitted RF models on the training data for each 

year using the number of decision trees (ntree) = 500 and the number of input features (mtry) = 3. 

While mtry can be set based on tuneRF in R, we instead used fixed mtry as were informed by the 

XGBoost feature selection process. In general, the choice of these hyperparameters was guided by the 

goal of reducing the chance of overfitting the trained models. These trained models were then used 

for predicting LULC classes in the test datasets. Kappa coefficients and user’s accuracy values were 

used for analyzing RF model performances. 

To further evaluate the performance of the XGBoost feature-selected RF classifier, a standalone 

RF classification was performed on the same dataset. Multiple trials with different mtry (e.g., 3, 5, 6) 

and ntree (e.g., 100, 500, 1000) parameterizations were completed to inspect out-of-bag (OOB) error 

rates. Finally, an RF model was trained with a default mtry setting and ntree value of 500 that 

contributed to the lowest OOB error rate. This trained model was then used for predicting LULC 

classes (for each study year) based on the test datasets. 

 To discriminate true land cover changes from possible incorrect changes (generated as a result 

of classification errors), error matrices and per-class accuracy indices were computed. In doing so, 

using Google Earth images, 300 random points were generated over the study area for each year and 

then their corresponding LULC classes were ascertained. These empirically-validated classes, 

derived from the reference images were then used to evaluate per class accuracy (i.e., user’s and 

producer’s accuracy) and a separate set of overall accuracy and Kappa coefficient for each year were 

also derived. 

3. Results and Discussion  

3.1. XGBoost-selected image features 

Table 3 shows the overall gain scores (i.e., information gain) of spectral bands used in training 

the XGBoost models. Based on the highest average gain scores, TM 2, 4 and 6 for 1990; TM 3, 5 and 6 

for 1995; TM 1, 4 and 6 for 2000; TM 2, 4 and 5 for 2005; TM 4, 5 and 6 for 2010; and OLI 3, 5 and 7 for 

2017 were identified as the top informative bands (i.e., providing the best band information). The 

generation of training gain scores assisted in the identification of important bands for each feature 

class and allowed extensive assessment of individual bands with respect to LULC classes of interest. 

This is important when mining for land cover patterns in a large, heterogeneous geographic area. 

Identification of the top three spectral bands (based on their average gain scores), allowed detection 

of those bands that consistently performed well in the construction of the boosted trees. Additionally, 

the integration of a thermal band (band 6) during the classification process (for 1990, 1995, 2000 and 

2010) helped in the distinguishing features based on their emission energies [57,58], especially when 

the visible and the near-infrared bands could not be relied upon to determine the separate LULC 

classes. 
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Table 3. Training gain scores for features (reflective bands) used in XGBoost models. The bands 

corresponding to the bold-faced mean rank values were used in LULC classification using RF.  
1

99
0 

Band Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 
Mean (Std. 

Dev) 

Mean 

Rank  

TM 1 0.1855 0.0652 0.1855 0.1077 0.1547 0.0287 0.1212 (+0.06) 6 

TM 2 0.0833 0.0433 0.0897 0.3822 0.0894 0.4894 0.1962 (+0.17) 2 

TM 3 0.0962 0.3416 0.1414 0.1085 0.0985 0.0929 0.1465 (+0.09) 4 

TM 4 0.1220 0.2547 0.2139 0.1448 0.5762 0.1946 0.2510 (+0.15) 1 

TM 5 0.0702 0.1224 0.2594 0.0858 0.0593 0.1834 0.1301 (+0.07) 5 

TM 6 0.4428 0.1729 0.1101 0.1711 0.0218 0.0110 0.1550 (+0.14) 3 

19
95

 

TM 1 0.1058 0.1158 0.0987 0.0420 0.0930 0.1555 0.1018 (+0.03) 6 

TM 2 0.0450 0.0620 0.0981 0.0527 0.1288 0.3352 0.1203 (+0.10) 5 

TM 3 0.1116 0.3485 0.0911 0.3548 0.1552 0.0875 0.1915 (+0.12) 2 

TM 4 0.2011 0.1767 0.2271 0.1410 0.1507 0.0815 0.1630 (+0.05) 4 

TM 5 0.1824 0.1748 0.1889 0.1445 0.4301 0.2713 0.2320 (+0.10) 1 

TM 6 0.3542 0.1222 0.2961 0.2650 0.0422 0.0690 0.1914 (+0.12) 3 

2
00

0 

TM 1 0.1556 0.1517 0.2036 0.1108 0.1978 0.5951 0.2358 (+0.16) 1 

TM 2 0.0983 0.1391 0.0955 0.0607 0.1388 0.0537 0.0977 (+0.03) 6 

TM 3 0.1325 0.0450 0.1348 0.1182 0.1589 0.0142 0.1006 (+0.05) 5 

TM 4 0.1825 0.3692 0.2227 0.2004 0.2758 0.0823 0.2221 (+0.09) 2 

TM 5 0.1773 0.0840 0.1910 0.1484 0.1627 0.2548 0.1697 (+0.05) 4 

TM 6 0.2538 0.2110 0.1524 0.3616 0.0661 0.2625 0.2179 (+0.09) 3 

2
00

5 

TM 1 0.1310 0.1017 0.1542 0.0753 0.0530 0.0764 0.0986 (+0.03) 6 

TM 2 0.0759 0.0659 0.0816 0.1097 0.2536 0.4090 0.1660 (+0.13) 3 

TM 3 0.1695 0.2866 0.1920 0.0989 0.1205 0.0403 0.1513 (+0.08) 4 

TM 4 0.1650 0.2788 0.1917 0.1285 0.3190 0.0946 0.1963 (+0.08) 2 

TM 5 0.3364 0.1013 0.2978 0.2357 0.1528 0.3525 0.2461 (+0.09) 1 

TM 6 0.1221 0.1657 0.0827 0.3519 0.1011 0.0273 0.1418 (+0.10) 5 

2
0

1
0 

TM 1 0.0855 0.0652 0.1032 0.0552 0.1004 0.3547 0.1274 (+0.10) 5 

TM 2 0.0760 0.0286 0.0827 0.0675 0.0695 0.0836 0.0680 (+0.02) 6 

TM 3 0.1503 0.2905 0.0941 0.1868 0.0858 0.0498 0.1429 (+0.08) 4 

TM 4 0.1501 0.3082 0.2415 0.2038 0.5362 0.1277 0.2613 (+0.14) 1 

TM 5 0.3934 0.0398 0.3235 0.1975 0.1172 0.2760 0.2246 (+0.12) 2 

TM 6 0.1447 0.2677 0.1549 0.2892 0.0909 0.1082 0.1759 (+0.08) 3 

2
0

17
 

OLI 1 0.1194 0.2299 0.0919 0.1298 0.1210 0.1501 0.1404 (+0.04) 5 

OLI 2 0.0483 0.0248 0.0734 0.0449 0.0696 0.0421 0.0505 (+0.02) 6 

OLI 3 0.2143 0.0427 0.0989 0.2049 0.1008 0.3152 0.1628 (+0.09) 3 

OLI 4 0.1427 0.2826 0.1134 0.1072 0.1151 0.1354 0.1494 (+0.06) 5 

OLI 5 0.1240 0.2329 0.3091 0.1383 0.1233 0.0880 0.1693 (+0.08) 2 

OLI 6 0.1248 0.0564 0.1995 0.0944 0.3255 0.1100 0.1518 (+0.09) 4 

OLI 7  0.2265 0.1307 0.1137 0.2805 0.1447 0.1591 0.1759 (+0.06) 1 

For each year, among the top three XGBoost-selected features (identified by the high gain 

scores), there are at least two features that have relatively low pairwise correlations (Table 2). While 

in theory multicollinearity should not be an issue for RF (since only one candidate-predictor is 

examined at a time during the tree generation process), in practice, an RF model is at risk of becoming 

unstable in the presence of high feature correlations [59]. Studies have found that predictor variables 

with lower pairwise associations can significantly improve the classification accuracy of the tree 

generation process for an RF model [20,52]. Table 4 summarizes XGBoost models’ performances 

based on multi-temporal test datasets. For each year and overall for each LULC class, XGBoost 
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models had high AUC values and classification accuracy rates. We found that the average AUC and 

accuracy rate of the thirty-seven XGBoost models were 0.91 (+0.06) and 0.92 (+0.05), respectively. The 

averages for precision, specificity and misclassification rate were 0.82 (+0.13), 0.96 (+0.04), and 0.08 

(+0.05), respectively. When applied within an ecological application context, a classification model 

with an AUC > 0.75 is generally considered as a useful model [55,56,60]. 

Table 4. Accuracy assessment and precision diagnostics of the XGBoost models for the individual 

feature classes for each year. 

 LULC 

Class 
AUC 

Accuracy 

Rate 

Misclassification 

Rate 
Precision Recall Specificity Threshold 

19
90

 

1 0.9092 0.8456 0.1544 0.8276 0.5714 0.9533 0.9700 

2 0.9283 0.9463 0.0537 0.8667 0.8667 0.9664 0.1500 

3 0.8908 0.9195 0.0805 0.6923 0.5294 0.9697 0.0600 

4 0.9532 0.9262 0.0738 0.9677 0.7500 0.9908 0.6500 

5 0.9876 0.9732 0.0268 0.9000 0.9000 0.9845 0.4700 

6 0.9798 0.9799 0.0201 0.9655 0.9333 0.9916 0.2300 

1
9

95
 

1 0.8622 0.8413 0.1587 0.6923 0.6000 0.9167 0.6800 

2 0.9786 0.9524 0.0476 0.8571 0.9677 0.9474 0.3000 

3 0.8992 0.9683 0.0317 0.6667 0.4000 0.9917 0.2500 

4 0.9042 0.9762 0.0238 0.8000 0.6667 0.9917 0.3800 

5 0.8534 0.8492 0.1508 0.7241 0.6563 0.9149 0.3200 

6 0.9056 0.9444 0.0556 1.0000 0.6818 1.0000 0.8300 

2
00

0 

1 0.8721 0.8200 0.1800 0.7500 0.7059 0.8788 0.6600 

2 0.9195 0.9600 0.0400 0.9000 0.7500 0.9886 0.2800 

3 0.8971 0.9400 0.0600 1.0000 0.1429 1.0000 0.8600 

4 0.9420 0.9200 0.0800 0.7333 0.7333 0.9529 0.1600 

5 0.7843 0.8900 0.1100 0.9286 0.5652 0.9870 0.3200 

6 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.8100 

2
00

5 

1 0.8944 0.8220 0.1780 0.7568 0.7778 0.8487 0.4900 

2 0.9750 0.9686 0.0314 0.9231 0.8571 0.9877 0.7100 

3 0.7268 0.9529 0.0471 0.7500 0.2727 0.9944 0.9000 

4 0.9356 0.9058 0.0942 0.8276 0.6486 0.9675 0.5500 

5 0.9701 0.9424 0.0576 0.6296 0.9444 0.9422 0.3200 

6 0.9234 0.9791 0.0209 1.0000 0.8400 1.0000 0.8900 

2
01

0 

1 0.8771 0.8474 0.1526 0.8986 0.7381 0.9340 0.7700 

2 0.9591 0.9368 0.0632 0.8148 0.7586 0.9689 0.7700 

3 0.8757 0.9737 0.0263 0.5000 0.2000 0.9946 0.2400 

4 0.8767 0.8947 0.1053 0.7407 0.6061 0.9554 0.5500 

5 0.9382 0.9158 0.0842 0.7179 0.8485 0.9299 0.1700 

6 0.9801 0.9895 0.0105 1.0000 0.6667 1.0000 0.1900 

2
01

7 

1 0.8957 0.8618 0.1382 0.8072 0.7882 0.9006 0.6100 

2 0.9399 0.9350 0.0650 0.7436 0.8286 0.9526 0.1300 

3 0.8447 0.8821 0.1179 0.6500 0.6341 0.9317 0.2300 

4 0.9292 0.8821 0.1179 0.7797 0.7419 0.9293 0.5700 

5 0.8398 0.9024 0.0976 0.6923 0.5294 0.9623 0.4700 

6 0.9655 0.9756 0.0244 1.0000 0.7391 1.0000 0.2700 

3.2. Performance of XGBoost-feature selected RF in LULC Classification 
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Six LULC classes per year were generated using the RF technique. An evaluation of the accuracy 

results is presented in Table 5, which shows that there are no significant differences between year-to-

year RF performances for classifying the LULC classes of a large geographic area with high 

heterogeneous geophysical settings. Each year’s user’s accuracy and the Kappa coefficient values 

were above 0.80 and 0.75, respectively. The average user’s accuracy and the Kappa coefficient were 

0.87 (+ 0.04) and 0.80 (+ 0.05), respectively.  

Table 5. Accuracy assessments of multi-temporal RF models.  

Year Accuracy Kappa coefficient 

1990 0.8601 0.7964 

1995 0.8326 0.7590 

2000 0.8723 0.7760 

2005 0.9405 0.8851 

2010 0.8812 0.8081 

2017 0.8237 0.7556 

Table 6 shows the results from the per-class accuracy assessment for individual years. For most 

of the classes in the majority of the years, user’s accuracy (UA) and producer’s accuracy (PA) ranged 

between 70-95%. The exception was the bare soil class, which had lower accuracy values in multiple 

years (i.e., 1990, 2010 and 2017). This low accuracy was quite expected due to the extremely low and 

dispersed distribution of this class in the study area. For example, Table 7 shows that the bare soil 

class contributed only 0.60%, 0.38% and 0.52% of the total study area for the years 1990, 2010 and 

2017, respectively. In addition to the bare soil class, wetland and river classes had accuracies lower 

than 70% (1995, 2010 and 2017), which show some commission and omission errors by the RF 

classifier, as both the classes have very similar salinity levels throughout the study area that disrupt 

spectral distinguishability. However, with the exception of the user’s accuracy in 2010, most of the 

commission and omission errors remained within 50% and below for these two classes. Interestingly, 

these variations in per-class accuracies suggest that there is a limit to which powerful machine 

learning ensembles such as XGBoost and RF can account for minority bias and spectral confusions 

introduced by mixed pixels. This observation, requires further investigation. Note that the slight 

differences in overall accuracy (OA) and Kappa coefficient reported in Tables 5 and 6 resulted from 

the use of two different sample sizes in the accuracy assessments (see “LULC Classification” sub-

section under section 2).  

Table 6. Per-class accuracy assessments of multi-temporal RF models. 

LULC 

Class 
1990 1995 2000 2005 2010 2017 

 UA PA UA PA UA PA UA PA UA PA UA PA 

Agriculture 0.95 0.80 0.89 0.82 0.85 0.63 0.92 0.83 0.96 0.89 0.92 0.92 

Vegetation 0.82 0.98 0.79 0.93 0.48 0.84 0.85 0.88 0.78 0.95 0.79 0.97 

Bare soil 0.29 0.44 0.92 0.85 0.84 0.78 0.45 0.82 0.60 0.50 1.00 0.67 

Built-up 0.92 0.52 0.71 0.71 0.90 0.79 0.76 0.71 0.92 0.90 0.95 0.95 

Wetland 0.91 0.94 0.95 0.62 0.93 0.80 0.74 0.82 0.89 0.80 0.96 0.55 

River 0.91 0.96 0.54 0.84 0.71 0.96 0.83 0.83 0.36 0.73 0.60 0.93 

OA 0.85 0.79 0.75 0.82 0.86 0.87 

Kappa 

coefficient 
0.81 0.73 0.69 0.76 0.81 0.82 

3.3. Comparative assessment of RF and XGBoost- feature selected RF in LULC classification  

As noted above (see Section 2.4), to evaluate the performance of the XGBoost-RF classifier, a 

standalone RF classification was performed that yielded an average ~0.78 accuracy rate. Table 5 

suggests this standalone RF classifier was outperformed by the XGBoost-feature selected RF classifier 
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when classifying the LULC classes for every year. Table 7 shows (see also Figures A1 and 4) the area 

of multi-temporal LULC classes obtained by RF and XGBoost-feature selected RF classifiers. LULC 

classifications performed by these two approaches differ quite significantly, particularly for 

agriculture, vegetation, and built-up area classes. Previous studies [3,12] focused on estimating LULC 

classes of small discrete regions in the coastal areas of Bangladesh, for which it is difficult to 

empirically validate these results. The RF-based estimations of multi-year LULC areas do not appear 

to reflect growing economic activity and documented large-scale natural disturbances (e.g., cyclones, 

storm surges) in Bangladesh’s coastal region over recent decades. 

For instance, RF-based classification underestimated the obvious impacts of the natural 

processes and urbanization on coastal LULC distributions, particularly for agricultural land, bare 

soil, and built-up areas. The percentage area, estimated solely via RF-based classifications, often 

yielded values that were close to zero for the aforementioned classes. An example is the year 2010, 

where the RF-based classification in Table 7 shows a built-up area of only 0.04%, a percentage which 

contradicts the findings of several studies [3,12,47,61,62] that reported high rates of urbanization 

(hence an increased rate of development for built-up areas) in the past decade. Furthermore, the 

percentage area covered by the bare soil class was zero for the years 2005, 2010 and 2017, which for a 

hydrologically active area such as the coastal region of Bangladesh is quite impossible, especially 

because erosion and accretion processes (driven by the large river system) are highly prominent in 

this area [5,37,63]. In contrast, XGBoost-RF-derived results are more aligned with the growing human 

and natural activity trend across the whole coastal region. Comparison of RF only and the XGBoost-

RF values for the percentage area covered by the built-up class indicates that the latter is consistent 

with the findings of previous studies. The XGBoost-RF-derived percentages agree with the increasing 

trend of the built-up class from 2005-2017, as could be expected due to a proliferation in the amount 

of urbanization during the last decade. Similarly, contrasting the percentage area covered by the bare 

soil class during 2005-2017, it is evident that the XGBoost-driven classification technique has 

performed better than the solely RF-driven classification process. For example, the percentage areas 

for bare class in the XGBoost-driven classified images were 7.90, 0.38 and 0.52 for the years 2005, 2010 

and 2017 respectively; compared to a percentage of 0 in the RF only classified images. In addition, 

declining coastal vegetation coverage alongside increasing agricultural land areas, increasing 

amounts of bare soil areas following natural disturbances (e.g., floods in 1998 and 2004; and cyclones 

of 2007 and 2009), and the increasing amount of built-up area were picked up comparatively well by 

the XGBoost-RF classification approach. 

As mentioned previously, several studies have reported that RF’s randomized bagging-based 

feature selection and classification approach can be biased towards the majority class and therefore, 

can misclassify the minority class in the data [18,19]. The findings from our study reiterate these 

shortcomings of the RF classifier, most notably when detecting minority classes (such as built-up land 

and bare soil) in a highly heterogeneous geomorphic setting. 

Table 7. Comparison of RF and XGBoost-feature selected RF classifiers. 

LULC class Year 

RF XG Boost Feature Selected RF 

Area ha−1 % Area Area ha−1 
% 

Area 

Agriculture 

1990 2,375,770 51.36 948,250 20.50 

1995 1,341,566 29.00 1,992,626 43.08 

2000 1,863,368 40.29 2,205,921 47.69 

2005 2,229,040 48.19 1,245,715 26.93 

2010 2,083,058 45.04 1,559,690 33.72 
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2017 740,770 16.02 1,199,995 25.94 

Vegetation 

1990 964,665 20.86 2,417,730 52.27 

1995 2,135,160 46.16 1,438,650 31.10 

2000 1,746,850 37.77 1,282,250 27.72 

2005 1,400,160 30.27 1,813,030 39.20 

2010 1,559,170 33.71 1,873,753 40.51 

2017 2,256,980 48.80 2,035,780 44.01 

Bare soil 

1990 82 0.00 285,587 6.17 

1995 35 0.00 27,634 0.60 

2000 118,326 2.56 133,024 2.88 

2005 0 0.00 365,392 7.90 

2010 0 0.00 17,442 0.38 

2017 0 0.00 24,127 0.52 

Built-up 

1990 902 0.02 12,333 0.27 

1995 924 0.02 131,178 2.84 

2000 2,376 0.05 89,229 1.93 

2005 8,312 0.18 146,617 3.17 

2010 1,887 0.04 217,316 4.70 

2017 104,019 2.25 239,475 5.18 

Wetland 

1990 593,311 12.83 99,477 2.15 

1995 395,073 8.54 70,694 1.53 

2000 140,685 3.04 129,530 2.80 

2005 19,136 0.41 358,180 7.74 

2010 284 0.01 170,579 3.69 

2017 770,084 16.65 54,892 1.19 

River 

1990 690,649 14.93 862,003 18.64 

1995 752,621 16.27 964,597 20.85 

2000 753,774 16.30 785,425 16.98 

2005 968,731 20.94 696,445 15.06 
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2010 980,980 21.21 786,600 17.01 

2017 753,526 16.29 1,071,110 23.16 

3.4. Spatio-temporal patterns of LULC 

Determining the spatio-temporal dynamics of LULC patterns in the coastal regions of 

Bangladesh requires a careful interpretation of the underlying natural and anthropogenic drivers that 

influence the pattern of LULC change. The coastal zone of Bangladesh is divided into western, eastern 

and central regions [64]; and each of these zones has its own characteristics and geomorphic processes 

that shape the LULC pattern. Because of the interplay between these natural processes and human 

activities, people living in these areas are constantly subjected to severe flooding, cyclones, and storm 

surges, which cause extensive destruction of property and force displacements within and outside 

the region. For example, the southwestern region relies predominantly on the upstream waters for 

land building activity and experiences a myriad of environmental issues such as high-level soil and 

river water salinity [65]. Similarly, the central zone is highly dynamic and various natural hazards 

such as storm surge-induced coastal flooding contribute to the environmental externalities. Although 

less frequent than the other two regions, the eastern zone is also affected by occasional cyclones and 

storm surges [3,66] and has undergone huge infrastructural development in the recent years. These 

natural processes, combined with the recent increase in anthropogenic activities such as construction 

of embankments to secure people and properties from coastal flooding, infrastructural development 

and the advancement of tourism sector are greatly influencing coastal dynamics [5,47,61,67]. Given 

the heavily intertwined human and natural processes within, for such a large and heterogeneous 

landscape, LULC classification using moderate resolution Landsat data is obviously a challenging 

task. As a result, and despite the use of powerful machine learning ensembles, some confusion in the 

detection and accurate classification of land covers is not surprising, especially when 10 out of the 19 

coastal districts within the study area are susceptible to moderate to severe coastal flooding and 

cyclones [68–71]. 

The LULC transition matrix (Table 8), LULC maps (Figure 3), and a per-year distribution of 

LULC class sizes (in hectare) (Figure 4) demonstrate some interesting and important spatio-temporal 

patterns. It can be seen that the built-up areas experienced an increasing trend from 1990 to 2017, 

with a slight decrease in 2000 when a large proportion of human settlements on the southwestern 

coast was severely affected by the catastrophic flood of 2000 [72]. The effect of this flood was probably 

manifested in the degradation of vegetation for 2000, since a large proportion of coastal vegetation 

cover was probably washed away. It appears, however, that successful coastal afforestation 

initiatives [73] in successive years resulted in a gradual increase in vegetation, notably from 2000 to 

2017 [73–75]. Flooding has also influenced the distribution of inland water bodies. The devastating 

flood event of 2004 caused massive waterlogging in the low-lying coastal areas due to drainage 

congestion and the associated backwater effect, resulting in a sharp increase in water bodies in the 

classified LULC map of 2005. The residual effect of this event was probably linked with the increased 

proportion of the wetland category in 2005. Although filling of (grabbing) water bodies including 

river areas is a common practice in a region where rapid urbanization is taking place over the past 

decades, an increasing pattern of river area since 2005 was observed in the coastal region. This 

phenomenon can be associated with the increased popularity and practice of shrimp cultivation, with 

possible links to factors such as sea-level rise and land subsidence, especially in the southwestern 

region [76–78]. Areas under agricultural activity showed an increasing trend between 1990 and 2000 

with a decreasing trend in vegetation cover evident during the same period (Table 8). 

Table 8. Transition matrix showing the changes in percentage areas of the studied classes.  

  Agriculture Vegetation Bare soil Built-up Wetland River 

1990–1995 
Agriculture 73.74 17.12 0.69 3.39 1.11 3.95 
Vegetation 41.98 49.05 0.44 2.61 1.15 4.77 
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Bare soil 72.27 16.27 0.73 4.27 1.26 5.20 
Built-up  50.39 13.56 2.08 10.56 4.62 18.79 
Wetland  30.21 17.19 2.01 9.13 5.89 35.57 

River 4.08 2.90 0.70 1.54 2.59 88.19 

1995–2000 

Agriculture 74.81 16.32 3.64 2.63 1.52 1.08 
Vegetation 34.64 61.77 0.92 1.12 0.74 0.81 

Bare soil 45.70 5.43 23.93 3.07 11.81 10.06 
Built-up  54.04 12.88 10.45 7.12 9.33 6.18 
Wetland  39.01 10.10 5.69 3.20 24.45 17.55 

River 10.89 4.42 2.36 0.85 5.78 75.70 

2000–2005 

Agriculture 40.30 36.61 9.98 3.78 7.55 1.78 
Vegetation 18.55 71.18 4.05 1.33 3.96 0.93 

Bare soil 33.47 16.86 20.07 9.37 9.63 10.60 
Built-up 37.37 26.70 12.59 10.14 7.61 5.59 
Wetland  12.99 13.70 10.33 7.24 40.48 15.26 

 River 3.01 3.62 5.43 1.94 8.82 77.18 

2005–2010 

Agriculture 57.72 30.41 0.39 6.91 1.83 2.74 
Vegetation 21.04 74.30 0.05 2.16 0.72 1.73 

Bare soil 57.60 19.39 1.55 10.48 3.93 7.05 
Built-up 52.41 16.54 0.40 15.09 7.25 8.31 
Wetland  39.98 10.87 0.27 7.20 22.75 18.93 

River 4.07 1.25 0.63 0.83 4.07 89.15 

2010–2017 

Agriculture 52.09 27.80 0.70 7.30 1.02 11.09 
Vegetation 11.78 82.16 0.10 3.06 0.28 2.62 

Bare soil 43.98 5.91 10.41 8.38 0.04 31.28 
Built-up 47.72 12.50 1.32 22.94 0.53 14.99 
Wetland  16.72 8.48 0.45 3.86 14.60 55.89 

River 3.38 2.54 0.75 1.31 0.99 91.03 
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Figure 3. Classified land cover maps of the coastal area of Bangladesh: (a) 1990 and (b) 1995. 
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Figure 3 contin. Classified land cover maps of the coastal area of Bangladesh: (c) 2000 and (d) 2005. 
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Figure 3 contin. Classified land cover maps of the coastal area of Bangladesh: (e) 2010 and (f) 2017. 
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A detailed analysis of the intra and inter-transition of LULC classes (Table 8) reveals that human-

environment interactions are shaping the LULC dynamics of the coastal region. For example, 

contrary to common knowledge and perception, built-up areas in the coastal region of Bangladesh 

experienced conversion into other land cover types (e.g., agricultural land). This somewhat 

unconventional land use transition may be linked with coastal out-migration, induced 

predominantly by environmental disturbances and climate change [79,80]. Although it is not entirely 

clear as to how human migration could lead to land cover change, Braimoh (2004) demonstrated that 

seasonal migration resulted in dramatic land use change in Ghana [81]. Fasona and Omojola (2009), 

using remote sensing data, also noted that increased soil salinity via coastal erosion caused the loss 

of livelihoods, eventually leading to the dislocation of a total of 39 coastal communities in Nigeria 

[82]. In the case of the coastal area of Bangladesh, it is possible that migration may force people to sell 

their properties to local elites, and it is, in fact, the choice of the buyers as to whether to keep the 

newly purchased land in its present form or to convert it to other categories such as shrimp land for 

a higher economic return. However, this warrants further investigation. 

In order to explore the transition of built-up class in detail, we examined the last two population 

censuses (2001 and 2011) of the coastal districts, and found that four districts located in the central 

and southwestern zones experienced negative population changes between 2001 and 2011 (Table 9). 

A comparison of these population changes against yearly LULC maps in Figure 3 also supports the 

observation that the areas experiencing a disappearance of built-up pixels (when compared to the 

previous years) belong to these four districts, experiencing a decrease in population. This strongly 

suggests that depopulation resulting from natural hazards or anthropogenic causes may play a 

significant role in explaining the decline in built-up areas in 2000 and the low intra-class transition of 

pixels in Table 7 and 8, respectively. Furthermore, coastal erosion which is pervasive in many areas 

(particularly in the central zone), has, in the past, resulted in the loss of entire villages to the river or 

the sea. Given these observations, and the inconsistency in the built-up area/pixel transformation 

detailed, it is possible to suggest that the observations are indicative of the high-degree of human-

environment interactions that govern LULC dynamics in Bangladesh’s coastal region. 

However, it can also be observed that the conversion of built-up areas to other classes 

significantly declined after 2000 and now aligns more closely with the characteristics usually 

expected from this LULC class (remaining unchanged or showing an increased intra-class 

conversion). This could be the result of the various adaptation and disaster risk mitigation strategies 

implemented by the government and the non-government organizations in more recent times 

[69,83,84]. 

Table 9. Population change during 2001-2011 in the coastal areas of Bangladesh. Districts highlighted with 

bold face experienced a negative population change. 

District name 2001 2011 Population change (%) 

Bagerhat 1,549,031 1,476,090 −4.70881 

Barguna 848,554 892,781 5.212043 

Barisal 2,355,967 2,324,310 −1.34369 

Bhola 1,703,117 1,776,795 4.326068 

Chandpur 2,271,229 2,416,018 6.374919 

Chittagong 6,612,140 7,616,352 15.1874 

Cox’s Bazar 1,773,709 2,289,990 29.10742 

Feni 1,240,384 1,437,371 15.88113 

Gopalganj 1,165,273 1,172,415 0.612904 

Jessore 2,471,554 2,764,547 11.85461 

Jhalokati 694,231 682,669 −1.66544 

Khulna 2,378,971 2,318,527 −2.54076 

Lakshmipur 1,489,901 1,729,188 16.0606 

Narail 698,447 721,668 3.324662 

Noakhali 2,577,244 3,108,083 20.59716 



Remote Sens. 2019, 11, 790 21 of 28 

 

Patuakhali 1,460,781 1,535,854 5.139237 

Pirojpur 1,111,068 1,113,257 0.197018 

Satkhira 1,864,704 1,985,959 6.502641 

Shariatpur 1,082,300 1,155,824 6.793311 

 

Figure 4. Percent area distribution of each land cover class between 1990 and 2017, obtained by the 

XGBoost-RF classifier. 

The spatio-temporal patterns of agricultural land cover show a gradual increase between 1990 

and 2000; however, this trend has fluctuated in the period between 2000 and 2017. One particular 

aspect that may govern this fluctuation in post 2000 years could result from increasing shrimp 

farming activities. The spate of recurrent cyclones and flooding has impacted on the stability of crop 

production as a livelihood practice. Additionally, increasing soil salinity also made crop production 

increasingly difficult for the farmers [39,85]. Therefore, shrimp production, which is well suited to 

operating in the saline conditions and is less prone to environmental externalities, gained 

considerable prominence. The rising popularity of shrimp cultivation coupled with the natural 

calamities that took place during the study period (i.e., 1990-2017) can help understand the transition 

of agriculture to other classes in Table 8. Periodic waterlogging caused by embankment construction 

is another factor that could have shaped agricultural land cover. Embankments that were constructed 

in the 1960s to secure people and properties in the coastal region is a prime example of man-made 

activity that appears to interrupt the sedimentation process, hence the elevation loss of the land [86]. 

Consequently, water ingress into the areas behind the embankment walls during a cyclone or high 

tide events can lead to pervasive flooding of agricultural lands and human settlements [86]. It is 

evident that the percent area covered by the agricultural land remained almost unchanged during 

the 1990-1995 and 1995-2000 periods. However, a sharp decline was observed during 2000-2005 

period, after which the change again became nearly constant in post-2005 periods. The recurrent 
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floods and cyclones rendered most of the agricultural lands productively useless. The repeated 

displacements of people due to these natural disasters may have led to the abandonment of these 

agricultural lands, which were later colonized by different forms of vegetation cover (such as shrubs 

and bushes) and thus, accounting for the high transition between these two classes. Additionally, a 

total change, ranging from 9.33 to 12.11%, was found for the conversion of agricultural class to water 

bodies and river classes during the 2000-2017 period. Both the conversion of agricultural lands to 

shrimp farming and the formation of large temporary water bodies due to floods and cyclones can 

potentially account for this change. In such a dynamic situation, the recognition of pure pixels (even 

with an advanced ensemble) could be challenging as satellite data only represent a snapshot of a 

given time point. 

The river and wetland classes in LULC maps show an alternating trend of increase and decrease 

between 1990 and 2017. In the LULC classification process, isolating wetlands and river areas, was 

difficult for the years when coastal flooding occurred (either by high tide/cyclone induced storm 

surges), when river water was used for irrigation purpose or used for shrimp cultivation. These 

factors appear to have played a crucial role in the classification process by mixing up inland water 

bodies and river areas [87,88]. Furthermore, after Cyclone Aila in 2009, numerous saline water bodies 

were created in the southwestern part of the region [89]. When inland water bodies reach a certain 

salinity threshold, the spectral reflectance of these inland water bodies becomes identical to that of 

the rivers [88,90–93]. Consequently, water bodies that are actually shrimp cultivation sites are 

classified as part of the river system. This aspect of spectral reflectance identification may be one of 

the reasons for the increasing trend of river areas being detected in the LULC maps of 2005, 2010 and 

2017, as well as the high transition rate between water bodies and river classes in Table 8. 

Additionally, one of the popularly-practiced adaptation strategies for flood and waterlogging in the 

southern region can be identified in the LULC transition matrix in Table 8, that is – a large proportion 

of the water bodies seem to have converted into agricultural land. This may have resulted from 

alternating practice of shrimp cultivation and crop production in low-lying areas such as the beels 

[91,92]. Farmers resort to shrimp cultivation when these low elevation lands become inundated with 

water after intense rainstorms, and thus, for those years, the low-lying areas were classified as water 

bodies. In succeeding years, when there is not sufficient influx of water from the rainy season or the 

tide from the nearby rivers, these areas dry up and are again used for agricultural activities. As a 

result, large areas of land could have varied spectral responses when they are engulfed with rain or 

saline waters, or are used for agricultural purposes. This type of issue may be a common source of 

mixed pixels while employing moderate resolution images for LULC classification. 

A significant decline in the amount of vegetation cover can be seen in LULC maps between 1990 

and 2000. An intricate web of river systems and estuaries along the central zone makes it highly 

dynamic and susceptible to high-tide induced coastal floods [5], and this may result in the frequent 

submergence of built-up land and human settlements along with the removal of vegetation cover. 

Despite the eastern zone being relatively stable in terms of erosion and accretion processes [64], 

clearing of forest cover is pervasive, together with other increased human activities such as 

infrastructural development and urban expansion [94]. However, in the post 2000 years, areas with 

vegetation cover increased until 2017, which can be attributed to major coastal afforestation projects 

along the coastal belt undertaken since 2000 [73–75]. As a part of these projects, the Department of 

Forest from the government of Bangladesh took a mega initiative of planting 2872.88 hectares of Nipa, 

10.0 hectares of coconut, 40.0 hectares of Arica palm, 280.0 hectares of Bamboo and Cane, 192,395.24 

hectares of mangrove and 8689.53 hectares of non-mangrove trees. The effects of these afforestation 

projects are clearly visible in the LULC maps between 2005 and 2017. Table 8 further shows that a 

large portion of the vegetation cover in the study area remained unchanged during the study period 

(1990-2017) and that the intra-class percent conversion remained nearly above 50% from 1995-2017. 

This could be due mainly to the large mangrove forest occupying the southwestern region of the 

study area, which did not show any discernible change in the LULC maps (Figures 3a–f). Apart from 

this, vegetation plantations around homesteads are a popular measure used to save habitation and 

people from the ingress of frequent cyclones such as those that occurred in 2007 and 2009. This has 
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become a common practice, to save communities against climate-influenced adversities, especially in 

the central coastal zone[95]. 

4. Conclusions 

This study provided a detailed assessment of multi-temporal LULC changes in the coastal 

regions of Bangladesh using Landsat data and advanced feature selection and classification 

techniques - XGBoost and Random Forest. The XGBoost-based feature selection approach allowed 

detection of the most informative spectral bands. These contributed to the improved performance by 

the RF classifier in producing six-class LULC maps. This joint XGBoost-RF approach performed 

substantially better than an independent RF classifier when dealing with high-level landscape 

heterogeneity and spectral complexity issues (e.g., dominance of mixed pixels/LULC areas) in 30-m 

Landsat images during the LULC classification process. This improvement is indicated by the user’s 

accuracy and Kappa coefficient values of 0.80 and 0.75, respectively. The spatio-temporal 

investigation of the classified LULC maps shows that over the past 28 years (1990-2017) the coastal 

regions of Bangladesh have experienced an increase in agricultural land (5.44%), and in both built-

up (4.91%) and river (4.52%) areas. The vegetation coverage across coastal landscapes experienced a 

significant decline in some years due to large-scale natural disturbances (e.g., flooding, cyclones and 

storm surges in 1996, 1997, 1998, 2004 and 2007) as well as human-influenced alterations (e.g., shrimp 

farming). However, the 2005-2017 LULC maps show a substantial overall increase in areas 

corresponding to the vegetation class – an understandable manifestation of the effect of coastal 

reforestation projects undertaken by the governmental and non-governmental entities in Bangladesh. 

These findings on the spatio-temporal dynamics of LULC can inform policy guidelines that are 

essential for combating the adverse effects of human-caused and natural disturbances across the 

entire coastal regions of Bangladesh. 

This study also demonstrated that the use of powerful ensemble techniques such as XGBoost 

and Random Forest can be useful in addressing the complexities inherent in the LULC classification 

of a large and heterogeneous geographic area, particularly when available remotely sensed data come 

with insufficient spatial and spectral resolution. An effective collaboration among these techniques 

offers an excellent opportunity for frequent and detailed monitoring of the space-time LULC patterns 

of a rapidly changing landscape, especially in developing regions of the Asian subcontinent, which 

often rely on freely available lower-quality remotely sensed data. However, the results from this 

study should be interpreted with caution, since it is very challenging even for advanced algorithms 

to deal effectively with discriminating class memberships of a very large and complex landscapes by 

using lower to moderate spatial/spectral resolution imageries (i.e., Landsat). In fact, this large-scale 

study provides a useful methodological direction that should be further explored by future studies, 

using available remotely sensed data of varied qualities. 
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Figure A1. Percent area distribution of each land cover class between 1990 and 2017, obtained by the RF 

classifier 
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