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Abstract: Time series of satellite sensor data have been used to quantify mangrove cover changes at
regional and global levels. Although mangrove forests have been monitored using remote sensing
techniques, the use of time series to quantify the regeneration of these forests still remains limited.
In this study, we focus on the Matang Mangrove Forest Reserve (MMFR) located in Peninsular
Malaysia, which has been under silvicultural management since 1902 and provided the opportunity
to investigate the use of Landsat annual time series (1988–2015) for (i) detecting clear-felling events
that take place in the reserve as part of the local management, and (ii) tracing back and quantifying the
early regeneration of mangrove forest patches after clear-felling. Clear-felling events were detected
for each year using the Normalized Difference Moisture Index (NDMI) derived from single date
(cloud-free) or multi-date composites of Landsat sensor data. From this series, we found that the
average period for the NDMI to recover to values observed prior to the clear-felling event between
1988 and 2015 was 5.9 ± 2.7 years. The maps created in this study can be used to guide the replantation
strategies, the clear-felling planning, and the management and monitoring activities of the MMFR.

Keywords: regeneration; silviculture; mangroves; Landsat; time series; NDMI; clear-felling

1. Introduction

Mangrove forests are woody plants found in the intertidal zones in tropical and subtropical
latitudes [1,2]. As such, mangroves are subjected daily to changes in temperature, exposure to water
and salt, and different degrees of hypoxia [3]. Mangroves have adapted to these changing conditions
and are resilient ecosystems that can additionally cope with environmental changes and disturbances
such as storms, hurricanes, mean sea-level fluctuations and climate variability [3]. In areas where
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conditions have remained relatively stable, mangroves have thrived and natural cycles of succession
have prevailed [4,5].

Mangrove restoration and reforestation has garnered interest in recent years due to the carbon
sequestration capacity of these forests [6,7]. Silviculture is one of the oldest reasons, among others, to
pursue mangrove restoration projects [4,5]. Mangrove reserves such as the Matang Mangrove Forest
Reserve (MMFR) in Malaysia, Bintuni Bay Mangroves in West Papua, Indonesia, and the Sundarbans in
Bangladesh are examples of mangrove forests that are under silvicultural management [8–10]. In these
cases of silvicultural management, restoration and reforestation of mangrove forests, it is essential to
understand the conditions that favor mangrove propagule dispersal and establishment, mangrove
growth and succession, and carbon sequestration.

Remote sensing has been frequently used to monitor changes in mangrove forest cover at local and
global levels, e.g., [11–23]. With an increasing array and availability of satellite sensor data, there is an
opportunity to routinely observe mangrove forests and support silvicultural management, restoration
and reforestation projects. Using optical data, focus has often been on the use of spectral vegetation
indices, such as Normalised Difference Vegetation Index (NDVI), to detect forest disturbances [24,25].
However, indices that exploit the short wave infrared (SWIR) spectra, such as the Normalised
Difference Moisture Index (NDMI), have been found to be more effective than the NDVI in detecting
forest disturbances [20,26–28]. The use of the SWIR reflectance can provide information about
vegetation moisture content and about the upper canopy structure [29]. Moreover, temporal changes in
these vegetation indices after a forest disturbance can also be used to detect forest recovery [20,25,26,30].

Studies on time series analysis have the potential to provide information of the past and current
changes of mangrove forests [31–37]. Time series based on vegetation indices have been used to analyse
changes in mangrove cover and phenology [32,33,36]. Nevertheless, the use of these types of time
series to quantify the mangrove forest recovery after disturbances is still limited [32,33,35]. In this
study, we focused on the MMFR located in Peninsular Malaysia, as this reserve is silviculturally
managed and provides a unique opportunity to establish whether (i) time series of Landsat sensor
data could be used to detect the clear-felling events that regularly take place in the reserve, and (ii) the
NDMI annual time series could be used to trace back and quantify the early recovery of mangrove
forest patches after a clear-felling event.

2. Materials and Methods

2.1. Study Area and Silvicultural Management

The MMFR has been under management since 1902 for charcoal and pole production [38].
The reserve is a riverine mangrove forest comprising 27 mangrove species [8]. The reserve has an area
of 40288 ha and is divided in four different administrative zones: Protective (17.4% of the reserve’s
total forest area), productive (74.8%), restrictive productive (6.8%) and unproductive (1%) (Figure 1) [8].
The productive and restrictive productive zones are under silvicultural management and are the
only areas where the wood extraction occurs. They are composed of forests dominated primarily by
Rhizophora apiculata Blume and R. mucronata Lamk. The silvicultural management consists of a 30-year
rotation cycle with two thinnings at 15 and 20 years after clear-felling [8]. The protective zones are
composed of diverse mangrove genera such as Avicennia, Sonneratia, Bruguiera and Rhizophora. Patches
of dryland forest exist within the protective zones. The reserve provides ecosystem services, including
provision of wood for charcoal and pole production, coastal protection, conservation of flora and
fauna, and mangrove propagule production [8]. The unproductive zones are represented by lakes and
infrastructure areas, including villages, charcoal kilns and administrative buildings [8].
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of Peninsular Malaysia. Each zone has a different species composition. The productive and restrictive 93 
productive zones are mainly composed of R. apiculata and R. mucronata species. The protective zones 94 
are more diverse in terms of tree species, including Avicennia, Sonneratia, Bruguiera and Rhizophora 95 
mangrove forests, and dryland forests. For this study, field data were collected in the north of the 96 
MMFR (indicated in circles). The grey areas are outside the management of the reserve. Maps 97 
adapted from Weidmann et al. [39] and Ariffin and Mustafa [8]. 98 

The reserve is located in the west coast of Peninsular Malaysia (Figure 1). The reserve has a 99 
tropical climate, with an average air temperature ranging from 22 °C at night to 33 °C during the day 100 
[8]. Relative humidity ranges from 99% in the early morning to 60% around noon [40]. Peninsular 101 
Malaysia has monsoon season between November and March, and between May and September 102 
[41]. The annual rainfall ranges from 2000 mm to 2800 mm [8]. The area is subjected to semidiurnal 103 
tides and the tidal amplitude range is 3.3 m [42]. Freshwater flows into the reserve via streams and 104 
ground run-off [42].  105 

Every ten years the local management defines the management plan for the reserve [8]. During 106 
the period of analysis of this study four different management plans have been developed: 1980 to 107 
1989, 1990 to 1999, 2000 to 2009, and 2010 to 2019 [8,40]. It is noteworthy that the silvicultural practice 108 
of a 30-year rotation cycle with two thinnings at 15 and 20 years after clear-felling has remained 109 
constant for each plan. Within each management plan, areas to be clear-felled or thinned are 110 
pre-assigned and are further divided into smaller areas, called coupes (areas between 2.2 and 6.6 ha), 111 

Figure 1. The management zones of the Matang Mangrove Forest Reserve (MMFR) on the west coast
of Peninsular Malaysia. Each zone has a different species composition. The productive and restrictive
productive zones are mainly composed of R. apiculata and R. mucronata species. The protective zones
are more diverse in terms of tree species, including Avicennia, Sonneratia, Bruguiera and Rhizophora
mangrove forests, and dryland forests. For this study, field data were collected in the north of the
MMFR (indicated in circles). The grey areas are outside the management of the reserve. Maps adapted
from Weidmann et al. [39] and Ariffin and Mustafa [8].

The reserve is located in the west coast of Peninsular Malaysia (Figure 1). The reserve has a tropical
climate, with an average air temperature ranging from 22 ◦C at night to 33 ◦C during the day [8].
Relative humidity ranges from 99% in the early morning to 60% around noon [40]. Peninsular Malaysia
has monsoon season between November and March, and between May and September [41]. The annual
rainfall ranges from 2000 mm to 2800 mm [8]. The area is subjected to semidiurnal tides and the tidal
amplitude range is 3.3 m [42]. Freshwater flows into the reserve via streams and ground run-off [42].

Every ten years the local management defines the management plan for the reserve [8]. During the
period of analysis of this study four different management plans have been developed: 1980 to 1989,
1990 to 1999, 2000 to 2009, and 2010 to 2019 [8,40]. It is noteworthy that the silvicultural practice of
a 30-year rotation cycle with two thinnings at 15 and 20 years after clear-felling has remained constant
for each plan. Within each management plan, areas to be clear-felled or thinned are pre-assigned and
are further divided into smaller areas, called coupes (areas between 2.2 and 6.6 ha), which are then
allocated to approved charcoal contractors [8]. Clear-felling activities are performed every year by
different contractors, but a coupe will only be clear-felled once every 30 years [8].
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2.2. Methods

We followed the workflow outlined in Figure 2 to detect the clear-felling events in the MMFR and
quantify the early regeneration of mangroves within the logging coupes. Specifically, Landsat data
for the period 1988 to 2015 were used to generate a single cloud-free image or a multi-date composite
for each year (28 in total). Based on these data, the single Normalised Difference Moisture Index
(NDMI) and Normalised Difference Vegetation Index (NDVI) layers were derived. The NDMI time
series was found to be optimal to map the extent of clear-felling events and the early regeneration of
mangrove forests within coupes. The resulting extent and regeneration maps (i.e., clear-felling and
recovery time) were validated against local management plans and a dataset of 135 reference time
series. The following sections provide a summary of the processing undertaken.
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Figure 2. Workflow to detect clear-felling events and quantify the early regeneration of mangrove
forests in the MMFR. Numbers refer to the sections in this document. NDMI refers to the Normalised
Difference Moisture Index and NDVI to the Normalised Difference Vegetation Index.

2.2.1. Satellite Imagery

Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land
Imager (OLI) acquired over the period 1988 to 2015 were used to create the time series of the MMFR
(Table 1). Surface reflectance Level 2 data products were downloaded from the United States Geological
Survey (USGS) Earth Explorer site [43,44]. The surface reflectance data products from TM and ETM+
were generated using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
software [45] implemented by USGS [43]. The surface reflectance products from OLI were generated
using the Landsat 8 Surface Reflectance Code (LaSRC) algorithm [46] implemented by USGS [44].
The surface reflectance Level 2 data products are already radiometrically and atmospherically
corrected [45,46].
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Table 1. Optical sensor used and the year of imagery collection. Number between parentheses indicates
the number of images used for a specific year (see Section 2.2.2).

Optical Sensor Year and Number of Images Per Year

Landsat Thematic Mapper (TM) - Landsat 4 1991 (1)

Landsat Thematic Mapper (TM) - Landsat 5

1988 (2), 1989 (6), 1990 (2), 1991 (4), 1992 (2), 1993 (1),
1994 (5), 1995 (1), 1996 (1), 1997 (3), 1998 (4), 1999 (2),
2000 (3), 2003 (2), 2004 (4), 2005 (6), 2006 (3), 2007 (5),

2008 (6), 2009 (2), 2010 (3), 2011 (2)

Enhanced Thematic Mapper Plus (ETM+) – Landsat 7 1999 (1), 2000 (1), 2001 (2), 2002 (4), 2003 (3), 2012 (6)

Operational Land Imager (OLI) – Landsat 8 2013 (6), 2014 (3), 2015 (1)

2.2.2. Time Series Creation

For each year from 1988 to 2015, an annual surface reflectance image was generated from
individual cloud-free scenes or composites of the several scenes within one year. Only one image
was used for each year, given that logging coupes are typically cleared over a two-year period and
only once every 30 years. To create a multi-date composite image for each year with prevalent cloud
cover, we first selected the image with the least amount of clouds and cloud shadow. Where the land
surface was obscured, we replaced affected areas with the pixel values from another image of the same
year. On average, we only had to replace values in 3 % of data contained in the image with the least
amount of cloud cover from 1988 to 2015. The final image was comprised of data from several dates
but this was considered acceptable given that clear-felling takes place over an extended period and is
not seasonally dependent. The final data stack consisted of 28 images, with each band representing the
surface reflectance of a single year. Two additional image stacks representing the NDVI and NDMI
(Equations (1) and (2)) for each year were also generated from 1988 to 2015 based on the surface
reflectance [29,47]:

NDVI = (NIR − R)/(NIR + R), (1)

NDMI = (NIR − SWIR)/(NIR + SWIR), (2)

where NIR is the Near-Infrared band, R is the red band and SWIR is the short-wave infrared band.
In the event of a missing value for a pixel due to cloud cover, the NDVI and NDMI values for the
corresponding pixel were interpolated based on the pixel’s NDVI and NDMI values from the previous
and following year. We only encounter this problem for 2012, where 70% of the image was missing
due to a failure in the Scan Line Corrector (SLC) of Landsat 7 [48].

2.2.3. Fieldwork

We acquired Unmanned Aerial Vehicle (UAV) imagery in different forests stands between June
and July 2016. We collected data on four different types of forests: A stand that was clear-felled between
the end of 2015 and beginning 2016, and stands of 7, 14 and 30 years in age. UAV data were acquired
using a DJI Phantom 3 Professional quadcopter UAV and the in-built true color camera, and used to
create four orthomosaics of 1ha for each type of forest stand [49].

2.2.4. Time Series Analysis

Using the NDVI annual time series, we created a water mask for the MMFR, which includes all
areas of open water in the ocean, rivers, creeks and non-vegetated inundated mudflats. If the NDVI
value was zero or negative at any point in the time series, the corresponding pixel was classified
as water throughout as this approach accounted for different water levels. Areas classified as water
were excluded from further analysis. Additionally, areas of non-vegetated terrestrial land covers
(i.e., urban infrastructure and dry soils) were associated with pixels with a negative NDMI value
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and were also excluded. Finally, we excluded land areas located outside the reserve based on the
management zones map (Figure 1).

Within the remaining area, we detected the clear-felling events using the NDMI time series.
We evaluated 210785 time series of pixels from 1988 to 2015. For each series of pixels, we evaluated the
following cases:

1. We detected clear-felling events based on two conditions:

a. We first defined a reference year as the year when the NDMI was below 0.288.
This threshold was determined through comparison of the NDMI series of pixels associated
with clear-felled and non-clear-felled areas. Areas with dense vegetation (including
pre-logged and mature mangroves) exhibited NDMI values around 0.5, which contrasted
with areas that were clear-felled which exhibited NDMI values below 0.288.

b. The difference between the NDMI of the reference year and the following year was at
least 0.275. We defined this second threshold to guarantee that the drop in the NDMI
value was sufficient to correspond to a true clear-felling event. This second threshold was
also determined by comparing different series of pixels associated with clear-felled and
non-clear-felled areas. The approach followed on from previous studies [30,50–52] that
have also used thresholds to analyse time series.

2. We determined the following values for each clear-felling event:

a. The year of clear-felling
b. The year of recovery. This value was determined as the year when the NDMI value returned

to the state prior to clearing [26]. This previous state was defined as the median value of
all the points in the series before the clear-felling event minus one standard deviation to
account for normal fluctuations in the vegetation index.

c. The recovery time. This time is defined as the number of years that the mangrove forest
took to regenerate that is, the difference between the year of recovery and the year of
the clear-felling occurrence. If this number was one, we considered this event as noise as
mangrove regeneration is not possible in a single year.

d. The drop in the NDMI value, calculated as the difference between the NDMI value before
clear-felling and the lowest NDMI value in the time series.

It was not possible to determine the recovery time for clear-felling events that had not restored
to pre-clearance levels by 2015. Such areas were typically cleared after 2009 and the forests did not
appear to have had enough time to regenerate. Additionally, we did not calculate the recovery time
in areas that were already clear-felled in 1988 as there was no knowledge as to whether clearing had
occurred in or prior to that year.

We recorded the information of the clear-felling events in five maps describing per pixel: (a) The
year of clear-felling or the absence of clear-felling, (b) the recovery time after clear-felling (c) the
drop in the NDMI value, (d) whether clear-felling occurred between 1988 and 2015 without complete
regeneration by 2015, and finally (e) the extend of water throughout the period of the time series based
on the NDVI time series. All these maps were created using the RStudio version 1.1.456, R version
3.4.1 using the raster and rgdal packages [53].

2.2.5. Validation Time Series Analysis

We validated our clear-felling maps by comparing them visually against:

1. The time series of 135 randomly selected pixels from locations clear-felled between 1989 and
2015. For each pixel, we determined the year of clear-felling and the recovery time by visual
interpretation of the NDMI time series. We selected these points such that we included five
examples of clear-felling events per year in the time series (from 1988 to 2015).
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2. The management zone maps and the logging plans included in the management plans from
2000 to 2009, and 2010 to 2019 [8,40]. First, we compared the existing local management zone map
against the results of our clear-felling map, on the assumption that clearing only occurs in the
productive and restrictive productive areas (i.e., where wood extraction is officially approved).
Second, we compared the clear-felling year calculated in this study against the logging plans
outlined in those management plans. These logging plans contain the year when the coupes
should be clear-felled.

3. Results

3.1. Time Series Creation

Water areas were more easily discriminated using the NDVI time series as compared to the
NDMI time series. Water areas exhibited a negative NDVI value as compared to vegetated areas that
had a positive NDVI value (Figure 3b,d). The NDMI provided a measure of the moisture content in
both vegetated areas and water (Figure 3a,c) and therefore exhibited similar positive values for both.
The NDVI annual time series was therefore used to discriminate water bodies from vegetated areas
(see supplementary data Figure S1).
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Figure 3. The behavior of 135 time series of pixels of the NDVI and NDMI for areas of open water and
creeks (a,b), and for forested areas (c,d). The blue line indicates the mean value for each year and the
grey area the standard deviation.

The rapid decrease in the NDMI following clear-felling is highlighted in Figure 4a, with values
considerably lower than forests that were not clear-felled between 1988 and 2015 (Figure 4c). The NDMI
declines primarily because of the reduction in vegetation amount (and hence structural complexity)
and exposure of the underlying surface. The lowest value in the NDMI time series was attained
once all vegetation had been completely removed from a clear-felled area, which typically occurred
within two years following the clear-felling event [8]. Differences in the NDMI between pre- and
post-clear-felling were greater compared to the NDVI (Figure 4b), therefore providing better detection
of clear-felled areas. Additionally, we used the NDMI time series to detect urban areas in order to
exclude them from our analysis (see supplementary data Figure S2).
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Figure 4. Examples of the (a,c) NDMI and (b,d) NDVI annual time series from 1988 to 2015 for
productive forest pre- and post-clearing (a,b). Locations randomly located in the productive forest that
were not clear felled between 1988 and 2015 are also shown (c,d). The blue line indicates the mean
value for each year and the grey area the standard deviation (n = 135). The productive areas that were
clear-felled (a,b) were time-shifted so they are aligned to show the change in the NDMI and NDVI
values based on the year when the clear-felling event took place.

3.2. Reference to Field and UAV Data

The relationship between the changes in the NDMI time series and the forest structure observed
on the field is illustrated in Figure 5. We observed a very closed canopy from seven-year-old to
30-year-old forests (Figure 5 UAV top view). The contrast with a recently clear-felled area is noticeable,
where the remaining trunks and dried branches are still present in the area (Figure 5, Example 2).
Moreover, the first signs of mangrove re-establishment are observed on the ground in the clear-felled
areas, with some saplings already present (Figure 5, ground view Example 2). A view from the ground
also confirms the high tree density in young forests of seven and 14-year-old stands (Figure 5 bottom
images, Examples 3 and 4). Although older forests generally have a lower density of trees, the canopy
is regarded as closed when viewed from above (Figure 5, Example 1). It is noteworthy that the forest
structure prior to clearing is not the same after the NDMI reaches a value that is similar to that of
the pre-cleared forests. Therefore, changes captured by the NDMI time series only reflect the early
regeneration of the mangrove forests, as these forests will continue their growth further.

3.3. Time series Analysis

In Figure 6, two examples show the year of clear-felling and the year of recovery detected for the
NDMI time series of two pixels.

The year of clear-felling for each Landsat pixel contained within the MMFR is given in Figure 7.
Areas found to be clear-felled in the same year match the areas assigned for clear-felling by the local
management (see Section 3.4). We detected clear-felling events in 88.4 % (16,776 ha or 186,402 pixels)
out of the 210,785 pixels analysed between 1989 and 2015. The median clear-felled area per year was
600 ± 242 ha.
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Figure 6. Temporal trend (black line) in the NDMI (between 1988 and 2015) highlighting the initial
clearance and subsequent regeneration period. The year of clear-felling is indicated with a solid vertical
line and the year of recovery with a dashed line. (a) In this example, the year of clear-felling was
1991, the recovery time was seven years, and the drop in the NDMI was 0.71 (see supplementary data
Figure S3). (b) In this second example, the year of clear-felling was 2001, the recovery time was 11 years,
and the NDMI decreased by 0.79.
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Figure 7. (a) The year of clear-felling as determined from the NDMI Landsat time series between 1988
and 2015. More detailed subsets are indicated by a (b) dotted square and (c) a solid square. White areas
were not clear-felled between 1989 and 2015. The grey areas are outside the management of the reserve.
Map projected in the Universal Transverse Mercator (UTM) Zone 47N.
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The mean recovery time (i.e., the period for NDMI values to return to pre-clearance values),
taking into account all the clear-felling events that recovered by 2015, was 5.87 ± 2.67 years (Figure 8).
The median recovery time (interquartile range) was five years (4–7 years) and the minimum and
maximum was two and 25 years respectively. It is noteworthy that recovery times were uneven across
coupes clear-felled in the same year (Figure 8b,c).
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Figure 8. (a) The recovery time as determined from the NDMI Landsat time series between 1988 and
2015. More detailed subsets are provided in (b) (dotted boundary) and (c) (solid line). White areas
indicate places that were not clear-felled between 1989 and 2015, or that were excluded because they
did not completely regenerate by 2015. The black lines in b and c indicate areas that were clear-felled in
the same year. The grey areas are outside the management of the reserve.

3.4. Validation Time Series Analysis

Comparison with the 135 reference points (Section 2.2.5) indicated that 100% were correctly
identified as clear-felled in the corresponding year and 96% determined the same recovery time as the
time defined by visual inspection. Incorrect matching of the remaining 4% (five points) was attributed
to noisy data (e.g., a sudden increase or decrease in the signal before the occurrence of the clear-felling,
see supplementary data Figure S4) and limited information available on the previous state (clearance
history). In these cases, the algorithm overestimated the recovery time by one year in two cases,
underestimated by two years in another two cases, and underestimated by five years in one case.
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In this last case the signal was noisy and defining the recovery time was not straightforward even
through visual interpretation (see supplementary data Figure S4).

Reference to the pre-existing forest management maps (Figure 1) established that clear-felling
events had taken place in the productive and restrictive productive zones. We also identified changes
in three areas that are protective zones according to the management plan but these changes require
further investigation to determine the actual cause of change (Supplementary data Figure S5).
Furthermore, we compared the map of the year of clear-felling with the management plan map
that prescribes the year when the coupes should be clear-felled. The coupes designated by the local
management plan emerge in the map of the year of clear-felling created in this study (see Figure 9).
However, the clear-felling events detected in this study occurred on average 2.85 ± 1.15 years after
the planned year. It is noteworthy that the management plan is a scheme that is defined before the
actual clear-felling. Therefore, the satellite imagery precisely indicates when the actual clear-felling
took place (see supplementary data Table S1).

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 18 

 

clear-felling, see supplementary data Figure S4) and limited information available on the previous 314 
state (clearance history). In these cases, the algorithm overestimated the recovery time by one year in 315 
two cases, underestimated by two years in another two cases, and underestimated by five years in 316 
one case. In this last case the signal was noisy and defining the recovery time was not 317 
straightforward even through visual interpretation (see supplementary data Figure S4).  318 

 319 
Reference to the pre-existing forest management maps (Figure 1) established that clear-felling 320 

events had taken place in the productive and restrictive productive zones. We also identified 321 
changes in three areas that are protective zones according to the management plan but these changes 322 
require further investigation to determine the actual cause of change (Supplementary data Figure 323 
S5). Furthermore, we compared the map of the year of clear-felling with the management plan map 324 
that prescribes the year when the coupes should be clear-felled. The coupes designated by the local 325 
management plan emerge in the map of the year of clear-felling created in this study (see Figure 9). 326 
However, the clear-felling events detected in this study occurred on average 2.85 ± 1.15 years after 327 
the planned year. It is noteworthy that the management plan is a scheme that is defined before the 328 
actual clear-felling. Therefore, the satellite imagery precisely indicates when the actual clear-felling 329 
took place (see supplementary data Table S1). 330 

 331 
Figure 9. (a, c) The compartments and administrative coupes defined by the management plan. Each 332 
number indicates the compartment number and the black lines delineate the limits of the 333 
compartment. Only the coupes that are planned to be clear-felled between 2010 and 2019 are shown. 334 
(b, d) The overlap between the management plan and the map created in this study showing the year 335 
of clear-felling. A match is observed between the coupes defined in the management plan and the 336 
areas that are actually being clear-felled each year. 337 

4. Discussion 338 

4.1. Time Series Analysis 339 
The NDMI time series could be used to detect the clear-felling events and quantify the recovery 340 

time. These results are in accordance with the studies of DeVries et al. [26], Kennedy et al. [20], Jin 341 
and Sader [28] and Wilson and Sader [27] which also found that the NDMI time series are useful for 342 

Figure 9. (a,c) The compartments and administrative coupes defined by the management plan.
Each number indicates the compartment number and the black lines delineate the limits of the
compartment. Only the coupes that are planned to be clear-felled between 2010 and 2019 are shown.
(b,d) The overlap between the management plan and the map created in this study showing the year of
clear-felling. A match is observed between the coupes defined in the management plan and the areas
that are actually being clear-felled each year.

4. Discussion

4.1. Time Series Analysis

The NDMI time series could be used to detect the clear-felling events and quantify the recovery
time. These results are in accordance with the studies of DeVries et al. [26], Kennedy et al. [20], Jin and
Sader [28] and Wilson and Sader [27] which also found that the NDMI time series are useful for
detecting forest changes, disturbances and regeneration. The NDMI is indicative of the moisture
content and structural complexity of forests and therefore vegetated areas and water have a positive
value. Following clear-felling, the NDMI decreases rapidly as vegetation is removed and the soil is
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exposed. However, the forests regenerate (with assistance from planting) and the NDMI values return
to those typical of the pre-cleared forest and remain similar until the next clearing event. Hence, only
the first years of regeneration can be quantified as the NDMI saturates in dense vegetation [54–56]
despite differences in forest structure. Nevertheless, we were able to identify variations in the recovery
times between and within the management-defined coupes.

To the best of our knowledge, this is the first study that quantifies early forest recovery times in the
MMFR using annual Landsat time series. Previous studies on mangrove regeneration have focused on
quantifying new mangrove cover [32,33]. Although knowledge of new areas colonized by mangrove
is certainly important and required to improve the management of mangrove areas, measurements
other than area are required to quantify mangrove regeneration in the MMFR. Aziz et al. [57] used
nine Landsat satellite images from 1978 to 2014 to analyse mangrove regeneration in the MMFR by
classifying the forests as young or mature. Nevertheless, they did not use annual time series nor did
they quantify recovery times.

This study generated maps of clear-felling that mirrored the coupes defined by the local
management, albeit with some minor differences in the shapes of coupes. This corroborates the
findings of this study and opens the possibility for using the methods introduced here to support local
management of the MMFR. Clear-felling events were detected on a pixel-by-pixel basis and hence,
if one pixel was partially clear-felled and some vegetation still remained within the pixel, it was not
possible to detect the clear-felling event as there was an insufficient decrease in the NDMI. This case
can occur as the management suggests that about eighteen mature Rhizophora trees should be retained
per hectare in the clear-felled areas to serve as a propagule source for recolonization [8]. However,
this limitation does not hinder the usefulness of our maps to support the local management, as the
area of each coupe is practically completely identified in this study. Overall, we confirm the results of
Aziz et al. [57,58] highlighting the usefulness of the Landsat archive to support the local management
of the MMFR.

We also identified changes in three protective zones (see supplementary data Figure S5), one of
which was also studied by Aziz et al. [57]. We found possible changes in the forest structure captured
by a sudden drop in the NDMI time series in areas where Avicennia-Sonneratia, Rhizophora and dryland
forests are located. Whilst not in the productive zones, these changes highlight the vulnerability of the
managed forest to events or processes that can have implications in the ecosystem services that the
protective zones provide for the MMFR [4,57].

Mangrove recovery times were shown to vary from two to 25 years after clearing and also differed
between and within areas that were clear-felled in the same year. Mangrove propagule dispersal and
establishment are complex processes that are influenced by factors such as currents, water depth,
wind, salinity, geomorphology, propagule predation, propagule morphology, light and nutrients
availability [59–64]. Therefore, further studies are needed to explain the variations in the recovery time
that take into account the aforementioned factors and increase our understanding of the drivers of
mangrove regeneration.

4.2. Implication for the Local Management

The results of this study are new and useful for the local management of the MMFR.
The management in the MMFR implements a policy of active replanting. Two years after a clear-felling
event, the management assesses the cleared area and if the natural regeneration is less than 90%,
Rhizophora seedlings are planted where needed [8]. This policy has an impact on the vegetation cover
two years after clear-felling and therefore on the NDMI. The recovery times identified in this study
extend beyond the two-year assessment period. Hence, this study can inform the local management
on where and when to replant. This study can also identify where past planting might not have been
as successful as anticipated and therefore can better inform on future management pathways.

Additionally, the results of this study can also be used to support monitoring activities,
redefine current and new administrative forest zones, and guide the planning of clear-felling events.
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The identification of changes in the NDMI can also offer a view of changes that occur in both productive
zones and protective zones. This information can be used to update current management maps and
monitor the forests in the zones where wood extraction does not occur but nevertheless are relevant
for maintaining ecosystems services in the reserve, such as propagule source, coastal protection and
protection of flora and fauna [8]. Moreover, the availability of free satellite imagery opens the possibility
to increase the frequency of the monitoring as mangrove areas are difficult to access [49].

The methodology used in this study can also be used in other mangrove areas that are under
silvicultural management such as Bintuni Bay in West Papua, Indonesia [9] and the Sundarbans [10].
Bintuni Bay has a silvicultural management focused on Rhizophora species with a rotation cycle of
25 years and a similar replantation strategy as the one used in MMFR [9]. Therefore, the methodology
proposed in this study could also be used by the management of this mangrove area in West
Papua. Furthermore, the mangrove areas that are not under silvicultural management could benefit
from using the NDMI time series to detect disturbances in forest structure. As recently outlined by
Curnick et al. [65] even the smallest patches of mangroves threatened by anthropogenic disturbance
serve important ecosystem functions, goods and services and may benefit from early detection when
disturbed. As we show in this study, these types of time series have the potential to detect disturbances
and regrowth in already existing mangrove areas. Although a modification of the current methodology
would be necessary to consider the drivers of other types of disturbances, the potential to track
regrowth after a disturbance is useful for mangrove conservation and management worldwide.

5. Conclusions

This study confirmed that clear-felling events and early regeneration of mangrove forests in
the MMFR could be quantified by means of Landsat time series. The NDMI was most useful for
detecting clear-felling events that regularly take place in the reserve as part of the local management
strategy. Additionally, the NDMI was useful to calculate the early regeneration of mangrove forests,
with an average recovery time of 5.87 ± 2.67 years. The patterns of logging were similar to those
outlined in the MMFR management plan. Therefore, the mapping provided by this study provides
new insights into the recovery of mangrove forests in the MMFR and are a valuable approach to guide
future clear-felling management, replanting strategies and monitoring.
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