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Abstract: Methods for effective wetland monitoring are needed to understand how ecosystem
services may be altered from past and present anthropogenic activities and recent climate change.
The large extent of wetlands in many regions suggests remote sensing as an effective means for
monitoring. Remote sensing approaches have shown good performance in local extent studies,
but larger regional efforts have generally produced low accuracies for detailed classes. In this
research we evaluate the potential of deep-learning Convolution Neural Networks (CNNs) for
wetland classification using Landsat data to bog, fen, marsh, swamp, and water classes defined
by the Canada Wetland Classification System (CWCS). The study area is the northern part of the
forested region of Alberta where we had access to two reference data sources. We evaluated ResNet
CNNs and developed a Multi-Size/Scale ResNet Ensemble (MSRE) approach that exhibited the best
performance. For assessment, a spatial extension strategy was employed that separated regions for
training and testing. Results were consistent between the two reference sources. The best overall
accuracy for the CWCS classes was 62–68%. Compared to a pixel-based random forest implementation
this was 5–7% higher depending on the accuracy measure considered. For a parameter-optimized
spatial-based implementation this was 2–4% higher. For a reduced set of classes to water, wetland,
and upland, overall accuracy was in the range of 86–87%. Assessment for sampling over the entire
region instead of spatial extension improved the mean class accuracies (F1-score) by 9% for the CWCS
classes and for the reduced three-class level by 6%. The overall accuracies were 69% and 90% for
the CWCS and reduced classes respectively with region sampling. Results in this study show that
detailed classification of wetland types with Landsat remains challenging, particularly for small
wetlands. In addition, further investigation of deep-learning methods are needed to identify CNN
configurations and sampling methods better suited to moderate spatial resolution imagery across a
range of environments.

Keywords: Wetlands; Landsat; classification; deep learning; convolution neural network;
machine learning

1. Introduction

The importance of wetlands, providing habitat for flora and fauna, supporting biodiversity,
improving water quality, promoting groundwater recharge, mitigating floods, and sequestering carbon,
is well established. However, due to climate change and anthropogenic activities, wetlands have been
lost or reduced, prompting the requirement for improved inventories and monitoring capacities [1,2].
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For many regions, such as Canada, wetlands cover a large extent of the land surface and thus remote
sensing provides a practical approach to map their spatial and temporal distribution [3].

Many methods based on moderate to high-spatial-resolution optical, radar, and topographic data
have been explored either individually or combined. Results show accuracies in the range of 67–96% for
local studies at varying levels of thematic detail [4–13]. Multispectral data in the visible to shortwave
infrared provides information on wetland vegetation and moisture content whereas radar offers
discrimination of vegetation structure and ground penetration improving swamp detection [12,14]
and separation of bogs from fens [15,16]. However, applications including radar are limited to the
operational period of the radar sensor. Topographic data provides information on where water is likely
to accumulate on the landscape and has been used to detect wetlands on its own [17,18], but is often
integrated with optical and radar data to improve accuracy [10,19].

Over large extents wetland detection accuracies are generally much lower than local studies as
spectral properties of wetlands are known to be spatially variable [3,20]. Development of training/test
samples often uses image interpretation [10,16,19,21] and for large extents is likely to be less consistent
as multiple interpreters and image sources are required. Remote sensing data also contains greater
variance related to differences in acquisitions conditions for the set of images required to cover the
region. Accuracies for land cover mapping efforts at moderate spatial resolution in Canada and
the US for basic wetland classes range from 54% to 64% [22–24]. More recent regional studies for
water/wetland/upland mapping are higher, 85% in [19] for northern Alberta, 91% [25] in the northern
interior of British Columbia, and 84–90% in Minnesota [21]. These studies made use of 10 m sentinel-2
or higher spatial resolution data as well as other topographic and or radar inputs. However, in [25] for
detailed wetland classes that included the Canada Wetland Classification System (CWCS) designations,
accuracy was below 60%. The CWCS includes five wetland types of bog, fen, marsh, swamp and open
water [26]. Much higher accuracy for detailed wetland classes are reported in [16] for northern Alberta
and northern Michigan in the range of 93–94%. For the Alberta region very high-class accuracies
were achieved, whereas for the Michigan region classes accuracies were more variable in the range of
55–100%. The inclusion of seasonal radar and Landsat data improved the results over using summer
only Landsat. A similar finding was reported by Corcoran et al. [13]. The specific contribution of
seasonal radar or Landsat data was not evaluated in these studies.

For wetland classification supervised approaches are common using pixel, spatial, and object-based
features as reviewed in [20]. Machine learning and in particular the random forest algorithm has been
widely applied in recent studies [10,11,13,16,21,25,27,28]. For high-spatial-resolution remote sensing
applications deep-learning methods have shown to be highly effective [29,30]. For wetland mapping
in Newfoundland, [31] achieved high accuracy (96%) for the CWCS classes using a convolution neural
network (CNN) for a local study with 5 m spatial resolution RapidEye imagery. Compared to a
pixel-based random forest result, the CNN improved accuracy by 20%.

CNNs are a specific form of neural network. The input to a CNN is an array or image and thus
is a natural fit for earth observation remote sensing. For each convolution layer, a set of weights are
learned for a filter of size m × n × c that is convolved over the image, where m and n are vertical and
horizontal dimensions and c is the input features to the convolution layer. Essentially, a CNN can learn
the optimal set of filters to apply to an image for a specific image recognition task [32].

There is considerable research into the development of CNN configurations for image object
recognition to enhance accuracy and minimize complexity. One of the first breakthroughs was Alexnet
consisting of a collection of five convolution layers each followed by a pooling layer. The output of this
was passed through a set of fully connected layers to make the final class predictions [32]. This was
improved on by the Visual Geometry Group which used blocks of several convolution layers before
applying pooling [33]. The VGG configuration was modified to included residual connections in
He et al. [34]. Residual connections force the next layer in the network to learn something different
from the previous layers and have been shown to help alleviate the problem of deep-learning models
not improving performance with depth. In addition to going deep, Zagoruyko and Komodakis [35]
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showed that going wide can increase network performance. More recently, Xie et al. [36] developed
wide residual blocks, which adds a another dimension referred to as cardinality in addition to network
depth and width. Google developed various versions of their Inception model with one of the essential
premises that different filter sizes are needed to detect objects of varying sizes [37].

CNNs are known to be sensitive to object size and scale particularly for large variations. Many
CNN approaches address this problem by using input images with multiple resolutions [38–42].
The general strategy is to identify local image regions potentially containing the object of interest and
resample these to a common size for processing with a CNN. An alternative approach makes use of
features from an initial CNN, which are then applied for localization and prediction [40,42–46]. Many
of these can be considered shared weight approaches where a preliminary CNN is used to detect
features that would be applicable across a range of scales. For very high-resolution imagery used in
much of the CNN development, objects to be detected consist of several pixels and shared features
across scales can be considered reasonable. However, for remote sensing at moderate or coarse spatial
resolutions object sizes range from a single pixel to large collections.

Objectives

In this research we sought to better understand the potential of deep-learning CNNs to improve
wetland classification with Landsat for two levels of thematic detail; the six-class CWCS and a reduced
version to three classes of water, wetland, and upland. Landsat was selected as it provides the potential
to assess historical wetland conversion and change if a sufficiently accurate classifier can be achieved.
Two training data sources were used for evaluation. It was hypothesized that the spatial structure of
wetlands should improve classification accuracy, but this is scale dependent. To this end we compare
CNNs for different input image sizes and develop a multi-size/scale ensemble approach to account
for this sensitivity. Results are compared with pixel and spatial-based implementations of the random
forest algorithm.

2. Materials and Methods

2.1. Study Area and Training Data Sources

The study area included the forested region of northern Alberta identified in Figure 1. This
region was selected because wetlands are numerous, there are a range of wetland types, and there
were two sources of training/test data available for wetland mapping and assessment following the
CWCS. For this analysis we added a sixth class representing upland areas in addition to the bog,
fen, marsh, swamp, and water designations. For the reduced three-class analysis, bog, fen, marsh,
and swamp were merged to a common wetland class. Water and upland were maintained from the
original six-class level. Details of each data source are provided in the following sections.

2.1.1. Alberta Merged Wetland Inventory (AMWI)

The AMWI, shown in Figure 1, is comprised of 33 separate inventories generated by several
organizations using different input image sources and methods. Thus, it contains inconsistencies
that limit its accuracy and use [47]. For much of the study area, the AMWI was generated following
the Ducks Unlimited Canada protocols using Landsat, RADARSAT-1, as well as some ancillary data
sets including a digital elevation model (DEM) [48]. Hird et al. [19] assessed the accuracy of the
product for wetland detection at ~85% by comparison with inventory data derived from orthophotos.
The advantage of this dataset is that it is spatially extensive and thus facilitates extraction of large
samples for training a CNN.
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Figure 1. Study area showing the Alberta Merged Wetland Inventory (AMWI) wetland layer and 
ABMI_PP grid data sources used for training and testing. 
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Figure 1. Study area showing the Alberta Merged Wetland Inventory (AMWI) wetland layer and
ABMI_PP grid data sources used for training and testing.

2.1.2. Alberta Biodiversity Monitoring Institute Photo-Plots (ABMI_PP)

The Alberta Biodiversity Monitoring Institute (ABMI) maintains a grid at 20 km spacing of
permanent sample plots across the province. At each site field data are collected and 3 km by 7 km
photo-plots are mapped following interpretation protocols using ~0.5 m spatial resolution imagery [49].
Wetlands are mapped to the CWCS bog, fen, marsh, and swamp categories with modifiers for tree
cover consisting of forested (greater than 70% tree cover), wooded (between 6% and 70% tree cover),
and open (with less than 6% tree cover). Within the study area bogs, fens, and swamps were dominantly
wooded with some open non-treed types, but forested types were rare. This dataset is likely to be
more accurate than the AMWI as it is derived from a higher resolution data source taking advantage
of terrain and vegetation structural information through stereo-viewing. It is, however, a sample and
thus reduces sampling opportunities and sample sizes that can be extracted.

2.1.3. AMWI and ABMI_PP Class Distributions

The wetland class distributions from the two reference data sources are given in Figure 2. It has
been spilt into training (west) and testing (east) as shown in Figure 1 for the spatial extension sampling
approach described in Section 2.2.1. It is not the extracted sample distribution used in the analysis. It is
included to show the set of samples available and the agreement between the two sources regarding
the general wetland class distributions. For the two data sources and training/test regions the relative
class distributions are similar. There are several notable exceptions. The AMWI contains more marsh
and bog than the ABMI_PP relative to other classes. For ABMI_PP there is more fen in the training
area. For both data sources the training region contains relativity less fen cover than the test region.
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The small amount of marsh in both sources limits the number of samples that can be uniquely extracted
for this class.
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2.2. Sampling

Two sampling approaches were used in the analysis. The first was a form of spatial extension
where the study region was partitioned into two sub-regions for training and testing. This was done to
evaluate classifier robustness and the potential to extend classifications between training datasets. This
is challenging because the classifier must account for deviations in the spectral and spatial properties
of wetlands from the training sample that are typically more pronounced with distance. Results in
Sections 3.1–3.4 use this approach for assessment. The second approach, sampled over the entire
region to generate training/test samples from the ABMI photo-plots. It reduces the distance between
training samples and predictions when used for map generation. Thus, higher accuracy may be
achieved, but costs can be greater as a larger region needs to be sampled. Results in Section 3.5 used
this approach.

2.2.1. Spatial Extension Sampling Assessment

For the spatial extension assessment, the training and test regions (Figure 1) were systematically
sampled for every fifth pixel up to a maximum number of samples per class. The purpose of limiting
the class sample size was to reduce the effect of highly frequent classes dominating the sample and
potentially biasing the classifier. This is important for spatial extension, as there is less knowledge
about the class distribution for the region that classifier is being extended to. Furthermore, machine
and deep-learning methods are known to be sensitive to large class imbalances (maximum to minimum
class count) [11,50–52]. For deep leaning, class imbalance ratios typically much greater than 10:1 have
been shown to negatively impact accuracy, but it is related to the specific classification task, number of
minority classes, and the class distribution structure [51]. For the samples extracted in this study the
imbalances ratios were all under 6:1 and only for a single class. Not considering the marsh class the
imbalance ratios were under 2.5:1.

For the AMWI we used a maximum of 8000 samples per class and for ABMI_PP we reduced this to
6000. For the ABMI_PP data, the same sample could not be extracted because a smaller set of samples
were available within the photo-plots and due to constraints put on sample selection. We limited the
extracted input images to contain less than five percent missing data caused by photo-plot edges, study
area bounds, and other data gaps. We also applied a minimum mapping unit of 3 pixels. For many
land cover products 4–5 pixels is used as the minimum mapping unit with Landsat [53,54]. It was
also based on initial analysis which showed that small objects could not be reliability detected and
followed up with examination of the imagery which suggests that detection of a single-pixel wetland
object was low. Similarly, in [31] with high-spatial-resolution RapidEye imagery an 8×8 pixel criteria
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was applied to identify suitable samples for training. For results in Section 3.4 we up-sampled the
marsh class by a factor of two to reduce any imbalance effects. However, we did not allow it to exceed
the upper bound sample limit.

2.2.2. Regional Sampling Assessment

To evaluate the advantage of sampling over the entire region we used the ABMI_PP data and
sampled 70% of the photo-plots for training and 30% for testing. Photo-plots were used to split the
sample to reduce spatial autocorrelation compared to a random selection of cases from the sample.
Every fifth pixel within the photo-plots was sampled up to a maximum of 16,000 samples per class.
Five resampling iterations were run for this 70/30 split and results averaged. In this case, the samples
varied between iterations due to random sampling of photo-plots. Samples were more representative
of the class distribution for the region and class imbalances were limited to under 4:1. For the
reference data distributions in Figure 2 the imbalance ratios were greater than 30:1. Selecting a strictly
representative sample would lead to poor performance of wetland classes, particularly the less frequent
marsh and bog classes. In line with the spatial extension sampling, for the results in Section 3.5 we
up-sampled the marsh class by a factor of two to reduce potential imbalances affecting its accuracy.

2.3. Landsat and Elevation Data

For this study Tier 1 Landsat 5 surface reflectance composites were generated. We used cloud
and shadow screened observations pooled over three years and from July to August to obtain a
good quality composite. The 40th percentile was used as the compositing criteria to select the best
observation from the cloud and shadow screened set. Circa 2005 and 2010 composites were created
and only the red (band 3), near infrared (NIR, band 4), and shortwave infrared (SWIR, band 5) bands
were retained. Composites were generated using Google Earth Engine and approximately 300 images
were used in each. The 2005 composite was used with the AMWI data source and 2010 composite with
the ABMI_PP data source to be as consistent as possible with the inventory date ranges.

Shuttle Radar Topography Mission (STRM) data were included and the topographic wetness
index (TPI) computed as it was shown to be useful for wetland mapping in other studies [19]. It is
computed as ln(α/tan(β)) where α is the upslope contributing area and tan(β) is the local gradient [55].
We also tested including May and October image composites to evaluate the improvement with
seasonal properties, where May imagery represented maximal surface water and October represented
snow-free leaf-off or leaf color senescence conditions.

To account for changes we removed fires using the National Fire Database (NFDB, 2018).
The AMWI was generated using imagery from different years ranging from 1999 to 2009. The source
of the image year was not included as a spatially mapped attribute in the dataset. Thus, we removed
fires that occurred over this period. For the ABMI_PP dataset, fires were removed if the fire occurred
after the year of the photo-plot source image or if the fire occurred after the lower bound year in the
Landsat composite.

Urban areas, roads, and large industrial developments were removed using the North America
Land Change Monitoring System (NALCMS) land cover product at 30 m spatial resolution for the
AMWI [22]. Other types of disturbances were not removed and were not considered problematic as they
were expected to occur mostly within the upland class related to forestry and other industrial activities.

2.4. Machine and Deep-Learning Methods

2.4.1. CNN Configurations

Several different CNN configurations were explored across a range of input image sizes from
4 × 4 to 128 × 128 pixels extracted from the full image. For all input image sizes, the target class was
determined from the central 2 × 2 pixels if at least 3 were the same label. We tested a dense fully
connected network, VGG16 [33], ResNets [34], ResNeXt [36] and InceptionResNetV2 [37] in initial
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exploratory analysis. No substantial improvement was found with either ResNeXt or InceptionResNetV2
relative to ResNets. Results presented for the development of ResNeXt in [36] show improvement in the
top 1 error rate in the range of 0.5–3%, but this difference tended to decrease with depth. Our analysis
with the data used in this study showed that differences between CNNs could be in this range due to
other factors such as input image size and network weight initialization. Furthermore, this data contains
greater label and predictor error than the datasets used to test these CNNs, which can lead to overfitting
of erroneous data and potentially mask improvements. It is expected that further investigation with
these form of split-transform-merge CNN configurations could lead to additional gains, but may require
modification to be applicable at Landsat spatial resolution to optimize parameters such as cardinality,
depth, and width. The VGG CNN preformed slightly lower than the ResNets in initial tests. Thus,
we elected to focus on ResNets and examined depths of 18, 34, and 50 convolution layers. We modified
the filter size in the first convolution layer from 7 × 7 to 3 × 3 and the stride was changed from 2 × 2 to
1 × 1. This improved accuracy for the small input image sizes and did not affect the larger. All activations
were rectilinear and batch normalization was applied. For all convolution layers, l2 weight regularization
was applied with factor of 0.0001 [56].

Wetland size was expected to be moderately variable relative to Landsat spatial resolution and
CNNs are known to be sensitive to object size/scale [42,57,58]. For this reason, we developed the
Multi-Size/Scale ResNet Ensemble (MSRE) configuration shown in Figure 3. This consisted of cropping
the 128 × 128 input image to sizes of 1 × 1,4 × 4,8 × 8,16 × 16, and 32 × 32 and developing a simple
ResNet type configuration for each. The outputs from these were concatenated and fed into a set
of final dense layers for class prediction. For the single-pixel (1 × 1) dense network, the crop was
defined to extract pixel 64x64 from the center of the 128 × 128 input image. All activations were leaky
rectilinear units unless otherwise specified. Convolution layers started with 64 features and as depth
increased the number of features increased as 32 × residual block depth as indicated in Figure 3. Batch
normalization was applied after all convolution layers. As for ResNets, l2 weight regularization was
used with a factor of 0.0001. For the final output layer after concatenation a six-node dense layer with
SoftMax activation was applied.
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2.4.2. CNN Training Strategies

Two training strategies were used to determine training convergence of the CNNs. Simple
monitoring of the training accuracy did not perform well and often lead to overfitting. The first strategy
was designed to determine the maximum potential performance of the CNN and be computationally
efficient. For this we monitored the overall accuracy of the test data after each training epoch and kept
the network weights with the best performance. Accuracies reported using this approach are denoted
as best-test training convergence. Data augmentation was not used to avoid potential underfitting
and to speed processing. Early stopping was applied if the accuracy did not improve in 30 epochs.
This provided an effective approach to maximize the use of the training data and determine the best
configuration for further testing in a computationally feasible manner. Results in Sections 3.1–3.3 used
this training strategy.

For the second strategy, we kept the test data completely independent and generated a 30%
hold-out sample from the training data to determine training convergence. The hold-out sample
accuracy was monitored across training epochs and the network weights with the best performance
were kept. Three iterations were used, and results averaged. Because the training data size was
reduced (by 30% for the hold-out), we applied data augmentation that included rotation, reflectance
bias of ±3%, random noise of ±3% reflectance for 15% of the input image, and dropping data for
a randomly selected image edge. This was computationally much more demanding and was only
used in Sections 3.4 and 3.5 to provide accuracy estimates. This strategy is referred to as hold-out
training convergence.

For training the CNNs the Adam optimizer was used with 300 epochs. Batch size was set 128,
except for the larger CNNs which required smaller batches (64) to avoid graphics processing unit (GPU)
memory limitations for the larger input image sizes. All CNNs were trained using the TensorFlow
backend on a Tesla P100 GPU.

2.4.3. Random Forest Comparison and Accuracy Measures

For a benchmark comparison we included random forest applied following a per-pixel approach
and a spatial implementation where the mean and standard deviation from the sounding 5 × 5 pixels
were added to the pixel inputs. We used a random search to identity an optimal parameter set where
100 sets were sampled and compared using three-fold cross validation. Search parameter ranges were
number of trees (100 to 1000, by 50), minimum samples split (2-4), minimum samples per leaf (2-4),
maximum depth (full), bootstrap (true), and maximum features (square root of the number of features).
To gauge the improvement with parameter refinement we also included random forest using 100 trees
and default parameters of minimum samples split (2), minimum samples per leaf (1), maximum depth
(full), bootstrap (true), and maximum features (square root of the number of features) for both the
pixel and spatial versions.

For each classifier, training source, and sampling approach we ran five iterations to get a mean and
standard deviation of each accuracy measure. For CNNs weight initialization and random selection
for batch training can lead to variability in the results. In addition, for the region sampling, each
iteration included the resampling of the photo-plot data as described in Section 2.2.2. For random
forest, variability between fits to the same data is due to the random selection of variables for splitting
and cases selected for development of each tree. Ideally, we would have run these 31 times to achieve
statistically comparable results. However, the computational requirements were too demanding.
The five iterations provided a good indication of the more useful configurations to explore. For each
iteration we computed the, overall accuracy, Kappa coefficient, class F1-scores, and the mean class
F1-score. The F1-score is a summary measure of the user’s (UA) and producer’s (PA) accuracy. It is
calculated as 2 × (PA × UA)/(PA + UA) [59]. For ResNets and the MSRE, we also examined the results
by minimum object size in the sample. CNNs were only developed for the six-class thematic level and
merged for assessment at the three-class level.
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2.4.4. Applying CNNs to Generate Maps

To apply the trained CNNs, we extracted the 128 × 128 sub-image around each pixel of the input
Landsat and elevation features, applied the CNN, and wrote the highest-ranking class to that location
in the output image. In this case, the center was defined as pixel 64 × 64 in the input image to be
consistent with how the CNN was trained.

3. Results

3.1. Examination of ResNet Depth and Input Image Size

The results of the different ResNet depths and input image sizes are shown in Figure 4 for the
ABMI_PP data source following the spatial extension assessment. Statistical variance associated with
training and network weight initialization led to differences in overall accuracy of ~0.7% on average
for all CNNs evaluated. The smaller input image sizes achieved the best results for depths of 18 and
34 layers. For the 50-layer CNNs smaller input images did not perform better. The depth of the CNN
did not consistently increase accuracy. For the deeper ResNets, overfitting was evident with the smaller
input image sizes. For this data, the inherent ambiguity of class labels and residual image data error
were likely contributing factors. Based on these results the 34-layer ResNet was used in more detailed
investigation as it was the deeper CNN with the highest accuracy.
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extension assessment and best-test training convergence. Configurations are designated as L for depth
and W for input image size. For example, L18_W4 is an 18-layer ResNet with an input image size of
4 × 4 pixels.

Examination of the 34-layer ResNet results by class revealed the same general pattern as the
overall accuracy. Larger input images led to reduced accuracy, except for the fen class where it
increased. Interestingly, fens tend to have some unique spatial structure associated with seasonal
drainage patterns that CNNs may be able to exploit. For the AMWI dataset, this same effect was seen
but with a smaller difference between the small and large input images.
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The reduction in accuracy with input image size is a result of a class object representing a smaller
percent of the input image. For example, a bog consisting of 5 pixels, covers 7% of 8 × 8 input image,
whereas for a 32 × 32 input image it only covers 0.5%. This leads to a reduced CNN response for that
class relative to other classes. Thus, a multi-scale approach is desirable to capture a range of object
sizes. Furthermore, larger windows provide contextual information, where the likelihood of a wetland
class is a function of the surrounding landscape distribution.

3.2. Comparison of ResNets and MSRE with Object Size

The results for the 34-layer ResNets and MSRE for minimum object size thresholds are shown in
Figures 5 and 6 for the two training sources following the spatial extension assessment. Error bars
represent the standard deviation across the five iterations and are only shown for the MSRE results for
clarity. In both, the MSRE achieves the highest potential accuracy of 60.3% for the ABMI_PP and 60.2%
for the AMWI. The size sensitivity of the different CNNs is evident, where the larger input images
tend to produce to the lowest accuracies for small objects, but higher accuracies for larger objects. This
same pattern is observed for both reference data sources. For the ABMI_PP accuracy increased with
object size at a slower rate than the AMWI. This is the influence of reduced consistency for the AMWI
data, but also the object size estimates. Because the AMWI is full coverage, objects sizes were larger,
whereas for the ABMI_PP the object sizes were cut-off at the edges of the photo-plot reducing their size.
This causes the AMWI sample to change more quickly and level-off with the object size thresholds.

3.3. Inclusion of Seasonal Image Composites in the MSRE

Adding the seasonal Landsat composites to the MSRE CNN reached an accuracy of 65% when
May and October image composites were added for the ABMI_PP data source for the spatial extension
assessment. The influence of specific seasonal composites was variable across classes (Figure 7). Most
classes were improved with the inclusion of May and October composites. Bogs and fens were the
most improved by adding May and marshes with October composites. However, the variability of
class accuracies (error bars in Figure 7) associated with training and CNN weight initialization does
not suggest statistical significance.
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3.4. MSRE and Random Forest Comparison for Spatial Extension Accuracy Assessment

The accuracy measures for the ABMI_PP and AMWI test data sources are shown in Tables 1
and 2 for the spatial extension assessment and hold-out training convergence. Values in the tables are
the mean for the five training iterations. The standard deviation estimates reflect the variation with
training iterations. Overall accuracies for the six wetland classes were 62% for ABMI_PP and 68% for
AMWI. Both tables show the same general pattern of class accuracies where water, bogs, and uplands
obtain higher accuracies. Fens and swamps consistently achieve lower accuracy for the two data
sources. Marsh accuracy shows the largest difference and was likely due to the small sample which
did not define the spectral and spatial properties of the class effectively in the ABMI_PP dataset.

Merging the classes to water/wetland/upland showed a more consistent overall accuracy for
the two data sources of 86–87%. However, the upland class accuracies were low for both between
68–69%. This is the effect of the classifier optimizing accuracies of wetland classes at the expense
of upland. It is also the influence of capping the training data samples for upland which reduces
its relative importance during training. Increasing the sample size for upland would improve its
accuracy. Several samples were tested during development with a greater number of upland cases and
accuracy improved to 75–85%. However, the improvement comes at the expense of the other wetland
class accuracies.

Comparison of the non-optimized pixel-based random forest with the MSRE showed an
improvement of 5–8% depending on the accuracy measure, where the Kappa coefficient had the
largest difference. For the parameter-optimized spatial-based implementation it was smaller ranging
from 2–4%. For the ABMI_PP the overall accuracy ranged from 61–63% and 68–70% for the AMWI
across the five training iterations. All random forest tests showed much smaller variance with runs
compared to the MSRE. Parameter optimization lead to small improvements for random forest.
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Table 1. ABMI_PP results including May and October composites for the spatial extension assessment and hold-out training convergence.

6 Classes 3 Classes
F1-Score F1-ScoreMethod OA Kappa Mean_F1 Bog Fen Marsh Water Swamp Upland OA Kappa Mean_F1 Wet Water Upland

MSRE 0.624 0.538 0.601 0.628 0.480 0.417 0.952 0.442 0.689 0.862 0.749 0.843 0.889 0.952 0.689
0.006 0.008 0.009 0.006 0.009 0.064 0.006 0.012 0.013 0.004 0.006 0.005 0.004 0.006 0.013

RF_Spatial_CV 0.605 0.519 0.583 0.616 0.488 0.359 0.955 0.449 0.632 0.847 0.718 0.822 0.878 0.955 0.632
0.001 0.001 0.001 0.001 0.001 0.004 0.000 0.001 0.002 0.000 0.001 0.001 0.000 0.000 0.002

RF_Spatial 0.601 0.512 0.574 0.610 0.482 0.318 0.955 0.447 0.631 0.847 0.718 0.822 0.878 0.955 0.631
0.000 0.001 0.001 0.001 0.001 0.005 0.001 0.002 0.001 0.001 0.001 0.000 0.000 0.001 0.001

RF_Pixel_CV 0.578 0.485 0.555 0.605 0.467 0.316 0.944 0.430 0.565 0.827 0.676 0.791 0.864 0.944 0.565
0.000 0.000 0.000 0.002 0.001 0.002 0.001 0.001 0.002 0.000 0.001 0.000 0.000 0.001 0.002

RF_Pixel 0.573 0.479 0.547 0.598 0.460 0.292 0.944 0.424 0.567 0.827 0.677 0.792 0.864 0.944 0.567
0.001 0.002 0.002 0.003 0.003 0.009 0.001 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.002
Test samples: 3236 5497 2549 5163 5451 5834 16,733 5163 5834
Training samples: 3241 5428 2272 4353 4527 5792 15,468 4353 5792

Note: CV indicates where cross validation was used to determine optimal parameters for random forest. OA refers to overall accuracy. Rows in italics are the standard deviation
across iterations.

Table 2. AMWI results including May and October composites for the spatial extension assessment and hold-out training convergence.

6 Classes 3 Classes
F1-Score F1-ScoreMethod OA Kappa Mean_F1 Bog Fen Marsh Water Swamp Upland OA Kappa Mean_F1 Wet Water Upland

MSRE 0.683 0.619 0.673 0.683 0.438 0.826 0.944 0.468 0.679 0.874 0.746 0.844 0.907 0.944 0.679
0.003 0.004 0.007 0.012 0.036 0.009 0.003 0.019 0.008 0.003 0.002 0.001 0.003 0.003 0.008

RF_Spatial_CV 0.650 0.580 0.641 0.664 0.418 0.775 0.937 0.472 0.577 0.854 0.692 0.803 0.896 0.937 0.577
0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.000 0.001 0.001 0.000 0.001 0.002

RF_Spatial 0.645 0.574 0.636 0.660 0.413 0.775 0.935 0.463 0.569 0.851 0.687 0.799 0.893 0.935 0.569
0.000 0.000 0.000 0.001 0.001 0.002 0.001 0.003 0.002 0.001 0.001 0.001 0.000 0.001 0.002

RF_Pixel_CV 0.623 0.548 0.613 0.653 0.385 0.742 0.929 0.447 0.521 0.838 0.656 0.778 0.885 0.929 0.521
0.000 0.000 0.000 0.001 0.001 0.002 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.001

RF_Pixel 0.619 0.543 0.609 0.649 0.382 0.741 0.926 0.440 0.517 0.836 0.652 0.775 0.883 0.926 0.517
0.001 0.001 0.001 0.001 0.003 0.002 0.001 0.001 0.003 0.001 0.002 0.002 0.001 0.001 0.003
Test samples: 7113 7683 8000 7527 7661 7931 30,457 7527 7931
Training samples: 7346 7519 8000 7337 7603 7957 30,468 7337 7957

Note: CV indicates where cross validation was used to determine optimal parameters for random forest. OA refers to overall accuracy. Rows in italics are the standard deviation
across iterations.
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3.5. MSRE and Random Forest Comparison for Region Plot Sampling Assessment

The region-based plot sampling results show a 9% improvement in the mean F1-score (Table 3)
relative to spatial extension (Table 1). All classes showed an improvement in accuracy except for bogs,
which decreased slightly by 0.8%. Fen, marsh, and upland classes all showed large improvements in
the range of 7–23%. Relative to the parameter-optimized spatial random forest accuracy increased by
2–3%, depending on the accuracy measure considered. For the reduced set of classes accuracy was
also improved by a similar amount. The individual class accuracies were also more consistent with
upland still being the lowest, but achieving a class-based F1-score of 81%.

Table 4 provides the mean error matrix for the MSRE results across the five iterations. It shows
that bog, fen, and swamps were confused, particularly swamps, and fens. The marsh class was
mostly confused with fens, but also water. The confusion with water was in part related to errors in
the validation data, as differences in the timing of the photo-plot acquisitions and Landsat data can
cause some of this error. Upland was mostly confused with swamps and to a lesser degree with fens.
Example MSRE mapping results for comparison with ABMI photo-plots are shown in Figure 8 for
selected areas. It shows that water/wetland/upland is generally well captured, but reveals confusion
between wetland types as indicated in Table 3.
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Figure 8. Example results of MSRE for three example ABMI photo-plots. Left panels are
Landsat (A,D,G) displayed as red display = near infrared, green display = shortwave infrared,
blue display = red. Center panels show the ABMI photo-plot (B,E,H), right panels show the MSRE
classification (C,D,I).
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Table 3. ABMI_PP results including May and October composites for region sampling of photo-plots and hold-out training convergence.

6 Classes 3 Classes
F1-Score F1-ScoreMethod OA Kappa Mean_F1 Bog Fen Marsh Water Swamp Upland OA Kappa Mean_F1 Wet Water Upland

MSRE 0.686 0.611 0.691 0.620 0.591 0.645 0.966 0.509 0.814 0.905 0.821 0.902 0.925 0.966 0.814
0.011 0.014 0.013 0.057 0.018 0.026 0.008 0.019 0.010 0.008 0.013 0.008 0.009 0.008 0.010

RF_Spatial_CV 0.666 0.586 0.663 0.608 0.569 0.556 0.963 0.496 0.786 0.888 0.791 0.887 0.911 0.963 0.786
0.009 0.013 0.004 0.037 0.007 0.041 0.009 0.010 0.007 0.006 0.014 0.005 0.006 0.009 0.007

RF_Spatial 0.662 0.581 0.659 0.606 0.567 0.547 0.963 0.488 0.784 0.887 0.789 0.886 0.910 0.963 0.784
0.009 0.013 0.005 0.038 0.006 0.044 0.010 0.008 0.006 0.006 0.015 0.005 0.005 0.010 0.006

RF_Pixel_CV 0.642 0.556 0.635 0.595 0.543 0.486 0.957 0.471 0.759 0.874 0.764 0.872 0.899 0.957 0.759
0.009 0.013 0.004 0.029 0.008 0.053 0.012 0.006 0.006 0.006 0.015 0.006 0.006 0.012 0.006

RF_Pixel 0.637 0.550 0.630 0.590 0.538 0.474 0.957 0.463 0.757 0.873 0.762 0.871 0.899 0.957 0.757
0.010 0.014 0.005 0.032 0.009 0.054 0.011 0.004 0.007 0.006 0.017 0.005 0.006 0.011 0.007

Test samples: 2913 4613 1289 2946 4714 4962 13,529 2946 4962
Training samples: 6914 10,433 3520 6902 10,250 10,946 31,117 6902 10,946

Note: CV indicates where cross validation was used to determine optimal parameters for random forest. OA refers to overall accuracy. Rows in italics are the standard deviation across
iterations. Training and test sample counts are the means for the five photo-plot resampling iterations.

Table 4. Error matrix for the ABMI_PP results including May and October composites for region sampling of photo-plots and hold-out training convergence.

Reference

Classified

Bog Fen Marsh Water Swamp Upland Row Total User’s Accuracy

Bog 1785 444 0 0 498 11 2738 0.65
Fen 538 2797 197 6 1102 199 4839 0.58

Marsh 1 142 785 38 133 50 1149 0.68
Water 1 13 96 2878 11 11 3010 0.96

Swamp 564 961 107 11 2384 608 4635 0.51
Upland 24 256 104 13 586 4083 5066 0.81

Column Total 2913 4613 1289 2946 4714 4962
Producer’s Accuracy 0.61 0.61 0.61 0.98 0.51 0.82
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4. Discussion

There are only a few wetland studies reporting accuracy for large extent applications for similar
ecosystems and sensors. At the reduced three-class thematic level Hird et al. [19] reported an overall
accuracy of 85% within the same region as this study. Filatow and Carswel [25] achieved an accuracy
of 91% in northern British Columbia. The results obtained here were within this range. For a more
detailed classification including the CWCS classes [25] report an accuracy of less than 60%. The results
obtained here suggest a possible improvement, but in [25] additional classes were included and thus
is not directly comparable. Other studies for local areas achieve higher accuracy and are likely the
result of better controlled or more homogenous training/test data, differences in wetland thematic
designations, reduced variability of wetland structure and composition, larger wetland object sizes,
or reduced variance in the remote sensing data. The integration of radar data with Landsat has
shown to improve accuracies slightly for single date tests in Hird et al. [19] and Bourgeau-Chavez [16].
However, in [13,16] the seasonal radar and optical combination showed the most improvement. Radar
is also known to improve swamp detection [14], which was the class that consistently had the lowest
accuracy in this study. However, for historical assessment a suitable source of radar data is a limitation.
For present and future applications, seasonal radar and optical sensors need to be further investigated
across a range of wetland ecosystems.

The capacity to accurately detect wetlands in moderate resolution data from Landsat is desired to
facilitate understanding of spatial and temporal dynamics of wetland loss and conversion. Landsat
provides the highest spatial resolution and longest systematically sampled historical remote sensing
record dating back to approximately 1984. Thus, Landsat offers the greatest opportunity for
understanding wetland change and drivers of these changes. One approach to assessing wetland
conversion is to use change-based updating commonly applied for the development of land cover
time series [53,60,61]. In this approach, a classifier is needed to label changes that have been detected
using a robust method. Accuracy obtained in this analysis suggests that for larger wetlands this may
be possible and is planned to be investigated further.

There are numerous reasons why low accuracies are often observed for mapping wetland classes
over large extents. First, high quality training data sources are difficult to acquire. Training data sources
are often partially complied using image interpretation which is known to be subjective and over
large extents several interpreters are required increasing potential subjectivity. Furthermore, image
interpretation is complicated over large extents where wetland vegetation and hydrological conditions
vary [3]. Second, wetland boundaries are difficult to delineate. Where precisely the boundary lies
between a bog and fen transition has a high degree of ambiguity [3]. Third, remote sensing data has
residual atmosphere, clouds, and cloud shadow effects in the imagery. These factors lead to error in the
training and test data. With powerful deep-learning methods, these errors can cause overfitting and
poor performance with test samples. The influences of label error on deep-learning neural networks
has prompted research in developing more robust methods and mechanisms to correct erroneous
labels [62,63]. These methods may be useful to improve training of deep-learning approaches with the
data used here.

The results of this study suggest that the best approach for mapping the CWCS classes with
Landsat is the application of a scale independent CNN trained from a sample collected across the entire
region that includes seasonal images. With this approach an overall accuracy of 69% was obtained.
For the three levels of water/wetland/upland accuracy was 90%. This, however, was not a substantial
enhancement over random forest. Additional improvements in sample quality, feature extraction,
and feature selection could improve random forest further. Another important consideration regarding
the differences in performance between methods is that we did not specifically train the CNNs for
the reduced thematic level. It is possible that improved results could be obtained if trained directly.
Multi-task configurations are planned to be explored in future research, where hierarchical class
outputs can be trained simultaneously [64].
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Most of the knowledge of CNN design and performance has been developed and assessed with
high-resolution imagery. At this scale CNN methods trend to transfer well between applications [28,30,55].
However, how it translates to coarser scale remote sensing data is not as widely studied. Here, we found
the interaction of input image and object size to be important in addition to CNN configuration. CNN
depth was also related to these scale factors, with larger input images preforming better with deeper
networks. However, the smaller input images produced the best results for most classes. Fens were an
exception as they showed improvement with the larger input images suggesting a greater dependence
on spatial properties. This size/scale dependence prompted the MSRE configuration which worked
well for this data. It is a simple approach that can be improved on in terms of performance and
efficiency. Furthermore, research is required to optimize CNN configurations, training strategies,
sampling, and loss functions. Each of these has numerous options and interdependencies that can
significantly affect results and computational complexity. Thus, this research serves as an initial
exploration into the potential of deep learning for wetland mapping with Landsat. Additional studies
are expected to refine this knowledge and the performance across varying ecosystems.

5. Conclusions

In this research we examined the potential to improve Landsat wetland classification with
deep-learning CNNs evaluated using two training/test data sources. Results show consistent
improvement with CNNs for both sources, but was dependent on object size/scale. To this end
we developed a simple multi-size/scale CNN ensemble. Assessment for spatial extension, where the
CNN was trained from one region of the study area and applied in another, showed an overall accuracy
for the CWCS classes of 62–68% and was an improvement over a spatial random forest implementation.
Training using photo-plot samples across the entire region achieved an accuracy of 69% and all class
accuracies were improved compared to the spatial extension approach. Deep learning provides
a powerful framework to improve classification from remote sensing data, but further research is
needed to improve accuracy for detailed wetland mapping with Landsat. The capacity to monitor
using Landsat is desirable to improve understanding of historical wetland change and conversions.
Currently, this and other studies show that for water/wetland/upland good accuracies (85–90%) can
be achieved and may be sufficient to explore some aspects of historical wetland change.
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