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Abstract: Satellite microwave radiometer data is affected by many degradation factors during the
imaging process, such as the sampling interval, antenna pattern and scan mode, etc., leading to
spatial resolution reduction. In this paper, a deep residual convolutional neural network (CNN) is
proposed to solve these degradation problems by learning the end-to-end mapping between low-and
high-resolution images. Unlike traditional methods that handle each degradation factor separately,
our network jointly learns both the sampling interval limitation and the comprehensive degeneration
factors, including the antenna pattern, receiver sensitivity and scan mode, during the training process.
Moreover, due to the powerful mapping capability of the deep residual CNN, our method achieves
better resolution enhancement results both quantitatively and qualitatively than the methods in
literature. The microwave radiation imager (MWRI) data from the Fengyun-3C (FY-3C) satellite has
been used to demonstrate the validity and the effectiveness of the method.

Keywords: microwave radiometer; convolutional neural network (CNN); spatial resolution
enhancement; Fengyun-3C (FY-3C); microwave radiation imager (MWRI)

1. Introduction

The microwave remote sensing on satellites with the passive radiometers has the advantage over
optical and infrared sensing that it can capture images both day and night and even through clouds [1,2].
Unique information, including the total water vapor content, the snow depth and the ozone profile,
can also be provided in the microwave frequency band [3–6]. Due to the fact of the limited sampling
interval and a series of degeneration factors, such as the antenna pattern, the receiver sensitivity and
the sensors’ scanning mode, the data obtained by satellite microwave radiometers has relatively poor
spatial resolution [7–9]. Thus, the requirement of some small-scale distribution parameters, such as the
earth surface soil moisture, is hampered by the low spatial resolution of the data [10]. Furthermore,
other geophysical parameters like cloud liquid water, total precipitation water and snow depth require
the combination of the observed data from different frequency bands and different polarizations [5,6],
hence it would be preferable to improve the resolution of data at low frequencies (low spatial resolution)
to match up with the data at high frequencies (high spatial resolution). Therefore, the spatial resolution
of satellite microwave radiometer data should be improved, especially for the data at low frequencies.
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The satellite microwave radiometer data is degenerated by many factors, including the antenna
pattern, the receiver sensitivity and the scan mode. Due to the physical limitations on the size of
satellite antenna, image data is smoothed by the wide beam-width antenna pattern, leading to relatively
poor spatial resolution. Additionally, the image noise is affected by the receiver sensitivity of the
radiometer [2]. Moreover, the relative geometry of the data changes over the scan because of the conical
scanning mode of the radiometer [9], which makes the resolution spatial variable. Many algorithms
have been proposed to solve the degeneration problem, such as the reconstruction method in Banach
space [8], the Wiener filtering method in the frequency domain [9], the Backus-Gilbert (BG) inversion
method [11] and the deconvolution technique using a convolutional neural network(CNN) [12].
The reconstruction method in Banach space enhances the spatial resolution by generalizing the
gradient method, which leads to the reduction of over-smoothing effects and oscillation due to
Gibbs phenomenon. The Wiener filtering method restores the image with space variant filters in the
frequency domain in order to reduce the degeneration caused by the antenna pattern and the relative
geometry change during the scan. The BG inversion method utilizes redundant overlapping footprint
information and the prior knowledge of the antenna pattern to reduce the instantaneous field of view
(IFOV) of the antenna and to enhance spatial resolution of the data. The deconvolution technique
with CNN is a learning-based method, which directly learns an end-to-end mapping between low-and
high- resolution images. During the multiple feature space transformations, the CNN simultaneously
considers many kinds of degeneration factors and can achieve better reconstruction results.

Furthermore, the satellite microwave radiometer data is affected by limited sampling interval.
Based on the Nyquist theory, the spectrum of the measured image would be aliased if the image
contains a component whose spatial frequency is higher than half of the sampling frequency [9].
Therefore, high-resolution image with more pixels should be recovered from the low-resolution image
with less pixels, which, in computer vision, is called the single image super-resolution (SR) problem.
To solve the problem above, original approaches use interpolation methods based on the sampling
theories [13,14], however these methods are limited by recovering detailed textures. Subsequent work
adopts image statistics [15] to the problem to reconstruct better high-resolution images. Advanced
works aim to directly learn the mapping functions between lots of low- and high-resolution example
pairs. And based on the powerful capability of the CNNs, dramatic improvements have been made in
recent years [16–19].

To cope with the complicated degeneration factors and the sampling interval limitation, a deep
residual CNN is introduced to enhance the spatial resolution of satellite microwave radiometer images
in low frequency. Unlike traditional methods that handle each degradation factor separately, during
the end-to-end learning-based process, the deep residual CNN simultaneously considers the sampling
limitation and many kinds of degeneration factors. Then, reconstructed images with high spatial
resolution can be obtained by the trained network. The contributions of this paper are as follows: (i) In
order to enhance the spatial resolution of the satellite microwave radiometer images, a deep residual
CNN was proposed to cope with both the limited sampling interval problem and the comprehensive
degeneration factors. (ii) The deep residual CNN was found to achieve better resolution enhancement
results than the methods in literature both quantitatively and qualitatively. The microwave radiation
imager (MWRI) data from the Fengyun-3C (FY-3C) satellite was used to demonstrate the validity and
the effectiveness of our method.

2. Related Work

2.1. MWRI Instrument

The FY-3C is one of the FY-3 series of satellites, which are the second generation of Chinese
polar-orbiting environmental and meteorological satellites [20]. And the on-board MWRI is a
ten-channel, five-frequency (10.65, 18.7, 23.8, 36.5 and 89.0 GHz), total power microwave radiometer
with horizontal and vertical polarizations, which can measure microwave emissions from lands, ocean
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surfaces and various forms of water in atmosphere [21,22]. The emission energy is collected by a single
parabolic reflector of 0.9 m and then reflected to different horns which work at different frequencies [23].
Thus, due to different electric size of the antenna, the spatial resolution of different channels varies
from 51 km × 85 km (at 10.65 GHz) to 9 km × 15 km (at 89.0 GHz) along and cross the satellite orbit
track direction. The specific performance of the MWRI is shown in Table 1. And NE∆T is the receiver
sensitivity (noise equivalent differential temperature) of each channel [22].

Table 1. Performance of the FY-3C MWRI.

Frequency
(GHz) Polarization Ground

Resolution (km)
Sensitivity
NE∆T (K)

Sampling
Interval (ms)

10.65 V/H 51 × 85 0.5 2.08
18.7 V/H 30 × 50 0.5 2.08
23.8 V/H 27 × 45 0.5 2.08
36.5 V/H 18 × 30 0.5 2.08
89.0 V/H 9 × 15 0.8 2.08

The scan geometry of the on-board MWRI is shown in Figure 1. The positive Xins-axis shows the
satellite flight direction, and the positive Zins-axis is pointing downward to the satellite nadir direction.
The satellite orbit height is 836 km and the main reflector of MWRI scans the earth conically with a
spinning rate of 1.8 s/rotation. The forward cone scanning method is adopted to cover a swath (width)
of 1400 km, completing a measurement scene within ±52◦ around the nadir direction with a viewing
angle of θ = 45◦. The sampling interval for the earth view is 2.08 ms, so in each scanning cycle, a total
of 254 observation samples are collected [23,24].
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Figure 1. The scan geometry of the FY-3C MWRI. 

The Level-1 (L1) data acquired by the MWRI on the FY-3C satellite are used for the validation 
in this paper. Each image file of 254*1725 pixels can be obtained by 1725 conical scans. An example 
of the real scanning positions in the earth spherical coordinate system [24] is shown in Figure 2. The 
blue dots show the scanning positions of a descending mode scan on 14th March 2017 and the red 
dots show the following ascending mode scan. 

Figure 1. The scan geometry of the FY-3C MWRI.

The Level-1 (L1) data acquired by the MWRI on the FY-3C satellite are used for the validation in
this paper. Each image file of 254∗1725 pixels can be obtained by 1725 conical scans. An example of
the real scanning positions in the earth spherical coordinate system [24] is shown in Figure 2. The blue
dots show the scanning positions of a descending mode scan on 14th March 2017 and the red dots
show the following ascending mode scan.
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Figure 2. The actual scan positions of the FY-3C MWRI in the earth spherical coordinate system. (a) An
example of the scanning positions of a descending mode scan (blue) and the following ascending mode
scan (red); (b) Enlarged view of the black box in (a).

2.2. Antenna Temperature Image

The antenna collects temperature information by receiving the electromagnetic wave radiated
from the earth, and it can be represented by:

tA(r) =

s

4π
tB(θ,ϕ)F(θ,ϕ)dΩ
s

4π
F(θ,ϕ)dΩ

, (1)

where tA(r) is the temperature information collected by the antenna and r shows the direction of the
antenna in the antenna viewing axis coordinate system (AVA) [24]. tB(θ,ϕ) is the ideal brightness
temperature information, F(θ,ϕ) is the antenna pattern and (θ, ϕ) represents the spherical coordinates
in AVA. It is worth noting that Equation (1) is only a scalar version of the antenna temperature. Some
minor factors, such as antenna cross polarization and polarization mismatch between antenna pattern
and earth’s surface [25], are excluded for the simplicity of the problem.

However, most of the image processing operations are done in the image domain, where the
data pixels lie in the rectangular grids regardless of the radiometers’ scan angle and the satellite
orbit. Therefore, the coordinates transformation of Equation (1) from AVA to image domain should be
incorporated [24]. The antenna pattern F(θ, ϕ) should be transformed to the point-spread-function
(PSF) h(X′,Y′) [9], which is the normalized antenna gain distribution in image domain. And X′, Y′

are the row and column indexes in the image domain. Meanwhile, considering the limited sampling
interval, the decimation process is used to reduce the pixels of the data. Therefore, the temperature
image collected by the antenna in image domain can be represented by:

tA(X, Y) =
[
tB(X′, Y′)⊗ h(X′, Y′)

]
decimation + n(X, Y), (2)

where tA(X, Y) is the antenna temperature image obtained by the antenna, tB(X′, Y′) is the ideal
brightness temperature image represented by the row and column indexes in the image domain,
and n(X, Y) corresponds to the receiver sensitivity NE∆T. [ ]decimation denotes for the decimation
process, where the data samples are extracted to match up with the actual sampling interval of the
satellite radiometer. Thus, X, Y are the row and column indexes in the same grid as the obtained image
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data and the range of X and Y in tA(X, Y) is determined by the sampling numbers in the cross track
(254 for FY-3C MWRI) and the number of rotations in the imaging process (1725 for FY-3C MWRI).

However, in practice, the radiometer (antenna plus scanning system) works as an integral
transducer that operates on the tB distribution to get the antenna temperature image tA. Although
the shape of the antenna footprints on earth keeps the same, due to the conical scanning mode and
the curvature of the earth, the orientations of the footprints’ major axes change during the scan,
leading to the change of angles between the along track direction and the footprints’ major axes,
as shown in Figure 1. Thus, after the coordinate transformation to the image domain, the PSF changes
correspondingly with the scan position. Therefore, with the additional consideration of the scan mode,
the temperature image collected by the antenna is given by:

tA(X, Y) =
[
tB(X′, Y′)⊗ ht(X, Y, h(X′, Y′))

]
decimation + n(X, Y), (3)

where ht(X, Y, h(X′, Y′)) is the space variable PSF considering the relative geometry of the scan.
During the FY-3C MWRI scanning process, the relative geometry changes of the data in the along

track direction (data in the same row) almost stay the same. Thus, only the column data in the image
domain is considered under the influence of relative geometry. With this simplification, Equation (3) is
rewritten by:

tA(X, Y) =

[
254

∑
i=1

wi(X)·
[
tB(X′, Y′)⊗ ht(i, ∗, h(X′, Y′))

]]
decimation

+ n(X, Y), (4)

wi(X) = δiX =

{
0 i 6= X

1 i = X
, (5)

where wi(X) is the weighing function. When using 254 PSFs, the weighing function is the
Kronecker function.

In summary, with the considerations of the sampling interval and the degeneration factors, including
the antenna pattern, the receiver sensitivity and the scanning mode, the degradation procedure from
ideal brightness temperature image to antenna temperature image is discussed. During the degradation
procedure in Equation (4), the convolutions with different PSFs due to the limitation of antenna size
drastically smooth the image, which lowers the spatial resolution of the antenna temperature image to a
great extent. Moreover, the spatial resolution differs in different parts of the image because the shape of
the PSF changes during the conical scan. Thus, different parts of the image are smoothed by different
PSFs, which leads to resolution spatial variable (will be discussed in detail in Section 3.2). Furthermore,
the sampling interval limits the total number of pixels in the observation region and the spectrum of the
measured image would be aliased if the image has the component whose spatial frequency is higher than
half of the sampling frequency. Thus, the spatial resolution is also decreased by the limited sampling
interval. Therefore, methods should be taken to cope with these degradation factors so that the spatial
resolution of the antenna temperature images can be improved.

3. Method

CNNs are feed-forward artificial neural networks with strong feature extraction and mapping
ability. In recent years, several different CNNs have been proposed to solve the resolution enhancement
problem (SR problem) for the optical image due to the limited sampling interval [16–19], and reach
the state-of-art quality. And the CNN has also been used by us to solve the resolution enhancement
problem (deconvolution problem) due to some degeneration factors such as the antenna pattern and
the receiver sensitivity [12]. The deconvolution result is better than the traditional Wiener filter method
both quantitatively and qualitatively.

In this paper, we introduced a deep residual CNN to solve the spatial resolution enhancement
problem for the MWRI images on FY-3C satellite. Both the limited sampling interval and the
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comprehensive degeneration factors, such as the antenna pattern, the receiver sensitivity and the
scanning mode, were learned jointly during the training process of the network.

3.1. Network Architecture

Recent evidence reveals that the depth (number of the layers) of the network is of crucial
importance [26]. Deep CNNs naturally integrate more low/mid/high level features and classifiers in
an end-to-end multilayer fashion, thus they have more powerful feature extraction and mapping ability.
However, normal deep plain CNNs usually face the obstacles of degradation problem and gradient
vanishing/exploding problem. Thus, the residual learning technique has been introduced in the deep
CNNs to solve these problems [27]. Instead of mapping H(X) (X is the input) by a few stacked layers,
the residual learning explicitly lets these stacked layers map a residual function F(X) = H(X)− X,
and outputs function F(X)+ X with a shortcut connection from the input. Although both forms should
be able to asymptotically map the same function, the ease of learning might be different. With the help
of residual learning, deep CNNs are easier to be optimized and can gain better results [19,27,28].

Therefore, we introduce a deep residual CNN to enhance the spatial resolution of FY-3C MWRI
images. A similar network architecture, which was proposed in [19], was used to solve the computer
vision SR problem of the optical images. With the consideration of its powerful feature extraction and
mapping ability, we introduce the network here to cope with some more complicated and intricate
degradation factors in the MWRI imaging process, including the sampling interval limitation, antenna
pattern, receiver sensitivity and scan mode. The architecture of the network is shown in Figure 3a.
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(b) 3-layer CNN.

The convolutional layer1 (Conv1) firstly implements the feature extraction and representation
from the input sub images (m, m). This operation extracts overlapping patches (patch size = (f, f ),
stride = 1) from the input antenna temperature sub images and represent each patch as a
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high-dimension vector (1, 1, n) [16,17]. All these vectors constitute a set of feature maps (m, m, n).
Formally, the convolutional layer1 is expressed as an operation F1:

F1(X) = W1 ⊗ X + B1, (6)

where X are the sub images (m, m), ⊗ denotes the convolution operation, W1(f, f, n) and B1 (1, 1, n)
represent the filters (convolution kernels or weights) and biases respectively and F1(X) (m, m, n) is the
output of convolutional layer1 representing a set of primary feature maps.

After the convolutional layer1, we apply the Rectified Linear Unit (ReLU) [29] to the response,
which makes the convergence much faster while still presenting good quality [30]. Formally, the ReLU
operation is expressed as:

ReLU(X) = max(0, X), (7)

where X represents the input feature maps of the ReLU.
Then the ResBlocks implement the non-linear mapping and residual learning. The mapping

operation nonlinearly maps and further extracts a set of feature maps (m, m, n) to another set of
feature maps (m, m, n). And residual learning adds input feature maps on the feature maps extracted
by non-linear mapping, which makes the ResBlock easier to optimize and solves the problem of
vanishing/exploding gradients. Due to the fact that the edge changes of the MWRI images are much
less complex than the natural optical images, we chose to cut down the layers of the network to 16 in
order to reduce the computational cost. Formally, the ResBlock i (i = 1, 2, . . . , 16) is expressed as the
operation Ri:

Ri(Xi) = α
[
W ′i2 ⊗

(
max

(
W ′i1 ⊗ Xi + B′i1, 0

))
+ B′i2

]
+ Xi, (8)

where Xi represents the input feature maps (m, m, n) of the ResBlock i, W ′1i(n, f, f, n) and B′1i(1, 1, n)
represent the filters and biases respectively in the convolutional layer1’ of ResBlock i, W ′2i(n, f, f, n) and
B′2i(1, 1, n) represent the filters and biases respectively in the convolutional layer2’. α is the residual
scaling factor which is used to stabilize the training process and Ri(Xi) represents the final output
feature maps (m, m, n) of the ResBlock i.

The final Upsample block implements the non-linear mapping and shuffle procedure.
The non-linear mapping operation nonlinearly maps and eventually extracts a set of feature maps
(m, m, n) to another set of feature maps (m, m, c2). It accommodates the total number of pixels when
the up-sampling factor is c. Then the shuffle procedure is implemented by the subpixel phase shifting
technique [31] in order to rearrange the final feature maps (m, m, c2) to the output high resolution
image (c × m, c × m).

It is worth mentioning here that our network enhances the spatial resolution of the input antenna
temperature image in two aspects. On the one hand, the pixels of the output image are c2 times of the
input image, which means that the equivalent sampling interval of the output image is 1/c of the input
image. Thus, the aliased spectrum can be effectively eliminated and the high-frequency components of
the image can be recovered. On the other hand, some degeneration factors such as the antenna pattern,
receiver sensitivity and scanning mode can also be learned jointly through the end-to-end training
process. And the smoothing effect, the noise and the resolution differences can therefore be reduced.

3.2. Dataset

The learning-based methods are often challenged by the difficulties of effectively and compactly
creating the dataset. However, utilizing the characteristics of MWRI that multiple frequency band
radiometers scan the region in the exactly same way and at the same time, a flexible dataset creation
method is proposed [12].

The spatial resolution of the antenna temperature image varies with the frequency, the image in
89 GHz has the highest resolution due to its narrowest beam width. Thus, in our study for degradation
factors reduction, the 89 GHz antenna temperature images were used as the 18.7 GHz simulated
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brightness temperature images IHR. And based on the MWRI imaging process in Equation (4),
the 18.7 GHz simulated antenna temperature images ILR were obtained from the IHR.

The two-dimensional Gaussian function with the equal full width half maximum (FWHM) with
the real 18.7 GHz antenna pattern in AVA was used as the equivalent antenna pattern [2]. And this
antenna pattern should be transformed to 254 PSFs ht(i, ∗, h(X′, Y′)) according to the prior knowledge
of the scan geometry. But in order to reduce the calculation time, it is desirable to carry out less
convolution operations in Equation (4). Therefore, in this paper, 7 PSFs (located at the 37, 67, 97, 127,
157, 187 and 217 pixels along the across track direction) were finally used for the tradeoff between
speed and accuracy. The 2nd, 4th, and 6th PSFs in image domain are shown in Figure 4.
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Figure 4. The PSFs in the image domain. (a) The 2nd PSF (i = 67); (b) The 4th PSF (i = 127); (c) The 6th
PSF (i = 187).

Then the weighing functions should be changed accordingly with the PSFs’ number and locations,
as shown in Figure 5. The 7 lines with different colors in Figure 5 represent 7 weighing functions wp(X)

and the locations of the peak of each line are shown in the label. The overlapping of neighboring
weighing functions serves to reduce the boundary artifacts. Additionally, the triangle shape of the
weighing function is designed to activate the specific PSFs in different local regions and suppress the
other PSFs.
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And the image noise n(X, Y) was simulated by randomly generating Gaussian white noise
with the standard derivation of NE∆T. The NE∆T is 0.5 K for the 18.7 GHz channel, as shown in
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Table 1. Finally, a decimation process was used to simulate the limited sampling interval in practical
applications. Thus, the dataset creating process is given by:

ILR(X, Y) =

{
7

∑
p=1

wp(X)·
[

IHR(X′, Y′)⊗ ht(p, ∗, h(X′, Y′))
]}

decimation

+ n(X, Y) (9)

Then, the mapping functions between ILR and IHR image pairs would be learned by the CNN
during the training process.

3.3. Spatial Resolution Enhancement with Deep Residual CNN

The spatial resolution enhancement task for the satellite microwave radiometer data was
implemented by a supervised deep residual CNN. The flowchart of the task is shown in Figure 6.

As can be seen from the flowchart, the process consisted of three major steps: Dataset creation,
training and testing, and spatial resolution enhancement.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 21 
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Dataset creation: By utilizing the feature that the multi-frequency bands of the MWRI scan the
region in the exactly same way, the 89 GHz antenna temperature images, which have the highest
spatial resolution, were used as the simulated brightness temperature images IHR. And with the full
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consideration of the degeneration factors and the sampling interval (we doubled the sampling interval
in our experiment), the simulated antenna temperature images ILR were produced by Equation (9) to
simulate the degradation process for the 18.7 GHz data. Then, the mapping functions between IHR

and ILR image pairs would be learned during the training process.

IHR = F(ILR). (10)

Training and testing: The training and testing set were made from the IHR and ILR image pairs.
Then the datasets were used to train and test for the deep residual CNN.

Spatial resolution enhancement: Finally, the trained network was used to enhance the spatial
resolution of the real 18.7 GHz antenna temperature images.

IHR
18.7G = F(I18.7G). (11)

3.3.1. Training Details

For training and testing, 80 pairs of ILR and IHR images were made from the 89 GHz antenna
temperature images with horizontal polarization. These 89 GHz antenna temperature images were
acquired by the MWRI on the FY-3C satellite from 28 June 2018 to 5 July 2018 containing sufficient
features of earth’s lands, oceans and other typical geographical objects. The network was trained for
the up-sampling factor c = 2, so each IHR image contained 254 × 1724 pixels and each ILR contained
127 × 862 pixels. And with minor modifications of the Upsample layer and the dataset, the network
can also cope with other up-sampling factors. 10 ILR and IHR image pairs were randomly selected as
the testing set and the remaining 70 image pairs served as the training set. Extracted from the training
set, 480 pairs of sub-images with 254 × 254 and 127 × 127 (m = 127) pixels were used as the output
and input of the network and the batch size was 5. It worth mentioning that although we used a fixed
sub-image size in the training process, the network can be applied to an arbitrary image size during
the testing and spatial resolution enhancement process.

The filter size f was set to 3 for all the filters in the convolutional layers, ResBlocks and Upsample
layer. The same padding technique was used for all the convolution operations. The feature size n
was set to 256, and the shortcuts for residual learning were parameter free (equivalent pass) because
of the constant dimension (feature size) through the network. The number of the ResBlocks was set
to 16 to exploit the mapping ability of the deep CNN. And the residual scaling factor α was set to
0.1. The network was trained with the ADAM optimizer by setting learning rate = 10−4, beta1 = 0.9,
beta2 = 0.999 and epsilon = 10−8.

Instead of using the common L2 loss to maximize the PSNR [32], our network used the L1 loss to
get a better general result considering the PSNR, SSIM and the IFOV’. Furthermore, the L1 loss can
provide faster convergence.

The network was implemented by the TensorFlow framework and the training process took
roughly 8 h and 19 min (7000 backpropagations) using a NVIDIA GeForce GTX 1080Ti GPU.

3.3.2. Evaluation Metrics

Several metrics were introduced to evaluate the image quality from different perspectives.
The peak signal-to-noise ratio (PSNR) is the mean-squared error measurement, which is defined
as the ratio of peak signal power to the average noise power [33]. For image (M, N):

PSNR(dB) = 10 log10

 D2MN

∑
X,Y

(
IHR(X, Y)− IHR

output(X, Y)
)2

, (12)
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where 0 ≤ X ≤M − 1 and 0 ≤ Y ≤ N − 1, IHR(X, Y) denotes pixel (X, Y) of the simulated brightness
temperature image (reference image), IHR

output(X, Y) denotes pixel (X, Y) of the network output image
and D is the maximum peak-to-peak swing of the signal.

The structural similarity (SSIM) measures the similarity of structural information between two
images [34], which is defined as:

SSIM(IHR, IHR
output) =

(2µIHRµIHR
output

+ C1)(2σIHR IHR
output

+ C2)

(µ2
IHR + µ2

IHR
output

+ C1)(σ
2
IHR + σ2

IHR
output

+ C2)
, (13)

where µ is the mean, σ is the standard deviation of the image and σIHR IHR
output

is the covariance between

IHR and IHR
output. C1 and C2 are constants that are used to stabilize the formula. In this paper, we choose

C1 = (0.01D)2 and C2 = (0.03D)2. An SSIM closer to 1 indicates that the structure of the output image
is more similar to the reference.

For evaluating the performance in terms of spatial resolution, we used the equivalent
instantaneous field of view (IFOV’) index [2]:

IFOV′ = max
f whm

{
corr(IHR

output, IHR ⊗ PSFf whm)
}

, (14)

where IHR
equi = IHR ⊗ PSFf whm are obtained by convolutions between IHR and a group of rotationally

symmetric PSFs whose FWHM increase with the step of 0.5 km. The specific FWHM, whose
corresponding IHR

equi has the highest correlation coefficient with the output of the network IHR
output,

is the IFOV’. Thus, a smaller IFOV’ represents an image with higher spatial resolution.

4. Results

In this section, the learning-based method 3-layer plain CNN [12,16,17], the traditional method
bicubic interpolation and the super-resolution method (bicubic interpolation plus Wiener filtering) [2]
were displayed as the comparison of our deep residual CNN method. Apart from the structure,
as shown in Figure 3b, and the filter sizes (same as [16,17]) of the network, the other settings of the
3-layer CNN were consistent with our network in order to implement a fair comparison.

4.1. Quantitative and Qualitative Evaluation

Ten different scenes (1–5 scenes within the training set and 6–10 outside the training and testing
set) with 238 × 300 pixels (16 pixels on the edge of the scene were cropped due to the no padding
mode in 3-layer CNN [12,16,17]) were firstly used for the evaluation. The evaluation indexes are
listed in Table 2. And the deep residual CNN yielded the highest scores in all the evaluation indexes
(the highest scores are labeled as the bold font in the table). The average PSNR of our network achieved
an increase of 3.68 dB compared with bicubic interpolation, 3.07 dB compared with super-resolution
method and 1.49 dB compared with 3-layer CNN. The average SSIM improved 0.034 than bicubic
interpolation, 0.029 than super-resolution method and 0.008 than 3-layer CNN. Our method also
achieved the smallest IFOV’. The average IFOV’ of our network was reduced to 18 km, far more less
than the other methods: 37.5 km for the bicubic interpolation, 31 km for the super-resolution method
and 21.55 km for the 3-layer CNN.
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Table 2. The evaluation indexes of the 10 scenes.

Test Scenes Evaluation
Index

Bicubic
Interpolation

Super-Resolution
Method 3-Layer CNN Deep Residual

CNN

Scene 1
PSNR (dB) 36.753 37.240 38.611 40.556

SSIM 0.930 0.933 0.952 0.961
IFOV’ (km) 39 33 23.5 18.5

Scene 2
PSNR (dB) 36.281 37.436 38.805 41.288

SSIM 0.926 0.935 0.955 0.966
IFOV’ (km) 36.5 29 20.5 16.5

Scene 3
PSNR (dB) 37.572 37.845 39.690 40.680

SSIM 0.931 0.933 0.954 0.959
IFOV’ (km) 37.5 32.5 22 19

Scene 4
PSNR (dB) 36.242 36.690 38.192 40.750

SSIM 0.942 0.943 0.960 0.971
IFOV’ (km) 39 32.5 23.5 16.5

Scene 5
PSNR (dB) 35.567 36.586 37.676 39.974

SSIM 0.906 0.917 0.942 0.952
IFOV’ (km) 39 30.5 22 18

Scene 6
PSNR (dB) 38.089 38.587 40.513 40.948

SSIM 0.940 0.943 0.962 0.964
IFOV’ (km) 37.5 30.5 20.5 18.5

Scene 7
PSNR (dB) 35.035 35.765 37.356 38.712

SSIM 0.914 0.919 0.944 0.953
IFOV’ (km) 35.5 29 20.5 17

Scene 8
PSNR (dB) 35.816 36.456 37.792 38.658

SSIM 0.905 0.911 0.937 0.943
IFOV’ (km) 35.5 30 21 18.5

Scene 9
PSNR (dB) 39.076 39.492 41.341 41.850

SSIM 0.961 0.962 0.973 0.974
IFOV’ (km) 38 31.5 21 19.5

Scene 10
PSNR (dB) 34.446 34.858 36.817 38.272

SSIM 0.887 0.890 0.927 0.938
IFOV’ (km) 37.5 31.5 21 18

Average
PSNR (dB) 36.488 37.096 38.679 40.169

SSIM 0.924 0.929 0.950 0.958
IFOV’ (km) 37.5 31 21.55 18

Scene 2 (within the training set) shows the southeast coast of Russia around the Sea of Okhotsk,
as shown in Figure 7. Figure 7a shows the degraded image ILR. The degradation factors, including
the limited sampling interval, antenna pattern, radiometer sensitivity and scanning mode, blur the
simulated brightness temperature image, so that the edges of the coast and many other details become
unclear. Figure 7b shows the result of bicubic interpolation with the up-sample factor 2. Although the
size of the image is doubled by the interpolation, no extra information is added. The super-resolution
method uses the Wiener filter to deal with the degeneration factors of antenna pattern and scanning
mode after the interpolation. And it eliminates the smoothing effect to a certain extent, so that more
details can be obtained from the image, as shown in Figure 7c. The 3-layer CNN and the deep residual
CNN all learn the end-to-end mapping between ILR and IHR. Due to the more powerful feature
extraction and mapping ability, our network achieves a better result, as shown in Figure 7e, and its
output is more similar to the IHR image in Figure 7f. The result of 3-layer CNN is shown in Figure 7d.
For the sake of comparison and evaluation, the local areas of the Penzhina Bay in Russia (enclosed by
the small black squares before enlargement) are also shown in the bottom left of each image in Figure 7
after a 3 times enlargement (enclosed by the big black squares after enlargement). The same bicubic
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interpolation method was used for all the local areas enlargement. As can be seen from the enlarged
images, our method still has the best result.
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Scene 8 (outside the training and testing set) shows the area around the Gulf of Alaska in the
North Pacific Ocean, as shown in Figure 8. And the enlarged local spot shows the Kupreanof Island in
the state of Alaska. Scene 10 (outside the training and testing set) shows the north Ural Federal District
in Russia, as shown in Figure 9. The enlarged local spot shows the Gulf of Ob. The images produced
by our model also achieve the best visual effect.
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temperature image ILR; (b) The bicubic interpolation result; (c) The super resolution result; (d) The 3-layer
CNN result; (e) The deep residual CNN result; (f) The simulated brightness temperature image IHR.
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Figure 9. Experiment results of the scene 10 (outside training/testing set). (a) The simulated antenna
temperature image ILR; (b) The bicubic interpolation result; (c) The super resolution result; (d) The 3-layer
CNN result; (e) The deep residual CNN result; (f) The simulated brightness temperature image IHR.

The above results show the spatial resolution enhancement ability of the deep residual CNN in
the simulated ILR and IHR dataset. However, the validity of the model to the MWRI real data is still
unknown. Real 18.7 GHz data of FY-3C MWRI with horizontal polarization was used to demonstrate
the effectiveness of our network. In addition, since the 18.7 GHz ideal brightness temperature images
are unavailable, the real 36.5 GHz data of FY-3C MWRI with horizontal polarization, which has the
similar characteristics but with higher spatial resolution, were shown for comparison.

Figure 10 shows the results around the Lake Michigan in America. Figure 10a shows the
sub-sampled 18.9 GHz data. The data is sub-sampled with the factor 2, so the spatial resolution
is further decreased. Figure 10b shows the result by the bicubic interpolation method. Figure 10c
shows the result by the super-resolution method. Figures 10d and 10e show the result of 3-layer CNN
and our model. The 36.5 GHz data is shown in Figure 10f for comparison. And the enlarged local spot
shows the Green Bay. As can be seen in Figure 10, the bay is still blurred for these methods due to their
limited resolution enhancement abilities, but our model has clearly recovered the boundaries of the
Green Bay.

Figure 11 shows the area around the Mexico and the Pacific Ocean. And the enlarged local spot
shows a typical section around the Archangel Island and the Valley of the Cirios. As can be seen from
these enlarged images, the features of the island, which previously are only visible in the 36.5 GHz
data, can be resolved by our method. Figure 12 shows the Gulf of Alaska in the North Pacific Ocean
and it is also the same area as scene 8. The enlarged spot shows the Kupreanof Island in the state of
Alaska, the same local spot in Figure 8. Among these methods, our method also achieves the best
result. Therefore, these results have demonstrated the powerful spatial resolution enhancement ability
of our model in practical use.
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Figure 10. Tested results for the 18.7 GHz data. (a) The sub-sampled 18.7 GHz data I18.7G; (b) The
bicubic interpolation result; (c) The super resolution result; (d) The 3-layer CNN result; (e) The deep
residual CNN result; (f) The 36.5 GHz data.
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Figure 11. Tested results for the 18.7 GHz data. (a) The sub-sampled 18.7 GHz data I18.7G; (b) The
bicubic interpolation result; (c) The super resolution result; (d) The 3-layer CNN result; (e) The deep
residual CNN result; (f) The 36.5 GHz data.
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utilization of residual learning technique, our model is easier to converge (training loss ≈ 1.6@7000 
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Figure 12. Tested results for the 18.7 GHz data. (a) The sub-sampled 18.7 GHz data I18.7G; (b) The
bicubic interpolation result; (c) The super resolution result; (d) The 3-layer CNN result; (e) The deep
residual CNN result; (f) The 36.5 GHz data.

4.2. Running Time and Network Convergence

The running time of the bicubic interpolation is 0.002 s and the super-resolution method costs
3.677 s. After the training process, the 3-layer CNN produces a result in about 2.936 s and our model
produce a result in about 19.049 s. We profiled the running time of all the methods in the same
computer (Intel CPU I5 2.3 GHz). The interpolation method and the super-resolution method were
obtained from the MATLAB implementation, whereas 3-layer CNN and our model were in TensorFlow.
However, the speed gap is not only caused by the different MATLAB/TensorFlow implementations.
The super-resolution method costs most of the time in 7 deconvolution operations with different PSFs
when the scanning mode is considered. Whereas the 3-layer CNN and deep residual CNN produce the
result in a completely feed-forward mode and the running time is related to the number of parameters
in the networks. The multi-layers and the large feature size of our network increase the parameters to
a certain extent, but the running time is still sufficient in the practical use. The time, that is needed for
the FY-3C MWRI to scan the same scene (254× 300 pixels), is about 27 times longer than the processing
time of our method.

The training loss curves and the testing PSNR evaluation curves during the training process
of our network and 3-layer CNN are shown in Figures 13 and 14. Our network was trained for
7000 backpropagations and the 3-layer CNN was trained for 50,000 backpropagations. Due to the
utilization of residual learning technique, our model is easier to converge (training loss ≈ 1.6@7000
backpropagations for our network and training loss ≈ 3.5@7000 backpropagations for 3-layer CNN).
And with the help of deep layers and large feature size, our model can achieve smaller loss (training
loss ≈ 1.9@50000 backpropagations for 3-layer CNN) and higher PSNR (testing PSNR ≈ 38.3 dB@7000
backpropagations for our network and testing PSNR ≈ 37.7 dB@50000 backpropagations for 3-layer
CNN) during the training and testing process.
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5. Discussion

In this paper, the network’s training and testing set were made from the 89 GHz antenna
temperature images, because the 18.7 GHz ideal brightness temperature images are hard to obtain.
With this approximation, we proposed a flexible approach to create the dataset, so a considerable
amount of training data could be easily and conveniently provided to optimize the network’s
parameters. Using this dataset, our network produced better results for the simulated and real
measured data than the traditional bicubic interpolation method, the super-resolution method [2] and
the learning-based 3-layer CNN method [12,16,17]. However, the 89 GHz channel is easily affected by
the atmospheric effects, which tends to smooth the satellite radiometer data. Thus, methods to remove
these atmospheric effects before making the dataset need to be explored in future work. To further
validate the effectiveness of the existing training set, 70 images from 25 December 2018 to 5 January
2019 (data in winter), 130 images from 19 June 2018 to 5 July 2018 (data in summer), and 200 images
of these images combined (data in summer and winter) were respectively used for the training set of
our network, the averaged test results of scene 6–10 (outside the training and testing set) are shown in
Table 3. These results suggest that the existing 70 image training set has covered sufficient temperature
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image features, and further increasing the number of images does not significantly contribute to the
training of the network.

Only three dominant degeneration factors, including the antenna pattern, scan mode and receiver
sensitivity, were considered in this paper. Other factors, for example the deformation of the antenna,
the side lobes of the antenna pattern and the atmospheric effects, etc., could also be added to the model
and learned by the network. Additionally, the up-sampling factor could also be changed in the model
according to the practical demands.

Furthermore, this method can be perfectly used for the Special Sensor Microwave/Imager (SSM/I)
data whose 85 GHz channel’s (highest frequency channel’s) sampling interval is half of the other low
frequency channels’ sampling interval [9]. Thus, the pixels of low frequency images could be increased
to match up with the pixels in high frequency images.

In future work, simulated brightness temperature scenarios with smaller sampling interval
than the MWRI data would be used to create the training/testing dataset to further strengthen the
method’s practical use. Furthermore, the enhanced data would be used in the inversion of geophysical
parameters to further validate the effectiveness of our method.

Table 3. The evaluation of deep residual CNN with different training set.

Evaluation Index
70 Images

(28 June 2018–5
July 2018)

70 Images
(25 December 2018–5

January 2019)

130 Images
(19 June 2018–5

July 2018)

200 Images
(19 June 2018–5 July
2018 + 25 December
2018–5 January 2019)

PSNR (dB) 39.69 39.51 39.85 39.80
SSIM 0.955 0.951 0.956 0.955

IFOV’ (km) 18.3 18.5 18.7 18.4

6. Conclusions

In this paper, to improve the spatial resolution of satellite microwave radiometer data, a deep
residual convolutional neural network (CNN) was proposed. The network solves the comprehensive
degradation problem, which is induced by sampling interval, antenna pattern, receiver sensitivity and
scan mode, by learning the end-to-end mapping between low- and high-resolution images. Different
from the traditional methods that separately handle every degradation factor, our learning-based
method corporately learns and optimizes all the factors during the training process. And by utilizing
the multi-band characteristics of the radiometer, a flexible and convenient dataset creation approach
was proposed to produce a considerable amount of training data for the network. Furthermore, due to
the powerful mapping capability, the deep residual CNN has been testified to achieve better results
than the methods in literature [2,12,16,17] both quantitatively and qualitatively.

Application of this method to FY-3C microwave radiation imager (MWRI) 18.7 GHz data showed
that the spatial resolution could be dramatically enhanced and features, which previously were
only visible in the higher resolution 36.5 GHz image, could be resolved from the enhanced image.
Furthermore, real time application of this method is feasible because the time needed for scan is a
factor of 27 longer than the calculation time.
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