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Abstract: Surface air temperature (Ta) is an important physical quantity, usually measured at ground
weather station networks. Measured Ta data is inadequate to characterize the complex spatial patterns
of Ta field due to low density and unevenness of the networks. Remote sensing can provide satellite
imagery with large scale spatial coverage and fine resolution. Estimating spatially continuous Ta by
integrating ground measurements and satellite data is an active research area. A variety of methods have
been proposed and applied in this area. However, the existing studies primarily focused on daily Ta
and failed to quantify uncertainties in model parameter and estimated results. In this paper, a Bayesian
Kriging regression (BKR) method is proposed to model and estimate monthly Ta using satellite-derived
land surface temperature (LST) as the only input. The BKR is a spatial statistical model with the capacity
to quantify uncertainties via Bayesian inference. The BKR method was applied to estimate monthly
maximum air temperature (Tmax) and minimum air temperature (Tmin) over the conterminous United
States in 2015. An exploratory analysis shows a strong relationship between LST and Ta at the monthly
scale, indicating LST has the great potential to estimate monthly Ta. 10-fold cross-validation approach
was adopted to compare the predictive performance of the BKR method with the linear regression
method over the whole region and the urban areas of the contiguous United States. For the whole region,
the results show that the BKR method achieves a competitively better performance with averaged RMSE
values 1.23 K for Tmax and 1.20 K for Tmin, which are also lower than previous studies on estimation of
monthly Ta. In the urban areas, the cross-validation demonstrates similar results with averaged RMSE
values 1.21 K for Tmax and 1.27 K for Tmin. Posterior samples for model parameters and estimated Ta
were obtained and used to analyze uncertainties in the model parameters and estimated Ta. The BKR
method provides a promising way to estimate Ta with competitively predictive performance and to
quantify model uncertainties at the same time.
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1. Introduction

Air temperature (Ta) is an important physical quantity in a variety of research fields such as
epidemiologic studies, climatology and urban environments. For example, epidemiological research
has well observed a positive association between high temperature and morbidity and mortality caused by
heat-related problems, such as respiratory and cardiovascular diseases [1,2]. Adverse effects of exposure
to ambient air temperature have become focused issues in public health research [3–5].

Ta is typically measured at a height of 2 m above the ground surface [6]. However, Ta observations from
ground monitoring networks are inadequate to characterize spatial patterns of Ta field due to sparseness
and unevenness of stations in the networks [7] and complicated interaction processes between the land
surface and the atmosphere [8–10]. One direct approach for constructing spatially continuous Ta field
is through interpolation techniques [11,12], which interpolate gridded values from site measurements
using neighborhood information. But the interpolated results often suffer from significant errors [6,7,10].
With the advancement of earth observation technologies, remote sensing provides a massive amount of
radiant information about physiochemical properties of the earth system and a variety of land surface and
atmosphere products have been derived from the remote sensing observations. Because satellite data has
large scale spatial coverage with fine spatial resolution, integrating ground measurements with satellite data
provides a promising way to model and estimate Ta field over large spatial areas. Ta estimation based on
satellite data has become an active research topic.

The basic principle of estimating a Ta field by utilizing remote sensing data is to build a model
to capture the relationship between ground measured Ta and remote sensing variables. Land surface
temperature (LST) is a satellite-derived variable, which has been widely used to estimate Ta since it
provides a good description of land surface thermal properties and can be used as a proxy for near surface
Ta [7,8]. Previous studies have demonstrated that Ta measured at stations has a good linear relationship
with LST values [6,7,13,14]. Additionally, some other auxiliary variables such as solar zenith angle,
normalized difference vegetation index (NDVI), elevation, latitudes, have also been incorporated into
models [13,15–17]. To model this relationship, many different methods have been proposed over the last
two decades. The existing methods can be generally divided into four categories: temperature–vegetation
index (TVX) method, energy balance models, machine learning algorithms and statistical approaches
based on regression models [10,18,19]. The TVX method is based on the negative correlation between
NDVI and air temperature assuming that Ta can be approximated by temperature of infinitely thick
vegetated canopy [8,20–22]. Energy balance models rely on the radiation balance between net incoming
radiation and surface heat fluxes [23]. For the machine learning approach, some conventional algorithms
e.g., support vector machine, random forest, have also been applied [19,24–27]. Statistical models are the
most widely used approach to estimating Ta due to its simplicity and interpretability. Many studies have
applied different types of statistical models including ordinary regression [7,16,28–30], step-wise linear
regression [31], mixed effects regression [32–34], geographically weighted regression [15,35,36], regression
Kriging [35,37–39], and the hierarchical Bayesian space-time model [40].

However, most studies were mainly focused on estimating daily Ta and few research has explored
and estimated Ta using LST data at the monthly temporal scale. In addition, almost all estimation methods
applied in previous studies did not consider uncertainties in both model parameters and estimated values.
Although the hierarchical Bayesian space-time model used in Lu et al. can provide a quantification of
uncertainties in the model parameters [40], this study did not explicitly analyze the uncertainties of the
results. Kriging regression is a geostatistical model which decompose a random field into a mean structure
and a residual Gaussian process [41,42]. Kriging techniques have demonstrated its good performance
in describing the spatial dependence structure of Ta field [37]. Many researchers have adopted the
Kriging methods to address a variety of problems due to its usefulness in characterizing the underlying
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spatial structure. For examples, Al–Mudhafar proposed a modified Kriging interpolation to create digital
terrain model [43]. Wojciech used the Kriging method to analyze the reservoir heterogeneity in a tidal
depositional environment [44]. Bayesian Kriging regression (BKR) extends the Kriging regression into a
Bayesian framework and has the ability to explicitly incorporate model uncertainties [45–47].

In this paper, we propose a BKR approach to estimate monthly maximum air temperature (Tmax)
and minimum air temperature (Tmin) using only LST data derived from a moderate resolution imaging
spectroradiometer (MODIS). Uncertainties in the model parameters and the estimated results were both
quantified and analyzed. Specifically, models were developed to estimate Tmax in each month of 2015
using the daytime LST variable as a covariate, which is referred to as daytime models or daytime cases.
Similarly, nighttime models were also developed to estimate Tmin in each month using the nighttime LST
variable. To illustrate the good performance of the BKR method, this study was conducted in a logical way.
First, an exploratory analysis was done to confirm a close correlation between Ta and LST at the monthly
time scale. Therefore, it is reasonable to estimate Ta using only LST data. Then, a 10-fold cross-validation
approach was adopted to compared predictive performance of the BRK method with the linear regression
method in both the daytime and nighttime cases. In addition, to justify the BKR performance over urban
areas, a subset of data samples for the urban regions was extracted from the complete data. Ten-fold
cross-validation was then performed on this subset to evaluate the predictive capability of the BKR on
the urban areas. Finally, BKR models (daytime and nighttime) were fitted to estimate monthly Tmax and
Tmin over the conterminous USA in 2019. The uncertainties in the model parameters and the estimated
results were both analyzed.

2. Study Area and Data

2.1. Study Area

Our study has been performed on the contiguous land area of USA located in North America between
Canada and Mexico, which is referred to as conterminous United States. The study area with longitudes
from 66◦59′ to 124◦43′ west and latitudes from 25◦33′ to 49◦22′ north (see Figure 1), consists of 48 states and
the District of Columbia, occupying an area of approximately 8 million km2. The conterminous United
States is characterized by complicated topographic features and climatic patterns. The altitude of the
region ranges from −74 to 3831 m, with an average about 744 m. The region is primarily dominated by
three mountain systems: the Appalachian Mountains in the eastern part stretching from Newfoundland in
Canada southwestward to Central Alabama in the United States, the Rocky Mountains lying far inland in
the western states, and the Pacific Mountain System running in the western coastal region from Southern
Alaska down to Central Mexico. As a result, the landform of the western region is mountainous with high
elevation and the Great Plains lies between the Rockies and the Appalachian range. Due to differences in
latitudes and terrain features, the USA has a variety of climate patterns. Generally, the western inland has a
cold semi-arid climate in regions with high latitudes and a hot desert climate in regions with low latitudes
such as southwestern USA. For the eastern part, the climate is humid continental at high latitudes and
humid temperate to subtropical at low latitudes. The oceanic climate prevails at the coastal regions of USA.
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Figure 1. The study area and the spatial distribution of ground stations, accessed from NOAA NCDC.

2.2. Ground Station Data

Monthly-averaged daily minimum and maximum temperature (Tmin and Tmax) data at 758 ground
monitoring sites in 2015 were used for this study. The ground sites data was collected from the monthly
dataset of the Global Historical Climatology Network (GHCN) data product provided by NOAA National
Climatic Data Center. This monthly dataset was computed from the GHCN-daily product [48], which
contains daily aggregated values for over 80,000 ground monitoring sites worldwide. The daily product
integrates surface observations from multiple sources and was processed in a consistent manner with
good quality control [49]. In this study, ground data was obtained by extracting ground stations in the
conterminous United States in 2015 from the monthly dataset. The records with null values in the extracted
data were discarded. Thus, a total of 758× 12 data records at 758 sites for 12 months in 2015 was used as
our final modeling data. The 758 ground sites used in our study is displayed in Figure 1. As can be seen
from the figure, the spatial locations of the ground sites were irregularly spaced across the entire study
region. The western region had a lower coverage density compared to the eastern region. The statistics of
the air temperatures were summarized in Table 1.

Table 1. Summaries of air temperature (units: K).

Min Max Range Mean Standard Deviation

Tmin 246.76 303.49 56.73 279.07 9.87
Tmax 260.83 316.93 56.10 291.42 10.40

2.3. Urban Areas Data

Urban areas are characterized by high population density and complex built environments.
The complex surfaces composed of artificial materials and human activities have caused many urban
environmental issue, especially the urban heat island effects [50]. As the air temperature is the key factor in
evaluating and analyzing the urban heat environment, it is important to justify the predictive performance
of the proposed method in the urban areas. In this study, functional urban areas were used to extract the
modeling samples for ground sites in the urban areas. The functional urban areas (FUA) data was accessed
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from the OECD website (http://www.oecd.org/). The FUA dataset was jointly created by the OECD and
the European Commission using population density and commuting travel flows data sources. A FUA
unit consists of an urbanized city region and of a surrounding commuting zone. Figure 2 (left) shows the
urban areas in the conterminous United States, which includes 211 area units. By overlaying the urban
areas with the ground sites, a subset of 229 sites was obtained.

0 750 1500 km
Urban

January 2015

250
260
270
280
290
300

LSTday (K)

Figure 2. (left) Urban areas in the conterminous United States, accessed from OECD. (right) The monthly
daytime land surface temperature (LSTday) in January 2015, accessed from LAADS data archive.

2.4. Land Surface Temperature

The MODIS LST monthly composite product with a 0.05 degree spatial resolution was used as the
predictor variables for Ta estimation in our models. The MODIS LST was retrieved from the thermal
observations of the MODIS sensor onboard both the Terra and the Aqua satellite by using a generalized
split-window algorithm [51]. The overpass times are about 10:30 and 22:30 for Terra, 13:30 and 1:30 for
Aqua at local time. The monthly data (MOD11C3) is a composite product based on averaging the daily
MODIS LST product [52] and was accessed from the LAADS DAAS website. It should be noted that the
daily MODIS LST data has missing values of different degrees mainly due to cloud contamination. The LST
values in some regions of the monthly data may not have been good representatives for the monthly scale if
the regions only had a few valid values in the month. The monthly LST data provides surface temperature
values for both the daytime and nighttime cases. Figure 2 (right) shows the daytime LST in January 2015,
which is colored in a linear scale. All collected data was preprocessed to generate a final formatted model
data. The LST data together with locations of ground stations was projected from the WGS-84 geographic
coordinate system to the planar cartesian coordinate system using the Lambert conformal conic projection.
The projected monthly LST datasets were resampled at a 5 km spatial resolution. Then, the corresponding
LST values at the ground sites were obtained by extracting the pixels of LST images where the sites fall in.
Finally, a formatted data frame with 758 rows and seven variables including station identifier codes (ID),
maximum air temperatures (Tmax), minimum air temperature (Tmin), daytime land surface temperature
(LSTday) and nighttime land surface temperature (LSTnight), was created for each month in 2015.

3. Methods

3.1. Classical Kriging

Kriging is a geostatistical prediction technique widely used to interpolate grid values from
observations measured at a set of sites. Kriging methods use random field (RF) to describe the underlying
structure of spatially continuously variables. Basically, the RF is decomposed as follows:

y(s) = µ(s) + r(s), (1)

http://www.oecd.org/


Remote Sens. 2019, 11, 767 6 of 19

where µ(s) is a mean structure to model a large scale spatial trend of the RF; r(s) is a stationary random
process with zero-mean and a known correlation function C(s1, s2), which provides a way to characterize
spatial dependence between pairs of locations (s1, s2). A variety of correlation functions are available.
One typical example of stationary correlation function is an exponential one defined as C(s1, s2; σ2, φ) =

σ2 exp(−φ‖s1 − s2‖) with the parameter σ2 representing spatial variance and φ controlling spatial decay
effects. ‖s1 − s2‖ is a euclidean distance between location s1 and s2.

The representation of a spatial field in Equation (1) can be used to explain complex spatial patterns of
variation in a spatial field. The mean structure µ(s) from y(s) will filter out a large scale heterogeneous
structure, while the stationary random process r(s) is used to capture a fine scale dependence structure.
However, in classical Kriging techniques, the parametric type and parameters σ2, φ of the correlation
function should be first estimated and computed from data. This estimated parameters are then plugged
into the Kriging equation system (see [42,53] for details) to get predicted values at unobserved locations.

3.2. Bayesian Kriging Regression

The Bayesian Kriging regression (BKR) is a statistical Kriging model with a Gaussian assumption
in the Bayesian framework. Since the Bayesian framework considers model parameters as random
variables, BKR has the ability to quantify uncertainties associated with the model parameters. Specifically,
the residual r(s) in Equation (1) is further decomposed as w(s) + ε(s), where w(s) is a Gaussian process
GP(0, C(s1, s2; σ2, φ)), ε(s) is a Gaussian white noise N(0, τ2). The mean structure µ(x) can be explained by
a set of covariates: µ(s) = xt(s)β, where x is a vector of covariates values at location s, β is the coefficients
for the covariates. Denote the model parameters as θ = {β, σ2, φ, τ2}. The meanings of parameters σ2, φ

are described in Section 3.1. The parameter τ2 is a microscale random component, which usually represents
measurement errors.

The BKR method to model and estimate Ta is specified for both the daytime and nighttime cases.
In the case of the daytime models, let Tmax be a continuous random field {y(s) : s ∈ D ⊂ R2} where
D is the USA region and y(s) denotes the monthly averaged Tmax value measured at a spatial location
s for a specific month. A total number of N = 758 monthly Tmax values from the 758 ground stations,
denoted as y = {y(s1), . . . , y(sN)}t, a N × 1 response matrix, can be viewed as a partial realization from
the RF. Xt = {x(s1), . . . , x(sN)}t is a N × 2 design matrix for the intercept and the covariate LSTday. Then,
the BKR model can be constructed as follows:

y = Xtβ + w + ε, (2)

w ∼ N(0, Σw), ε ∼ N(0, Σε) (3)

y ∼ N(Xtβ + w, Σw + Σε), (4)

where w is a N × 1 vector for spatial random effects, which follows a multivariate Gaussian distribution
with a covariance matrix Σw computed from the correlation function C(s1, s2; σ2, φ) = σ2 exp(−φ‖s1− s2‖);
ε is a N × 1 random error vector with a covariance matrix Σε = τ2 I, i.e., a diagonal matrix. The BKR
method considers all the model parameters θ = {β, σ2, φ, τ2} as random variables and assigns prior
distributions to the paramters. Let p(θ) be a prior distribution and p(θ|y, X) be the posterior distribution
of model paramters. Using the Bayes formula, the posterior distribution of θ can be computed by
Equation (5), which will be used to quantify uncertainties in model paramters. The predictive distribution
of Tmax at an unobserved location s0 can be derived as Equation (6), which gives a way to describe
uncentainties in estimated values.
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p(θ|y, X) ∝ p(θ)× N(w|0, Σw)× N(y|Xtβ + w, Σε) (5)

p(y0|y, X, x0) ∝
∫

p(y0|y, θ, x0)p(θ|y, X)dθ, (6)

where y0 denotes the predicted Tmax at a location s0 and x0 is the covariate LSTday value at the location s0.
To compute results from the BKR model described above, a Gibbs Sampler algorithm was adopted,

which is a widely-used type of Markov chain Monte Carlo (MCMC) methods. To be specific, an algorithm
of four chains each with 5000 samples was specified. Due to no information about the model parameters,
all the parameters θ were assigned non-informative or flat priors. Customarily, the coefficient vector
β follows a multivariate distribution with large variance and the spatial decay parameter φ follows a
uniform distribution. Based on our research data, the prior was specified as p(θ) = Unim(φ|0, 20) ×
IG(σ2|0, 1)× IG(τ2|0, 1)× N(β|0, Σβ). Samples of posterior and predictive distributions were computed
from Equations (5) and (6) respectively. For more technical details about the Gibbs Sampler algorithm, refer
to [47]. The R computing language and the spBayes package [54] were adopted to perform the BKR method.

3.3. Model Evaluation

To evaluate the model performance of the BKR method, linear regression method (LR) was compared
with the BKR in the daytime and nighttime cases. Ten-fold cross-validation was used as the evaluation
method and root mean square error (RMSE) was adopted as a quantitative evaluation indicator. RMSE is
defined as follows:

RMSE =

√√√√ 1
Ncv

Ncv

∑
i=1

(y(si)− ŷ(si)), (7)

where the Ncv is the number of samples, y(si) is an observed value, ŷ(si) is the predicted value.
In this study, cross-validation was carried out under the whole region scenario where all data samples

with 758 stations were used, and the urban areas scenario where a subset of 229 stations in the urban
region were selected. For the whole region scenario, the general procedure can be described as follows:
(1) a sample of 758 stations was randomly split into 10 subsamples with equal size; (2) one subsample was
used as a validation set and the remaining 9 subsamples were used for modeling; (3) the fitted model was
then applied to the validation set to compute a RMSE value; (4) the above process was repeated nine times
until each subsample was used exactly once as the validation set. The procedure was carried out in each
month of 2015 using both the LR method and BKR method.

4. Results and Discussion

4.1. Exploratory Data Analysis

A preliminary exploratory analysis was performed to explore the correlation between monthly Ta
measured at stations and satellite-derived LST of all 758 sites in the study area. Previous studies have
showed that daily Ta has a good agreement with daily LST. For example, Vogt et al. reported a high mean R2

(coefficient of determination) of 0.823 between daily Tmax and mean LST [7]. The study of Noi et al. showed
a R2 of 0.92 between daily Tmin and daily LSTnight from MODIS onboard Terra [17]. It was widely found
that correlation between LSTnight and Tmin was relatively higher than correlation between LSTday and
Tmax [19,21,34]. The purpose of this exploratory analysis is to confirm this agreement at the monthly level.
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Figure 3 shows scatter plots of Tmax against LSTday (the daytime case) and Tmin against LSTnight
(the nighttime case) for two selected months, January and May. The regression lines and its 95% confidence
interval represented by the gray strip around the lines are displayed for each plots. From the plots, it can
be seen that the correlation in the nighttime case is stronger than the daytime case. The computed sample
correlation coefficients (R2) for all 12 months are summarized in Table 2, which indicates that on average,
LST is highly correlated to observed Ta. In the nighttime case, the values of R2 for 12 months are all above
0.90 with an average of 0.94. In the daytime case, however, the relationship between Tmax and LSTday
is more variable for different months (see the Daytime row in Table 2). Months from April to September
have weak correlations with a minimum R2 value 0.59 in May in the daytime case. Although there is
a significant variation in the correlations in the daytime case, Tmax has good agreements with LSTday
in the spring (months 1–3) and the winter season (months 10–12) with an average R2 of 0.94. Therefore,
the night LST data can provide a better description of Ta than the daytime LST at the monthly temporal
scale. Similar results have also been found at the monthly scale [15,40]. It is reasonable that monthly Ta
can be estimated by a model using satellite-derived LST data as the only input.

Table 2. Values of R2 in daytime and nighttime cases for each month of 2015.

Month 1 2 3 4 5 6 7 8 9 10 11 12

Daytime 0.95 0.96 0.92 0.73 0.59 0.76 0.66 0.79 0.76 0.91 0.91 0.96
Nighttime 0.95 0.96 0.96 0.96 0.92 0.92 0.94 0.93 0.94 0.94 0.95 0.95
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Figure 3. Scatter plots between surface air temperature (Ta) and land surface temperature (LST) for two
selected months: (top row) plots of maximum temperature (Tmax) against LSTday. (bottom row) Plots of
minimum temperature (Tmin) against LSTnight.
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Linear regression (LR) is the most popular method in estimating Ta due to its simplicity and high
explanatory power. The study by Vogt et al. is the first to apply the LR method to estimate daily Tmax
using only LST data as the covariate [7]. Many studies have used the LR approach to relate Ta with LST
and other covariates such as NDVI, solar zenith angel, elevation and latitudes. To assess and analyze
model performance of LR in this study dataset, LR models using the LST data as the covariate were fitted
in both the daytime and the nighttime cases.

The daytime models used LSTday to estimate Tmax in each month. The nighttime models used
LSTnight to estimate Tmin in each month. The residuals from the models in January and May were
mapped in Figure 4. It can be seen from Figure 4 that the model residuals have clear spatial patterns and
different spatial dependence structures. For example, the daytime model and the nighttime model in
January tend to overestimate Tmax in the eastern and western areas and underestimate Tmax in central
plains. For May, the daytime model overestimated Tmax in southeastern part and the nighttime model
generally led to an overestimation over the whole study region. However, the residuals represent a fine
scale structure of Ta field and the LR method has failed to capture this fine structure. Therefore, a more
reliable estimation will be obtained when considering and explicitly modeling the fine scale structure.
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Figure 4. Spatial distributions of residuals in the linear regression (LR) models (top left: the LR model in
the daytime case in January).

4.2. Cross Validation

The LR method used LST to model the large spatial trend of Ta, but it cannot capture the fine spatial
structure in the residuals from the LR models. The BKR method not only can explicitly model the fine
spatial structure by a Gaussian random field, but also has the ability to quantify uncertainties. Thus, the BKR
method will provide a better description of the complex spatial variability of Ta. As a result, better prediction
performance will be obtained from the BKR models. To validate this assertion, the BRK method was compared
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to the LR method using 10-fold cross-validation approach for both the whole region and the urban areas of
the conterminous United States. In the whole region scenario, a total of 758 site samples for each month were
used in the cross-validation procedure. For the urban areas, a subset of 229 sites were extracted firstly from
the complete 758 sites using the urban areas data and then used in the cross-validation.

Figure 5 represents the scatter plots of observed Ta against predicted Ta from the LR models (gray
color) and the BKR models (red color) under the whole region scenario. Improved prediction performance
of the BKR method can be confirmed by a visual examination of the figure. To quantify the improvement of
the BKR method, RMSE values of the two methods were computed for each month in 2015. For each month,
10 RMSE values from the 10-fold cross-validation are graphed in a boxplot for the two methods. A boxplot
characterizes the distribution of 10 RMSE values for each month by using the quartiles. The central
rectangle depicts the range (the interquartile range (IQR)) between the first quartile and the third quartile.
The segment inside the rectangle denotes the median of the values. Two vertical lines (whiskers) above
and below the rectangle each represent a range of 1.5 IQR. Outliers are displayed as dot points, which are
either 1.5 IQR or more above the third quartile or below the first quartile.
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Figure 5. The whole region scenario: observed Ta against predicted Ta from LR and Bayesian Kriging regression
(BKR): (top row) models in the daytime case (Tmax). (bottom row) Models in the nighttime case (Tmin).

Figure 6 represents boxplots of RMSE for 12 months under the whole region scenario. From Figure 6,
we can see that the BKR method had a lower RMSE for all 12 months in both the daytime (Figure 6, right)
and nighttime cases (Figure 6, left). In the daytime case, the average RMSE values of the two methods is
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2.35 K for the LR method and 1.23 K for the BKR method. In the nighttime case, the LR method had an
average RMSE of 1.70 K, and the BKR method had an average of RMSE 1.20 K. From the results, the BKR
method achieved averaged RMSE values of 1.23 K for Tmax and 1.20 K for Tmin. The model performance
of the BKR method in this study was relatively better than similar studies on the estimation of monthly
Ta. Lu et al. used a hierarchical space–time model to estimate monthly Ta over the Qinghai Province
in China and achieved RMSE values of 2.15 K for Tmax and 1.97 K for Tmin [40]. Chen et al. achieved
RMSE values of 2.32 K for Tmax and 2.61 K Tmin using geographically weighted regression (GWR) [15].
Wang et al. compared different methods in estimating monthly Ta and found that GWR has a similar
prediction performance to that of Kriging regression [35]. A RMSE of 1.8 K for estimating monthly mean
Ta was obtained using machine learning algorithms with a set of inputs [27]. In addition to the improved
prediction performance in an averagely sense, the RMSE values of the BKR method for different months
are more stable with a lower value compared to the LR method, which is illustrated by a steady fluctuation
of the red boxplots in Figure 6. In particular, RMSE values of the LR method in the daytime case for the
months of 4, 5, 6, 7 (the summer season) in 2015 are more deviated from the average level. For the LR
method in the nighttime case, the months of 12, 1, 2 are more deviated.
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Figure 6. The whole region scenario: boxplot of root mean squared error (RMSE) of the LR and BKR for
12 months in 2015: (left) models in the daytime case (Tmax). (right) Models in the nighttime case (Tmin).

As for the urban areas scenario, the summarized statistical description of the cross-validation RMSE
values is also represented by the boxplot in Figure 7. It can be seen from the plot that the BKE method
achieved a similar predictive performance compared to the results from the cross-validation for the whole
region. The averaged RMSE values of the BKR method are 1.21 K for Tmax and 1.27 K for Tmin. The BKR
method is also superior to the linear regression method for different months and the two cases (the daytime
and nighttime cases). The results of the urban areas scenario indicate that the BKR method is also valid for
estimating monthly Ta using the LST data in the urban areas.
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Figure 7. The urban areas scenario: boxplot of RMSEs of the LR and BKR for 12 months in 2015: (left) models
in the daytime case (Tmax). (right) Models in the nighttime case (Tmin).

4.3. Model Fitting

All the data samples of 758 sites were used to fit the BKR models for each month of 2015 in the daytime
and nighttime cases. A total of 12× 2 fitted models were obtained. As the BKR method had the ability to
quantify the uncertainties in model parameters by posterior distributions, we obtained 10,000 posterior
sample values for each model parameter in each fitted model. The fitted model parameters for Jan and
May were summarized in Table 3 using three percentiles (2.5, 50, 97.5).

Table 3. Posterior parameter percentiles 50(2.5, 97.5) of fitted models in January and May of 2015.

January (Daytime) January (Nighttime) May (Daytime) May (Nighttime)

β0 157.95 (145.15, 170.62) 92.81 (77.55, 109.89) 208.1 (198.22, 217.51) 100.35 (85.65, 115.97)
β1 0.44 (0.4, 0.48) 0.66 (0.59, 0.71) 0.29 (0.26, 0.32) 0.65 (0.59, 0.7)
σ2 5.63 (4.32, 7.23) 3.89 (2.8, 5.32) 8.24 (6.46, 11.02) 3.21 (2.36, 4.29)
τ2 0.55 (0.39, 0.74) 1.22 (1, 1.45) 0.57 (0.32, 0.79) 1 (0.83, 1.17)
φ 0.16 (0.15, 0.17) 0.15 (0.15, 0.18) 0.16 (0.15, 0.21) 0.16 (0.15, 0.21)

In Table 3, β0 and β1 represent coefficients of the model intercept and LST respectively; σ2 and τ2

denote the spatial variance and the error variance; φ is the spatial decay parameter. To give an intuitive
view of the posteriors of the parameters, histograms of the β1 and σ2 samples in the fitted daytime model
in January are displayed in Figure 8. The summarized statistical numbers in Table 3 can be used to evaluate
uncertainties in the fitted models. In comparison to other models, the coefficient of LST β1 of the nighttime
model in January had the highest 95% credible interval (CI) 0.12 from 0.59 to 0.71, but the β1 of the daytime
model in May had the lowest 95% CI 0.06 from 0.26 to 0.32. The spatial decay parameters φ of the four
models generally had a similar value around 0.16, but this parameter has a narrower CI 0.03 for models in
January than for models in May (CI 0.06). A similar pattern has been found for the spatial variance σ2,
where CIs of the parameter for models in January were lower than models in May. In terms of the error
variance τ2, it can be found that it had a stable CI around 0.4 among the four models.
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Figure 8. The posterior distributions of the coefficient of LST (β1) and the spatial variance (τ2) of the
daytime model in January.

The median values of the model parameters of all fitted models are summarized in Table 4.
From Table 4, we can see that the coefficient of LST (β1) is generally higher in the nighttime case than the
daytime case. However, the spatial variance parameter (σ2) was higher in the daytime case than in the
nighttime case. This was probably caused by the high spatial variability of Tmax in the daytime and more
spatial structure information in Tmax was captured by the model, which is indicated by the high spatial
variance parameter. The spatial decay parameter (φ) was stable around 0.16 for all models, which means
that Ta had a similar spatial dependence in different months when the large spatial trend was explained
by the LST.

Table 4. Parameter medians of the daytime and nighttime models for each month in 2015.

Month 1 2 3 4 5 6 7 8 9 10 11 12

Daytime

β0 157.9 173.4 178.2 193.3 208.1 193.3 193.6 190.4 187.9 162.7 149.8 173.3
β1 0.44 0.38 0.38 0.33 0.29 0.35 0.36 0.37 0.37 0.44 0.48 0.39
σ2 5.63 7.30 5.40 7.31 8.24 7.87 7.06 5.87 4.78 3.21 3.74 5.28
τ2 0.55 0.36 0.56 0.48 0.57 0.71 0.61 0.73 0.61 0.63 0.57 0.36
φ 0.16 0.15 0.16 0.15 0.16 0.17 0.18 0.16 0.19 0.16 0.15 0.15

Nighttime

β0 92.81 107.34 56.90 54.65 100.35 59.83 52.04 32.14 27.46 44.86 69.38 97.24
β1 0.66 0.60 0.79 0.80 0.65 0.79 0.82 0.88 0.90 0.84 0.75 0.65
σ2 3.89 5.74 1.90 2.14 3.21 2.01 1.81 1.60 1.65 1.52 2.49 3.30
τ2 1.22 1.04 1.44 1.07 1.00 0.93 0.86 1.15 1.14 1.25 1.19 1.17
φ 0.15 0.15 0.18 0.16 0.16 0.16 0.16 0.16 0.17 0.19 0.16 0.16

One advantage of the BKR was its ability to fit the spatial random effect of Ta. This effects is the
fitted value of the Gaussian process w(s) at the sample sites of the BKR model (see Section 3.2 for details).
Figure 9 shows the distributions of the fitted spatial effects for models in January and May. It can be clearly
seen from Figure 9 that different spatial patterns are revealed in the maps. These spatial patterns represent
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the unexplained fine scale spatial structure of Ta. Comparing these patterns with LR models residuals in
Figure 4 (Section 4.1), we can find better matches between them, which means that the Gaussian process
w(s) in the BKR model has captured the structure in the residuals that the LR models failed to capture.
The fine scale spatial structure together with large scale spatial trend explained by the LST variable provide
a better description of the complex structure in the Ta field.
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Figure 9. Spatial distributions of fitted spatial random effects in the fitted BKR models (top left: the daytime
model in January).

4.4. Air Temperature Estimation

The fitted models were used to estimate Tmax and Tmin for each month of 2015 at locations without
ground stations. As the covariate variables LSTday and LSTnight were a gridded image with 5 km
resolution, predicted Tmax and Tmin represent averaged values in each grid or pixel. By sampling from
the predictive distribution in the fitted models, a total of 10,000 predicted samples was obtained for each
pixel. The predicted samples for each pixel give a full description of the uncertainty in the predicted value.
The Figure 10 shows the estimated Tmax in January and May as well as its 95% credible intervals (CI).
The estimated value of Tmax of one pixel is the median value of the samples for the pixel. The 95% CI
of one pixel is computed as the difference between the 2.5 and 97.5 percentiles of the samples. The map
of 95% CI in January shows that the most areas of USA have relatively low CI interval values between
3–4 K, indicating a more reliable estimation. The 95% CI map in May has relatively high CI interval values
in some parts of the western region, which have complex topographic features. The two 95% CI maps
indicate that the estimated Tmax in January is more reliable than the estimated Tmax in May.
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Figure 10. Estimation of Tmax in January and May: (top row) maps of estimated Tmax and its 95% credible
intervals (CI) in January. (bottom row) Maps of estimated Tmax and its 95% CI in May.

5. Conclusions

In this paper, a Bayesian Kriging regression (BKR) method was proposed to model and estimate
monthly air temperature (Ta) using land surface temperature (LST) as the only covariate. The BKR method
is a spatial statistical model which decomposes the spatial variability of Ta into a large scale trend and a
fine scale spatial structure. By embedding the Kriging regression into the Bayesian Framework, the BKR
has the capacity to quantify uncertainties in both model parameters and predicted Ta values. Specifically,
this study has developed models to estimate monthly maximum air temperature (Tmax) using daytime
LST, and to estimate monthly minimum air temperature (Tmin) using nighttime LST in 2015 over the
conterminous United States. The uncertainties in the parameters of developed models and estimated Ta
were both analyzed.

An exploratory analysis shows a generally close relationship between LST and Ta. The correlation
between Tmin and nighttime LST is relatively higher than that between Tmax and daytime LST. The results
indicate that it is reasonable to estimate monthly Ta using only LST data. A 10-fold cross-validation
approach was adopted to compare the predictive performance of the BKR method and the LR method for
the whole region and the urban areas of the conterminous Unite States. The results for the whole region
show that the BKR method achieves a competitively better performance with averaged RMSE values
1.23 K for Tmax and 1.20 K for Tmin. Compared with few previous studies on estimating monthly Tmax
and Tmin, the BKR method can obtain the best predictive performance. But the RMSE values reported in
the previous studies should considered critically due to different study areas and datasets. In addition,
the cross-validation results for the urban areas demonstrates a similar performance with the whole region.
In conclusion, all the results prove that the BKR method using only LST data can obtain a relatively
better predictive performance. Additionally, posterior samples of the model parameters and predictive
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samples of the estimated Ta were obtained. These samples can be used to quantify uncertainties in model
parameters and estimated Ta values.

However, there is a major limitation regarding the BKR method. The samples of the model parameters
and estimated Ta were generated by a MCMC algorithm such as the Gibbers Sampler. As this sampling was
done for each pixel to be estimated, a large computation time and storage space will be used when estimating
Ta over a large region with finer spatial resolution. Because of the MCMC sampling algorithm is highly scalable
in computation, this limitation can be addressed by using parallel computing over multiple cores.
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